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Group I metabotropic glutamate receptors (mGluRs) mediate a range of signaling and
plasticity processes in the brain and are of growing importance as potential therapeutic
targets in clinical trials for neuropsychiatric and neurodevelopmental disorders (NDDs).
Fundamental knowledge regarding the functional effects of mGluRs upon pyramidal
neurons and interneurons is derived largely from rodent brain, and their effects upon
human neurons are predominantly untested. We therefore addressed how group I
mGluRs affect microcircuits in human neocortex. We show that activation of group I
mGluRs elicits action potential firing in Martinotti cells, which leads to increased synaptic
inhibition onto neighboring neurons. Some other interneurons, including fast-spiking
interneurons, are depolarized but do not fire action potentials in response to group I
mGluR activation. Furthermore, we confirm the existence of group I mGluR-mediated
depression of excitatory synapses in human pyramidal neurons. We propose that the
strong increase in inhibition and depression of excitatory synapses onto layer 2/3
pyramidal neurons upon group I mGluR activation likely results in a shift in the balance
between excitation and inhibition in the human cortical network.

Keywords: mGluR, human cortex, Martinotti, fast-spiking interneuron, LTD, single-cell RNA-sequencing

INTRODUCTION

Metabotropic glutamate receptors (mGluRs) form a diverse set of G-protein-coupled receptors
that are divided into three groups, based on sequence homology, pharmacological properties, and
signal transduction (Nakanishi, 1992). The most studied of the three is group I, which comprises
mGluR1 and mGluR5, both of which act through Gq proteins. Group I mGluRs are located
perisynaptically and are involved in a range of signaling and synaptic plasticity processes (Luján
et al., 1996). They are particularly known for inducing a form of long-term depression (LTD) at
glutamatergic synapses, which can be mediated by either mGluR1 or mGluR5, depending on brain
region, postsynaptic cell type, and specific pathways in which the synapse is involved (Lüscher and
Huber, 2010; Sherman, 2014). In addition to their role in LTD, group I mGluR activation potentiates
NMDA-receptor-mediated currents (Wang and Daw, 1996; Mannaioni et al., 2001), and can
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depolarize several types of neurons through activation of
a Ca2+-dependent cation conductance and decrease of
resting K+ current (Baskys et al., 1990; Crepel et al., 1994;
Guérineau et al., 1994, 1995).

While most studies of mGluR function, as well as its
therapeutic effects, have centered upon excitatory signaling and
pyramidal neurons (Chuang et al., 2000; Bandrowski et al.,
2003), mGluRs can induce plasticity at GABAergic synapses
through a variety of mechanisms (Galante and Diana, 2004;
Valentinova and Mameli, 2016). Furthermore, group I mGluRs
are expressed in several types of interneurons in both mouse
and human brain (López-Bendito et al., 2002; Boer et al., 2010).
Consequently, group I mGluRs depolarize specific types of
interneurons (McBain et al., 1994; Van Hooft et al., 2000) and
increase synaptic inhibition in rodent brain (Zhou and Hablitz,
1997; Mannaioni et al., 2001). Activation of group I mGluRs
can also synchronize network activity by eliciting synchronous
spiking in low-threshold spiking interneurons (Beierlein et al.,
2000), which include Martinotti cells.

In recent years, group I mGluRs, and mGluR5 in particular,
have become of increasing interest as potential therapeutic targets
in neuropsychiatric and neurodevelopmental disorders (NDDs)
(Barnes et al., 2015), including schizophrenia (Conn et al.,
2009), and autistic spectrum disorders (ASDs) (Aguilar-Valles
et al., 2015; Wenger et al., 2016). For example, dysregulated
group I mGluR-mediated plasticity was proposed to underlie the
NDD pathophysiology of fragile X syndrome (FXS) (Bear et al.,
2004), since group I mGluR-mediated LTD is exaggerated in
hippocampal pyramidal neurons in the FXS mouse model (Huber
et al., 2002). Strikingly, mGluR-elicited spiking in Martinotti
cells has been shown to be reduced in the Fmr1-KO mouse
model for FXS (Paluszkiewicz et al., 2011b). These findings
led to clinical trials targeting mGluR5 in adults with FXS
(Berry-Kravis, 2014; Jacquemont et al., 2014). Unfortunately,
these trials have thus far been unsuccessful, with reasons given
ranging from patient age, and drug dosage level, to incomplete
knowledge at a brain circuit rather than at a single cell level
(Mullard, 2015; Berry-Kravis et al., 2016, 2018). Furthermore,
rodent data on mGluR function has rarely been validated
in the human brain. New work has started to confirm the
existence of some of the effects of mGluRs in human cortex.
The influence of group II mGluRs on glutamatergic transmission
has recently been shown to be the same in human cortex
as it is in rodents (Bocchio et al., 2019), as has mGluR-
mediated LTD in fast-spiking interneurons (Szegedi et al., 2016).
Given the importance of validation in humans of the basic
mechanisms underlying therapies for cognitive disorders, we
sought to confirm the effects of group I mGluRs in human cortex.
Accordingly, we report that group I mGluRs increase inhibitory
transmission onto several types of neurons in human cortex
and identify depolarization of Martinotti cells as a potential
mechanism. Furthermore, we confirm the existence of mGluR-
mediated synaptic depression in human pyramidal neurons.
Taken together, these results provide an essential step forward
in understanding human mGluR-mediated signaling that may
inform our understanding of their therapeutic actions in future
clinical trials.

