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Abstract: This work presents a table cleaning and inspection method using a Human Support Robot
(HSR) which can operate in a typical food court setting. The HSR is able to perform a cleanliness
inspection and also clean the food litter on the table by implementing a deep learning technique and
planner framework. A lightweight Deep Convolutional Neural Network (DCNN) has been proposed
to recognize the food litter on top of the table. In addition, the planner framework was proposed
to HSR for accomplishing the table cleaning task which generates the cleaning path according to
the detection of food litter and then the cleaning action is carried out. The effectiveness of the food
litter detection module is verified with the cleanliness inspection task using Toyota HSR, and its
detection results are verified with standard quality metrics. The experimental results show that the
food litter detection module achieves an average of 96% detection accuracy, which is more suitable
for deploying the HSR robots for performing the cleanliness inspection and also helps to select the
different cleaning modes. Further, the planner part has been tested through the table cleaning tasks.
The experimental results show that the planner generated the cleaning path in real time and its
generated path is optimal which reduces the cleaning time by grouping based cleaning action for
removing the food litters from the table.

Keywords: inspection; table cleaning; deep learning; CNN; human support robot; food litter detection

1. Introduction

Due to long working hours, low wages, unwillingness to work as a cleaner, workforce shortage
has been a constant problem for food court cleaning and maintenance tasks in recent times [1].
Recently, many robotic platforms are designed for different cleaning application which include
floor cleaning [2,3], facade cleaning [4], staircase cleaning [5], pavement cleaning [6,7] and garden
cleaning [8]. However, these robot architectures could not support table cleaning and maintenance
tasks. In this context, HSR can be a viable candidate for this task [9,10]. However, configuring HSR
for cleanliness inspection and food litter collection is a challenging task [11]. Because, the robots need
optimal food litter (food scraps, stains, spillage) detection system and real-time planner algorithm to
execute the cleaning and inspection task [12,13].

Various techniques have been developed for cleaning robots to recognize the different class of litter
(garbage, dirt, liquid spillages, and stains) and compute the cleaning strategy. Among them, computer
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vision-based techniques are widely used in cleaning robots for recognizing the litter and compute the
cleaning action [14–19]. Andersen et al., built up a visual cleaning map for cleaning robots using a
vision algorithm and a powerful light-transmitting diode. The sensor recognizes the grimy region and
generates the dirt map by examining the surface pictures pixel-by-pixel utilizing the multi-variable
statistical method [15]. David et al., proposed high-level manipulation actions for cleaning dirt from
table surfaces using REEM a humanoid service robot. The author uses a background subtraction
algorithm for recognizing the dirt from the table and Noisy Indeterministic Deictic (NID) rules-based
learning algorithm to generate the sequence of cleaning action [16]. Ariyan et al., developed a planning
algorithm for the removal of stains from non-planar surfaces where the author uses a depth-first
branch-and-bound search to generate cleaning trajectories with the K-means clustering algorithm [17].
Hass et al., demonstrated the use of unsupervised clustering algorithm and Markov Decision Problem
(MDP) for performing the cleaning task where unsupervised clustering algorithm is used to distinguish
the dirt from surface and MDP algorithm is used to generate the maps, and transition model from
clustered image is used to describe the robot cleaning action [18]. Nonetheless, these approaches have
some practical issues and disadvantages for using in food court table cleaning; the detection ratio
relies heavily on the textured surfaces, which makes it challenging to identify the litter type as solid
or stain or liquid spillage [12,20,21]. The litter classification is a crucial function for food court table
cleaning and inspection using the mobile service robot. It will play a significant role in finding the
cleaning mode, generating the cleaning path, and inspecting the cleanliness of the table [13].