MATERIALS AND METHODS

Acute Slice Preparation From Human
Cortex
All procedures carried out involving patient tissue were approved
by the VU University Medical Center Medical Ethical Committee
and in accordance with the Dutch law and the declaration of
Helsinki. All 40 patients provided written informed consent.
The majority of cortical samples were taken from patients
that suffered from drug-resistant epilepsy, in most cases due
to hippocampal sclerosis (Table 1). During surgery, non-
pathological tissue showing no structural abnormalities was
resected from anterior and medial temporal cortex (Goriounova
et al., 2018) (in this paper Figure 2 shows the exact location and
extent of the resection and what tissue block was taken to the lab)
in order to reach the pathological focus. Tissue was immediately
stored and transported to the physiology laboratory in ice-cold
slicing solution containing (in mM) 110 Choline chloride, 26
NaHCO3, 10 D-glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1
sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, and 0.5 CaCl2. 350–
450 µm thick slices were prepared in the same, carbogenated,
solution and were left to recover in aCSF containing (in mM)
125 NaCl, 26 NaHCO3, 10 D-glucose, 3 KCl, 2 CaCl2, 1 MgCl2,
and 1.25 NaH2PO4 at 35◦C, and then for at least 60 min
at room temperature. aCSF in both recovery and recording
chambers was continuously bubbled with a mixture of 95% O2
and 5% CO2.

Electrophysiology
Slices in the recording chamber were perfused with aCSF
heated to 31–33◦C. Recordings were made using borosilicate
(GC150-10, Harvard Apparatus, Holliston, MA, United States)
glass pipettes with a resistance of 3 – 5 M�, pulled on
a horizontal puller (P-87, Sutter Instrument Co., Novato,
CA, United States). Signals were amplified (Multiclamp 700B,
Molecular Devices), digitized (Digidata 1440A, Molecular
Devices), and recorded in pCLAMP 10 (Molecular Devices,
Sunnyvale, CA, United States). Access resistance was monitored
before, during, and after recording. Cells were discarded
if the access resistance deviated more than 25% from its
value at the start of recording, or if it exceeded 20 M�.
For current-clamp recordings and voltage-clamp recordings
of excitatory postsynaptic current (EPSCs), pipettes contained
intracellular solution consisting of (in mM) 148 K-gluconate,
1 KCl, 10 Hepes, 4 Mg-ATP, 4 K2-phosphocreatine, 0.4
GTP and 0.5% biocytin, adjusted with KOH to pH 7.3
( ± 290 mOsm). All EPSC recordings except those shown
in Figure 5H were performed in the presence of 10 µM
Gabazine (Tocris Bioscience, Bristol, United Kingdom). To
measure evoked EPSCs (eEPSCs), a pipette filled with aCSF
was placed on a stimulation electrode and positioned within
100 µm from the recorded neuron. Current pulses were applied
using an ISO-Flex stimulation box, and timed by a Master
9 (A.M.P.I., Jerusalem, Israel). The stimulation pipette was
positioned so that a clear postsynaptic response could be
observed with a clear separation from the stimulation artifact
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TABLE 1 | Patient data for all subjects used in this study.

Patient Age Sex Diagnosis Brain
region

Years of epilepsy Seizure frequency Medication used

1 31 Female MTS Temporal 10 4/month CBZ, CLB

2 25 Male Tumour Temporal 2 Absence seizures: 2/week;
daily epigastric aura

LEV, CBZ, LCS

3 44 Female MTS Temporal 22 3/month CBZ, CLB, LTG

4 47 Female Tumour Temporal 21 8/month CBZ

5 38 Male MTS Temporal 10 6/month CBZ

6 43 Male MTS Temporal 9 4/month LCS, VPA

7 29 Female MTS Temporal 27.5 8.5/month CLB, OXC

8 43 Male MTS Temporal 39.5 8/month LTG, LEV

9 31 Female MTS Temporal 25.5 151/month N/A

10 25 Male Cavernoma Temporal 10 8/month LEV

11 56 Female Hippocampal
malrotation

Temporal 44 N/A TPM, PHT, PGB, CBZ

12 35 Male MTS Temporal 12.5 1/4–6 weeks CBZ, LEV

13 49 Male MTS Temporal 33 1/week to >1/day CBZ

14 63 Female Cavernoma Temporal 12 1/week to >1/day LTG, CLB, TPM

15 48 Female MTS Temporal 34 1–2/week to 3/day ZNS, CBZ, VPA

16 40 Female MTS Temporal 24 1/month to >1/week ZNS, LTG, CLB, MID

17 33 Female MTS Temporal 14 Up to 20/day CBZ, LEV, CLB

18 52 Male Unspecified epilepsy Temporal 48 Up to 3/day; tonic-clonic:
1/month

CBZ, CLB

19 61 Male MTS Temporal 55 1/week MID, LTG, PHB, PHT

20 51 Female MTS Temporal 32 40/month CZP, LTG, OXC

21 21 Female MTS Temporal N/A N/A N/A

22 57 Male MTS Temporal 7 4–5/month LTG, OXC, ZNS

23 39 Male MTS Temporal 18 6/month CBZ

24 17 Female Tumour Temporal 13 5/month OXC

25 22 Male Dysplasia Occipital 12 8/month VPA, OXC

26 47 Male Dysplasia Frontal 21 Variable; clustered CBZ, LTG

27 41 Male MTS Temporal 40 1/month CBZ, CLB, LEV

28 31 Female MTS Temporal 30 10/week CBZ

29 60 Male MTS Temporal 14 1/month LTG, LEV

30 24 Male MTS Temporal 7 3–5/month CBZ, LCS, LEV

31 25 Female Unspecified epilepsy Temporal 14.5 Variable; clustered CBZ, TPM

32 24 Female MTS Temporal 10.5 1–10/week LTG, LEV

33 38 Female Low grade lesion Temporal 28 20/month LTG

34 47 Female MTS Temporal 12.5 1–3/month LEV

35 40 Male Low grade lesion Temporal 23 1-2/month LEV, OXC

36 50 Female MTS Temporal 45 0–5/month CBZ, PHT

37 51 Male MTS Temporal 49 Clusters: 7–8/year LEV

38 32 Male MTS Temporal 8 25/month CBZ, LCS, TPM, ZNS

39 38 Female MTS Temporal 32 4/day CLB, LTG, LEV

40 44 Male MTS Temporal N/A 3/week VPA, OXC

MTS, medial temporal sclerosis; CBZ, carbamazepine; CLB, clobazam; LCS, lacosamide; VPA, valproic acid; LTG, lamotrigine; OXC, oxcarbazepine; LEV, levetiracetam;
TPM, topiramate; PGB, pregabalin; ZNS, zonisamide; MID, midazolam; PHB. Phenobarbital; PHT, phenytoin; CZP, clonazepam; ZNS, zonisamide; N/A, not available.

(Figure 1B). The stimulus intensity was set to evoke a half-
maximal current. Pulses were applied every 15 s and a baseline
of at least 5 min was recorded after the eEPSC amplitude
stabilized. After recording a stable baseline, 25 µM DHPG
was perfused into the recording chamber for 5 min. After
a 5-min washout period, eEPSCs were measured every 15 s
for up to 40 min and responses averaged per 10-min bins.

In a subset of experiments, shown in Figure 5H, eEPSCs
were recorded during DHPG application. These recordings
were performed in the absence of GABAzine, so as not
to elicit network events. Spontaneous inhibitory postsynaptic
currents (sIPSCs) were measured using an intracellular solution
containing (in mM) 70 K-gluconate, 70 KCl, 10 Hepes, 4
Mg-ATP, 4 K2-phosphocreatine, 0.4 GTP and 0.5% biocytin,
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adjusted with KOH to pH 7.3 (±290 mOsm). IPSC recordings
were performed in the presence of 10 µM CNQX (Abcam,
Cambridge, United Kingdom) and 50 µM D-APV (Abcam).
sIPSCs were recorded from pyramidal neurons located in L2/3
and interneurons located in layer 1.

Post hoc Morphological Assessment
Slices containing biocytin-filled cells were fixed in 4%
paraformaldehyde in PBS for 24 – 48 h at 4◦C. Slices were
washed at least 3 × 10 min in PBS, and incubated in PBS
containing 0.5% Triton X-100 and 1:500 Alexa 488-streptavidin
(Invitrogen, Waltham, MA, United States) on a shaker at
approximately 18–23◦C (room temperature) for 48 h. Slices were
then further washed at least 3 × 10 min in PBS and mounted
on glass slides in mounting medium containing 0.1M Tris
pH 8.5, 25% glycerol, 10% w/v Mowiol (Sigma-Aldrich). The
morphology of recorded cells was checked for identification of
their cell type (see Ascoli et al., 2008; Tremblay et al., 2016).
Selected cells were imaged using an A1 confocal microscope
(Nikon, Tokyo, Japan) using a 10×, NA 0.45 objective, scanned
at 0.5 µm × 0.5 µm × 1.0 µm (xyz) resolution. Cellular
morphology was reconstructed using NeuroMantic software
(Myatt et al., 2012).

Immunohistochemistry
To assess the expression of mGluR1α in somatostatin-positive
neurons, temporal cortical tissue was used from patients
undergoing surgery for mesial temporal lobe epilepsy (MTLE;
1 male, 2 female, 25 – 47 years) and three autopsy controls,
displaying a normal cortical structure for the corresponding
age and without any significant brain pathology (1 male, 2
female, 25 – 49 years). The control cases included in this
study were selected from the databases of the Department of
Neuropathology of the Academic Medical Center, University
of Amsterdam, Amsterdam, Netherlands. Tissue was obtained
during autopsy and used in accordance with the Declaration
of Helsinki and the AMC Research Code provided by the
Medical Ethics Committee. All autopsies were performed within
24 h after death. Tissue was fixed in 10% buffered formalin
and embedded in paraffin. 6 µm sections were incubated
overnight at 4◦C in primary antibody solution (mGluR1α,
1:100, monoclonal mouse SC-55565, Santa Cruz Biotechnology,
Santa Cruz, CA; Somatostatin, 1:300, polyclonal rabbit, AB1595,
Chemicon, Temecula, CA, United States). Sections were then
incubated for 2 h at room temperature with Alexa Fluor
568-conjugated anti-rabbit and Alexa Fluor 488 anti-mouse
immunoglobulin G (IgG, 1:200, Thermo Fisher Scientific,
Waltham, MA, United States). Finally, sections were analyzed
using a laser scanning confocal microscope (Leica TCS Sp2,
Wetzlar, Germany).