Deep learning-based object detection is an emerging technique. Deep Neural Network architecture
can be modified and optimized to solve different complex tasks in computer vision such as object
classification, object detection, and object segmentation applications. It has been widely used in
the robotic filed to detect the obstacles [22], pick and place the objects [23], monitoring construction
sites [24] path planning [25]. Recently, the cleaning robot application uses deep learning algorithms
for recognizing the various class of litters and generate the cleaning strategy. Fulton et al., use
deep-learning systems for autonomous submerged automobiles for marine debris detector. The author
realizes that Convolutional Neural Network (CNN) and Single Shot MultiBox Detector (SSD) are more
accurate in comparison with YOLOv2 and Tiny YOLO frameworks [26]. Rad et al. [27], trained the
overfeat-googlenet to recognize the outdoor debris. The authors utilized 18,672 pictures of different
kinds of litters and squanders to prepare CNN for recognizing the solid trash, for example, leaves,
papers, nourishment bundles, jars, and so forth in the outdoor environment. In Reference [28] Jiseok
et al., proposed contaminant-detection machine-vision system for façade cleaning robot where the
author uses the YOLOv3 object detection framework with hue, saturation, value (HSV) color space
and grayscale algorithms for detecting the object-type contaminant, area-type contaminants and rust
particle-type contaminant on the facade. Through Taguchi optimization method, the author improves
the detection robustness of the model under various height and brightness conditions. In Reference [13],
the author proposed a machine learning technique for the detection and classification of debris using
the MobileNet v2 SSD CNN framework for the classification of solids and liquid spillage debris and
the support vector machine (SVM) classification for the size of liquid spillage. However, this work
does not describe the cleaning strategies. Chen et al. [29] implemented a computer vision-type robot
capture system for automatic trash sorting where Fast Region Based Convolutional Neural Network
(Fast R-CNN) is used to monitor various objects in the scene.

Developing a real-time planner algorithm is another critical challenge of cleaning robot
applications. In the planner, module path planning is a key component that plays the vital define
the cleaning path according to food litter detection. In literature, various methods are available for
autonomous cleaning robots for solving the path planning problems such as Dijkstra’s algorithm,
D-star, A-star, rapidly exploring random tree (RRT), and probabilistic roadmap (PRM) technique. The
pros and cons of each scheme and path smoothing techniques for autonomous Robot Navigation have
been described in Reference [30]. Because of the complexity of A-star, D-star, these algorithms are
mostly used in dynamic environments. On the other hand, the PRM scheme has more suitable for
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static environments. As a consequence, the PRM algorithm is applied for the table cleaning task where
the objects of interest stay static. Furthermore, positional information, muscle stiffness of the human
arm, contact force with the environment also play important roles in understanding and generating
human-like manipulation behaviors for robots as in Reference [31].

Motivated by the works mentioned above, this work proposes the deep learning-based food litter
detection system and a path planner algorithm for the Toyota Human Support Robot (HSR) [10,32] to
accomplish the table cleaning and inspection task for the standard food court setting. The technical
contributions of the paper are as follows.

(1) The 2D location from the output of the lightweight Deep Convolutional Neural Network
(DCNN) based litter detection model is combined with the depth data to yield the 3D location of the
food litter on top of the table.

(2)The proposed framework can provide a high confidence level in classifying various types of
litters like liquid, solid.

(3) The planner algorithm computes the cleaning mode and find the cleaning path for removing
the food litters from the table. The planning and execution behaviors of how the robot cleans the dirty
table are inspired by the actual cleaning activities conducted by the human. The real-time planner uses
the Depth-First Search (DFS) [33] and Probabilistic Road Map (PRM) [34] algorithm, which are unified
for generating the cleaning path. The DFS technique generates the initial path map for collecting
food litters from the table, and the PRM scheme optimizes the path according to the motion planning
function.

(4) The proposed method is validated in Toyota HSR robot and its efficiency has been verified
with standard quality metrics.

The rest of the paper is organized out as follows: Section 2 describes the litter detection framework
and planner module. Section 3 describes the experimental setup and the experimental results.
Conclusions and future work are finally presented in Section 4.