Quantification of GRM1 and GRM5
Expression
GRM1 and GRM5 expression levels were quantified using
publicly available Allen Institute for Brain Science (AIBS)
database on human single-cell transcriptomics at http://celltypes.

brain-map.org/, where the detailed methods can be found. The
transcriptomic data from Allen Institute comes from human
temporal cortical tissue, postmortem or surgically resected,
sectioned and dissected per layer (Hodge et al., 2018). The
methods include single nuclei fluorescence-activated cells sorting
(FACS) isolation based on DAPI and neuronal nuclei staining
(NeuN), followed by Smart-seq v4 based library preparation and
single-cell deep (2.5 million reads/cell) RNA-Seq.

The data on single nucleus GRM1 and GRM5 mRNA
expression in transcriptomic types from AIBS database
were pooled to represent higher-order hierarchical clusters
(SST, PVALB, PAX6/LAMP5, and excitatory types) from
selected cortical layers of interest. Violin plots were made
using custom-made Matlab scripts (Mathworks, Natick,
MA, United States), the plots represent distribution of
mRNA expression on a log scale with counts per million
(CPM) value of 4000.

Analysis and Statistics
Electrophysiological data were analyzed using custom scripts in
Matlab. All data are represented as mean ± standard error of the
mean (SEM). Normal distribution of the data was tested using
Shapiro-Wilk tests. Appropriate statistical tests were performed
in Prism 7 (Graphpad, La Jolla, CA, United States), and are
mentioned in the figure legends.

RESULTS

Group I mGluR Activation Increases
Inhibition Onto Human Pyramidal
Neurons
Activation of group I mGluRs increases spontaneous inhibition
in rodent cortex (Paluszkiewicz et al., 2011b). To test whether this
holds true in human cortex, we recorded spontaneous inhibitory
postsynaptic currents (sIPSCs) in pyramidal neurons in layer
2/3 of surgically resected human neocortex and activated group
I mGluRs by a 5-min bath application of the agonist (S)-3,5-
Dihydroxyphenylglycine (DHPG; Figures 1A–C). Application
of DHPG led to an increase in the frequency of sIPSCs in
pyramidal neurons that lasted after the agonist washout from
the bath (Figure 1D). Interestingly, while the amplitude of
inhibitory events was unaffected (Figure 1E), both the rise
and decay times were increased after washout of the agonist
(Figures 1F,G).

Group I mGluRs Strongly Activate
Martinotti Cells in Human Cortex
A potential cause of the slower kinetics would be a change
in membrane time constant caused by DHPG. However, the
membrane time constant after completion of the experiment
did not differ from that measured before the start of the
experiment [before: 17.7 ± 2.2 ms, after: 15.3 ± 3.0 ms,
paired t(5) = 0.931, p = 0.395]. As inputs that are further
away from the soma appear to have slower kinetics due
to the filtering properties of dendrites (Magee, 2000), we
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FIGURE 1 | mGluR activation increases synaptic inhibition onto human pyramidal neurons. (A) Example morphological reconstruction of a human pyramidal neuron
(350 µm slice; dendrites in black, axon in gray). Inset: electrophysiological response to negative and positive current steps. (B) Experimental protocol. (C) Example
traces showing IPSCs before (Pre), during (DHPG) and after (Post) application of DHPG. (D) DHPG elicited a lasting increase in sIPSC frequency in pyramidal
neurons (repeated-measures ANOVA: F (2,10) = 16.84, p = 0.003; Tukey’s post hoc test: Pre vs. DHPG ∗p < 0.05, DHPG vs. Post ns, Pre vs. Post ∗p < 0.05).
(E) sIPSC amplitude was not significantly affected by DHPG [F (2,10) = 0.07, p = 0.929]. (F) Average rise time of sIPSCs in pyramidal neurons was slower after
DHPG application [F (2,10) = 7.22, p = 0.011; Tukey’s post hoc test: Pre vs. DHPG ns, DHPG vs. Post ns, Pre vs. Post ∗p < 0.05]. Right panel, cumulative
probability distribution of sIPSC rise times, average of probability distributions calculated for each cell. (G) Decay time of sIPSCs was slower after DHPG application
F (2,10) = 5.82, p = 0.021; Tukey’s post hoc test: Pre vs. DHPG ns, DHPG vs. Post ns, Pre vs. Post ∗p < 0.05]. Right panel, cumulative probability distribution of
sIPSC decay times, average of probability distributions calculated for each cell.

hypothesized that the slower synaptic inputs elicited by DHPG
might be onto distal dendrites and were therefore likely coming
from Martinotti cells (MCs). We performed current-clamp
recordings of putative MCs in layer 2/3 to assess whether
group I mGluR activation would elicit a change in membrane
potential. Putative MCs were identified by an ovoid-shaped
cell body and bitufted proximal dendritic morphology in the
DIC microscopic image and by a rebound action potential
following a depolarizing current step. Post hoc reconstruction
of the morphology of these cells showed that the axon
of putative MCs branched out and terminated in layer 1
(Figure 2A; Obermayer et al., 2018). Application of DHPG
caused a depolarization of 7.7 ± 1.4 mV before the start of

action potential firing (Figure 2B) and led to action potential
firing in 6 out of 7 MCs (Figure 2C). In one experiment, a
connected pair of MC and pyramidal neuron was recorded
(Figure 2D). Upon DHPG application, the MC started firing
action potentials, and the pyramidal neuron received an
increased number of inhibitory postsynaptic potentials (IPSPs,
Figure 2E). Analysis of the pyramidal neuron membrane
potential following 50 MC action potentials showed distinct
IPSPs (Figure 2F, left panel). Performing the same analysis on
randomly generated time points did not show a similar peak
(Figure 2F, right panel; p < 0.001). The latency between the
peak of the MC action potential and the onset of IPSPs in
the pyramidal neuron was 1.75 ms, with a jitter of 396 µs.
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FIGURE 2 | mGluR activation depolarizes Martinotti cells and leads to action potential firing. (A) Morphological reconstruction of an MC in human cortex (350 µm
slice). Morphology was recovered post hoc for 5 out of 7 recorded cells. Asterisks denote places where a neurite was cut during slice preparation. Inset:
electrophysiological response to negative and positive current steps. (B) Membrane potentials of MCs are depolarized by DHPG (Wilcoxon matched-pairs signed
rank test, n = 7, W = 28, p = 0.016). (C) DHPG induced an increase in action potential frequency (Wilcoxon matched-pairs signed rank test, n = 7, W = 21,
p = 0.031). (D) Voltage traces of a connected pair consisting of an MC (teal) and a pyramidal neuron (gray). Application of DHPG (orange) induces sustained action
potential spiking in the MC. (E) Voltage traces of MC and pyramidal neuron before and during application of DHPG (dashed lines indicate corresponding area of the
trace in D). Dashed boxes denote the area used for the analysis in f. (F) Average pyramidal neuron voltage trace (left panel, 50 events, light gray area shows SEM)
around MC action potentials (left panel, teal dash) shows an inhibitory response that is absent in voltage traces centered on random time points during the same
period (right panel; Mann-Whitney U = 418, p < 0.001). (G) Immunohistochemical staining for somatostatin (cyan) and mGluR1a (yellow) shows that mGluR1a is
present in SST+ interneurons (arrowheads) in both resected and post-mortem tissue. Scale bar = 10 µm. Right panel: percentage of SST+ cells positive for
mGluR1a per subject. (H) Distribution of GRM1 and GRM5 RNA levels in SST+ cells. Data taken from the Allen Institute human single-cell RNA-seq database. Here
and further, black dot shows the median, n number above is the number of cells (nuclei) plotted.

Thus, action potentials elicited by DHPG in the presynaptic
MC generate time-locked inhibitory responses in postsynaptic
pyramidal neurons.

To confirm that DHPG could mediate its effect on local
synaptic inhibition directly via Martinotti cells, we performed

double-labeling immunohistochemistry for somatostatin and
mGluR1a. We observed near-total colocalization of mGluR1a
and somatostatin in samples from both surgically resected
(22 out of 22 SST+ neurons from 3 samples) and post
mortem (22 out of 23 SST+ neurons from 3 samples)
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human temporal cortex (Figure 2G). In addition, single-
cell RNA-sequencing data from the Allen Brain Institute
showed strong expression of both GRM1 and GRM5 in

FIGURE 3 | mGluR activation increases synaptic inhibition onto layer 1
interneurons. (A) Morphological reconstruction of a human L1 interneuron
(350 µm slice). Morphology was recovered post hoc for 11 out of 15 recorded
cells. Inset: electrophysiological response to negative and positive current
steps. (B) Example traces showing IPSCs before (Pre), during (DHPG) and
after (Post) application of DHPG. (C) DHPG elicited a prolonged increase in
sIPSC frequency in L1 interneurons (repeated-measures ANOVA;
F (2,22) = 12.09, p < 0.001; Tukey’s post hoc test: Pre vs. DHPG
∗∗∗p < 0.001, DHPG vs. Post ns, Pre vs. Post ∗p < 0.05]. (D) sIPSC
amplitude in L1 interneurons was not significantly affected by DHPG
[repeated-measures ANOVA; F (2,20) = 1.16, p = 0.333]. (E) Example current
trace showing increased sIPSC frequency and shift in holding current upon
DHPG bath application. Right panel, proportion of cells in which the holding
current shifted upon DHPG application. (F) L1 interneurons are depolarized
(cell 1, upper panel) or were unresponsive (cell 2, lower panel) to DHPG
application. (G) GRM1 and GRM5 RNA levels in L1 interneurons. Data taken
from the Allen Institute human single-cell RNA-seq database.

human SST+ interneurons (Figure 2H). We therefore conclude
that Martinotti cells are equipped with group I mGluRs
to directly respond to DHPG and mediate the increase
in synaptic inhibition observed in pyramidal neurons in
superficial layers of human temporal cortex following group I
mGluR activation.

Synaptic Inhibition Onto Layer 1
Interneurons Is Increased by Group I
mGluR Activation
Martinotti cells are known to contact most types of interneurons
in addition to pyramidal neurons. Therefore, we tested whether
interneurons in layer 1 (L1) of the human cortex also receive
more inhibitory input upon group I mGluR activation. To this
end, we recorded sIPSCs in L1 interneurons (Figures 3A,B).
Similar to pyramidal neurons, sIPSC frequency onto L1
interneurons was increased during and after application of
DHPG (Figure 3C), without a change in sIPSC amplitude
(Figure 3D). In addition to increased sIPSC frequency, 2
out of 12 L1 interneurons showed a small increase in
holding current after DHPG application (Figure 3E). This
increase in holding current corresponds to a depolarization
of 5.4 and 6.7 mV when taking into account the input
resistance of the cells. DHPG-induced depolarization in L1
interneurons is therefore unlikely to elicit action potentials.
During current-clamp recordings, L1 interneurons exhibited
a small depolarization or no response, but did not fire
action potentials in response to DHPG (Figure 3F, n = 3).
Thus, we did not find any evidence that L1 interneurons
contribute to the increase in synaptic inhibition upon group
I mGluR activation. In accordance with this, human L1
interneurons express GRM5, but only rarely express GRM1
according to Allen Brain Institute single-cell sequencing
data (Figure 3G).

Group I mGluRs Depolarize Fast-Spiking
Interneurons, but Do Not Elicit Action
Potential Firing
In rodents, fast-spiking (FS) interneurons can be depolarized by
activation of group I mGluRs. To assess whether FS interneurons
contribute to DHPG-induced inhibition in human cortex,
we performed current-clamp recordings of FS interneurons
(Figures 4A,B). Application of DHPG led to depolarization
of all recorded FS interneurons (Figure 4C, n = 7), but did
not elicit action potential firing. In accordance with these
results, analysis of single-cell sequencing data revealed that,
similar to L1 interneurons, human PV+ FS interneurons express
GRM5, rather than GRM1 (Figure 4D). DHPG application did
lead to an increase in the frequency and amplitude of IPSPs
(Figures 4E–G). Although this increase in IPSP frequency is
likely due to increased MC activity, it could also be caused by
an increase in driving force due to the depolarized membrane
potential, which would facilitate detection of events. However,
we found no significant correlation between the increase in
IPSP frequency and the level of membrane depolarization
among FS interneurons (Spearman’s R = −0.26, p = 0.62).
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Thus, FS interneurons receive increased synaptic inhibition upon
group I mGluR activation, but are themselves not likely to
contribute to this effect.

Excitatory Inputs Onto Human Pyramidal
Neurons Exhibit mGluR-Mediated
Depression
Finally, we examined whether excitatory inputs were equally
affected by group I mGluR activation. In current-clamp, only
2 out of 10 pyramidal neurons responded to DHPG by firing
action potentials (Figures 5A,B), although most L2/3 pyramidal
neurons express GRM1 and GRM5 (Figure 5C).

We therefore examined whether DHPG increased excitatory
inputs onto pyramidal cells by measuring spontaneous excitatory
postsynaptic currents (sEPSCs; Figures 5D,E). Application of
DHPG transiently increased sEPSCs by 25% or more in 6 out of
14 pyramidal neurons. However, there was no significant increase
in sESPC frequency overall (Figure 5F).

Group I mGluRs are known to induce depression of
excitatory synapses. This is mediated by mGluR5, which virtually
all L2/3 pyramidal neurons express (Figure 5C). To test
whether human pyramidal neuron excitatory synapses undergo
mGluR-mediated depression, we evoked EPSCs (eEPSCs) by
electrical stimulation (Figure 5G). Indeed, application of DHPG
acutely decreased the amplitude of eEPSCs relative to baseline
(Figures 5H–J). Therefore, we conclude that pyramidal neurons
in human cortex exhibit group I mGluR-mediated depression of
excitatory synapses.

DISCUSSION

In this study, we addressed how activation of group I mGluRs
affects microcircuits in superficial layers of the human neocortex.
Our data demonstrate a cell-type specific recruitment of human
cortical interneurons by group I mGluR activation. We find that
Martinotti cells are strongly excited by group I mGluR activation,
which increases the amount of inhibitory inputs to neighboring
L2/3 pyramidal neurons. Somatostatin-positive interneurons in
superficial layers of the human neocortex show strong abundance
of mRNA for mGluR1 and mGluR5 receptors. Other local
interneuron types, including fast spiking interneurons and layer
I interneurons are depolarized by group I mGluR activation, but
do not fire action potentials in response to this depolarization.
Also, these interneuron types show a lower abundance of GRM1
and GRM5 mRNA. Furthermore, excitatory inputs to pyramidal
neurons are suppressed by group I mGluR activation. Thus, the
large increase in synaptic inhibition across cell types in superficial
cortical layers and the depression of excitatory synapses most
likely results in a net shift in the balance between excitation and
inhibition in the cortical network.

In rodents, layer I interneurons and deep layer fast-
spiking interneurons have previously been reported to fire
action potentials upon mGluR activation with quisqualic acid
(Zhou and Hablitz, 1997). We did not observe induced
action potential firing in any human layer I interneuron or
fast-spiking interneuron. This discrepancy could be due to

the difference in pharmacological ligands used in the earlier
study, which also activate ionotropic glutamate receptors in
addition to metabotropic receptors. Our data are in agreement
with metabotropic-specific ligand effects upon fast-spiking
interneurons (Beierlein et al., 2000) and layer 1 cortical
interneurons in rodents (Cosgrove and Maccaferri, 2012).
Enhanced synaptic inhibition in fast-spiking interneurons and
in layer 1 Cajal-Retzius cells is mediated by Martinotti cells
in rodents. This effect is mediated by mGluR1a specifically
(Beierlein et al., 2000; Cosgrove and Maccaferri, 2012). Therefore,
we propose that Martinotti cells mediate enhanced synaptic
inhibition in human superficial temporal cortex in response to
group I mGluR activation. While we did not see direct action
potential firing in any other interneuron types besides putative
Martinotti cells, we cannot exclude the possibility that other
interneuron types may also be involved in the mGluR-mediated
increase in synaptic inhibition we observed.

Our results show that activation of group I mGluRs
can directly depolarize both Martinotti cells and fast-spiking
interneurons. Since group I mGluRs are located mostly
perisynaptically and can therefore likely be activated by spillover
of glutamate from the synaptic cleft (Luján et al., 1996),
subsequent depolarization of these interneuron types may
constitute a mechanism by which inhibition is increased upon
a prolonged or very strong initial excitatory drive. Group
I mGluR activation can alter neuronal excitability through
a variety of differing mechanisms, including protein kinase
C-mediated changes upon ion channels, or through calcium-
dependent modulation of ion channels (Correa et al., 2017).
mGluRs have been proposed to be involved in epileptogenesis
(McNamara et al., 2006) and group I mGluRs are upregulated
in the hippocampus of patients with temporal lobe epilepsy
(Blümcke et al., 2000). In addition, studies have shown that
the activation of mGluRs in hippocampal slices can increase
epileptiform activity (Merlin and Wong, 1997). However, these
studies often block GABAergic signaling in order to induce
epileptiform activity, thereby disregarding the strong effect on
inhibition we show here, and that is also observed in rodent
hippocampus (McBain et al., 1994; Van Hooft et al., 2000).
We therefore speculate that increased expression of mGluRs in
epilepsy patients could be a homeostatic mechanism, rather than
a direct component of the pathophysiology of epileptogenesis. In
both cortex and hippocampus, group I mGluR-mediated increase
in the frequency of inhibitory events is mediated by mGluR1
(Mannaioni et al., 2001; Sun and Neugebauer, 2011; Cosgrove
and Maccaferri, 2012). We observed consistent co-expression of
mGluR1a and somatostatin in putative Martinotti cells from both
surgically resected tissue and autopsy controls. However, because
group I mGluRs have different roles in different populations of
neurons (Mannaioni et al., 2001; Volk et al., 2006), it remains to
be determined whether mGluR1 or mGluR5 is solely responsible
for the functional effects demonstrated here. Specifically, we
found that FS and a subset of L1 interneurons are depolarized to
some extent by DHPG, an effect that might be due to activation
of mGluR5, which both types express.

We found group I mGluR-mediated depression of excitatory
synapses received by L2/3 pyramidal neurons, similar to that
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FIGURE 4 | mGluR activation depolarizes FS interneurons without leading to action potential firing. (A) Morphological reconstruction of a human fast-spiking basket
cell (350 µm slice). Morphology was recovered post hoc for 4 out of 7 recorded cells. Inset: electrophysiological response to negative and positive current steps.
(B) Voltage trace showing depolarization of a fast-spiking interneuron in response to DHPG. (C) Fast-spiking interneurons are depolarized by DHPG (Wilcoxon
matched-pairs signed rank test, n = 7, W = –28, ∗p = 0.016). (D) GRM1 and GRM5 RNA levels in FS parvalbumin+ interneurons. Data taken from the Allen Institute
human single-cell RNA-seq database. (E) Representative traces showing an increase in inhibitory synaptic potentials during DHPG bath application compared to
baseline. (F) DHPG increased the frequency of spontaneous inhibitory events in fast-spiking interneurons (Wilcoxon matched-pairs signed rank test, n = 6, W = 21,
p = 0.031). (G) sIPSP amplitudes are increased by DHPG application (Wilcoxon matched-pairs signed rank test, n = 6, W = 21, p = 0.031).

observed in the rodent brain. Group I mGluR-LTD has previously
been shown in human cortex for excitatory synapses onto fast-
spiking interneurons (Szegedi et al., 2016). The finding of LTD
at excitatory synapses on pyramidal neurons is similar to that in
rodent hippocampus (Huber et al., 2000). The LTD we observed
is not particularly strong and is shorter in duration than has been
found previously (Huber et al., 2000). It is worth mentioning that
while other studies in rodents typically use 100 µM DHPG, we
only used 25 µM due to its strong acute excitation of network
activity. Since the efficacy of DHPG in inducing LTD is dose-
dependent (Ayala et al., 2009), this may explain why the LTD we
observed was relatively small and short-lived. Overall, however,
we demonstrate the occurrence of group I mGluR-induced LTD
as a plasticity mechanism conserved across species, which means
the aberrant LTD underlying the mGluR theory of FXS (Bear

et al., 2004) may also apply to mature human cortex. However,
to test mGluR-mediated LTD in FXS patient brain tissue would
require using postmortem brain tissue for neurophysiological
recordings (Kramvis et al., 2018), since surgically resected tissue
as used in this study is not available from FXS patients.

In contrast to evoked excitatory responses, mean amplitudes
of spontaneous events were not decreased by mGluR activation
in our experiments. Group I mGluRs have been shown to
increase the amplitude of excitatory synaptic spontaneous events
in rodent somatosensory cortex (Bandrowski et al., 2003) and
in rodent hippocampal interneurons (McBain et al., 1994). It is
possible that in our recordings, mGluR-induced depression of a
subpopulation of synapses is masked by a simultaneous global
increase in events of a relatively large amplitude (Bandrowski
et al., 2003), and that synaptic depression is visible only during the
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FIGURE 5 | mGluR activation reduces excitatory inputs to pyramidal neurons. (A) Voltage trace showing DHPG-induced action potential firing in a pyramidal neuron.
(B) Proportion of pyramidal neurons that displayed a shift in holding potential in voltage-clamp (top panel, neurons from Figure 1). Lower panel, proportion of
pyramidal neurons that fired action potentials in response to DHPG in current-clamp. (C) GRM1 and GRM5 RNA levels in L2/3 pyramidal neurons. Data taken from
the Allen Institute human single-cell RNA-seq database. (D) Experimental protocol for recording sEPSCs. (E) Example current traces showing sEPSCs. (F) sEPSC
frequency was not increased by DHPG [Friedman test, χ2(2) = 3, p = 0.223]. (G) sEPSC frequency did not change significantly upon DHPG application
[repeated-measures ANOVA: F (2,24) = 2.55, p = 0.122]. (H) Experimental protocol for recording evoked EPSCs, depicting placement of stimulus pipette (left panel),
and example evoked responses (right panel) before (black) and after (gray) DHPG application. (I) Example of eEPSC responses during wash-in of DHPG (orange
bar). Mean ± SEM of 4 responses binned per min. (J) DHPG decreased eEPSC amplitude up to 10 min after wash-out of DHPG [Friedman test, χ2(4) = 11.8,
p = 0.019. Post hoc: Bonferroni-corrected Wilcoxon matched-pairs signed rank test, 10 min vs. baseline, n = 8, ∗p < 0.05].

simultaneous timed activation of multiple synapses that occurs
when synaptic events are evoked using extracellular stimulation.
Conversely, a depression of excitatory synapses might cause
the smaller responses from these synapses to fall below the
detection threshold for spontaneous events. This might also

explain why we observed no increase in the frequency of sEPSCs
in most pyramidal neurons, even though the increase in action
potential firing in a subset of pyramidal neurons is quite robust,
and we find an increase in sESPC frequency in superficial
interneurons. That only a subset of pyramidal neurons responded
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to mGluR activation may indicate that there are functional
subtypes of pyramidal neurons in superficial human cortex that
could be distinguished by differential mGluR expression. Indeed,
superficial human pyramidal neurons can be divided into two
classes based on morphology and electrotonic properties and
their somatic location within the cortex corresponds to specific
ion channel expression (Deitcher et al., 2017; Kalmbach et al.,
2018). It remains to be determined whether these subtypes
correspond to pyramidal neurons that do or do not respond
to mGluR activation, or whether mGluR responsiveness further
subdivides one or both of these classes.

Finally, recent studies using human cortical tissue have shown
that there are fundamental differences in how rodent and
human neurons function (Verhoog et al., 2013; Testa-Silva et al.,
2014; Mohan et al., 2015; Wang et al., 2015; Eyal et al., 2016;
Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018). It should
be noted that although the human neocortex used shows no
structural abnormalities, patients typically had a long history
of seizures and had been exposed to a variety of anti-epileptic
medications, thus we cannot conclude unequivocally that these
factors have not influenced neuronal function in some form.
However, specific cholinergic mechanisms and modulation of
disynaptic inhibition between cortical pyramidal neurons are
conserved between rodents and humans (Obermayer et al., 2018;
Poorthuis et al., 2018), as are the action of group II mGluRs
(Bocchio et al., 2019), and group I mGluR-dependent LTD of
excitatory synapses onto fast-spiking interneurons (Szegedi et al.,
2016). We show here that several aspects of group I mGluR
activation in the cortex are preserved across these mammalian
species. The balance of synaptic excitation to inhibition and the
role for aberrant mGluR signaling is of increasing focus for the
synaptic, network and behavioral phenotypes related to rodent
NDD and neuropsychiatry models (Levenga et al., 2010; Barnes
et al., 2015; Nelson and Valakh, 2015; Lee et al., 2017). Notably,
the specific aspects of group I mGluR function we validate as
occurring in human cortex are also dysregulated in mouse models
for FXS, notably enhanced LTD in hippocampal pyramidal
neurons (Bear et al., 2004) and altered GABAergic inhibitory
function specifically mediated by mGluR1 (Paluszkiewicz et al.,
2011a; Cea-Del Rio and Huntsman, 2014). At the start of the
21st century, just over one third of all licensed and approved
pharmaceutical drugs directly or indirectly modulated G-protein
coupled receptors (Klabunde and Hessler, 2002). However, our
fundamental knowledge on the function of G-protein coupled
receptors, specifically mGluRs, and their specificity of action
upon different neuronal subtypes within the human brain is far
from complete. Therefore, we believe that our data have direct

implications for interpreting the actions of group I mGluR-
mediated signaling not only in human cortical circuits, but for
translational approaches when designing clinical models from
NDD rodent data to test specific mGluR targets therapeutically.
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