2. Proposed System

Figure 1 shows the functional block diagram of proposed scheme. It comprised of two modules,
include DCNN based litter detection framework and planner module. The detection model comprises
of two parts—a feature extractor and a bounding box predictor. Here, the feature extractors extract
the specialized features pertaining to a litter classification then generates the feature map. As a
consequence, bounding box predictors locate the objects in an image and distinguish the litter class (c)
using feature maps extracted by the feature extractor. The detected boundary box region coordinates
b(x,y) is further converted to 3D coordinate in the world frame in meters from the robot base frame.
Then 3D coordinates of the center of the boundary box become the representative for each object of
interest, which is used to control the HSR arm actuator. The detailed description of each module is
described as follows.
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Figure 1. Block diagram of proposed scheme.

2.1. CNN Based Litter Detection Framework

The proposed CNN network contains 16 layers with 9 convolutional layers and 6 pooling layers.
The network is built on python with DarkFlow as a backend. DarkFlow is an open-source object
detection algorithm that can be used for object detection and localization. The advantage with
DarkFlow is that the architecture of the network can be altered, that is, changing the activation
functions, network layers, and training using custom objects. The number of convolutional and
pooling layers has been decided to make sure that the network does not cause any overfitting. The
huge number of hidden layers could, in turn, cause overfitting issues. We started with adding
convolutional and hidden layers until we receive a good enough F-1 score [35]. Figure 2 shows the
functional block diagram of litter detection architecture and detail of each layer include filter size,
padding, stride are given in Table 1.

Figure 2. Convolutional Neural Network (CNN) architecture.
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Table 1. Convolutional Neural Network (CNN) layer description.

Layers Filter Size Padding Stride Number of Filters

Convolutional layer 1 416 same 1 16

Max Pooling layer 1 208 same 2 16

Convolutional layer 2 208 same 1 32

Max Pooling layer 2 104 same 2 32

Convolutional layer 3 104 same 1 64

Max Pooling layer 3 52 same 2 64

Convolutional layer 4 52 same 1 128

Max Pooling layer 4 26 same 2 128

Convolutional layer 5 26 same 1 256

Max Pooling layer 5 13 same 2 256

Convolutional layer 6 13 same 1 512

Max Pooling layer 6 13 same 1 512

Convolutional layer 7 13 same 1 1024

Convolutional layer 8 13 same 1 1024

Convolutional layer 9 13 same 1 35

2.1.1. Convolutional Layers

Convolutional layers are used to extract higher-level features that could be used for performing
some complicated classification. In a nutshell, the convolutional layer performs the operation of the
convolution between its input and filter of the desired size. The number and size of the filters are
given by the user as a parameter to the layer. The Equation (1) describing the operation of convolution
function.

( f ∗ g)(t) =
∫ ∞

−∞
f (τ) g(t− τ)dτ (1)

where, f and g are two variables that are involved in convolution. f is the input and g is the filter
function.

The output is a two-dimensional activation map that provides the response of convolution at each
spatial position. Based on the size of the filter and the size of the input, the size of the output can be
determined using Equation (2).

outputsize =
(I − K + 2P)

S
+ 1 (2)

where, I is input image matrix, K is the filter size, P is zero padding and S is the stride length.
The first convolutional layer takes in images of size 416 × 416 × 3. The number of channels in the

filter of a convolutional layer must be equal to the number of channels in the output of the previous
layer.

2.1.2. Pooling layer

Pooling layers are generally designed to prevent over-fitting and, by applying non-linear
down-sampling, it reduces the size and robustness to expedite computation. Zero-padding is
not performed within the pooling layer as it would work against the purpose of the layer. The
predominantly used pooling methods are:

• Max pooling
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• Average pooling

Max pooling: The maximum adjacent value is taken from the input image based on the position
of pixels. This is implemented through input channels. Median pooling: The average of all values
within the region covered by the filter is taken and assigned as the output value. The other important
settings for the network layers are the hyper-parameters, which were set as follows:

• Batch size = 64
• Learning Rate = 0.001
• policy = steps
• Threshold = 0.5

2.1.3. Bounding Box

In this work, we are focusing on litter object localization with class. Specifically, the customized
CNN network will give the exact location or Region Of Interest (ROI) in the color image. The location
of the litter object is wrapped inside the bounding box. The idea behind the bounding box is that each
image is divided into segments with an identical area, and a target vector has been generated for them
(Equation (3)). The bounding box target vector for training would be as follows.

y =



P
Xmin
Ymin
Xmax

Ymax

C1

C2


(3)

where P—binary value which determines if there is an object of interest in the image, Xmin—Upper
left x Bounding Box Coordinate, Ymin—upper left Y bounding box coordinate, Xmax—Lower right x
bounding box coordinate, Ymax—Lower right y bounding box coordinate, C1 is 1 if the object belongs
to class 1, else zero, C2 is if the object belongs to class 2, else zero. Further, Intersection Over Union
(IOU) method (Equation (4)) is used to remove any overlapping bounding boxes and to measure the
accuracy of the bounding box with respect to the ground truth. IOU is the ratio of the area of overlap
to the area of union.

IOU =
(A ∩ B)
(A ∪ B)

(4)

For fixing the various IOU thresholds were tested out during the experiments, and the best one
has been picked. In our case, we have chosen the IOU threshold to be 0.5, which has been widely
reported in the literature and provide more stable results. This means when evaluating the output; if
the IOU calculated from the predicted bounding box and the actual bounding box is equal to more
than 0.5, we would consider that as a correct output, whereas anything below 0.5 is considered as the
wrong predictions of the bounding box coordinates. The average IOU matching calculated over all the
bounding boxes in the test set is 0.7044, with an overall confidence 0.589.

2.2. Planner

The planner module is developed for accomplishing the table cleaning task through HSR. The
planner has two functions, namely finding the cleaning method and constructing the cleaning path.
Figure 3 shows the process flow diagram of the planner module. It uses the litter detection framework
for finding the cleaning method and constructing the cleaning path.
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Figure 3. Planner process flow diagram.

Two cleaning methods are adopted for the table cleaning task, which includes sweeping and
wiping, where the sweeping method is used to clean the solid and semi-solid food litter, and wiping
mode is used to remove stains. Straight move or grouping based sweeping action is adopted for
cleaning solid, and semi-solid food litter where grouping based sweeping is used for cleaning the
multiple litters in one shot and straight move is used for removing the separated food litters. Further,
zig-zag cleaning action is considered for wiping the stains. Figure 4 demonstrate the three different
cleaning action.

Figure 4. Planned Cleaning action.

Construction of Cleaning Path

To construct the path, the planner uses the probabilistic road map algorithms. Here, the DFS
technique generates the initial path from the detected bounding region, then PRM scheme has been
applied for fine-tune path according to HSR mobility function. The key element of path planning
function P = (nodes, Dgoal(x, y), edges). Here, the detected bounding box are considered as nodes
N = (b1(X, Y, d), b2(X, Y, d), ..., (bn(X, Y, d)), Dgoal(x, y, d) is the robot dust collection point or edge of
the table and P is the feasible path for connecting the nodes. The path planner constructs two-way
path, such as direct path planning and grouping based path planning.

Initially, the planner starts the path planning by exploring the path which starts from the leftmost
upper node, and that node is marked as qstart. The DFS scheme has been used to explore the path
between qstart and remaining nodes. It follows the vertical path searching, and it starts with the
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first neighbor and continues down the line as far as possible. Once it reaches the final node, then it
backtracks to the first node, where it was faced with a possibility to change the next neighbor. Here,
the backtracks nodes are marked as connection point of Dgoal(x, y, d). Once DFS explores the path.
PRM has been adopted to post-processing the path that fine-tune the cleaning path according to HSR
mobility function. The post-processing steps first connect the backtrack point with Dgoal(x, y, d) and
generate the new path. In addition, analysing the distance of each connected node in the generated
path used Equations (5) and (6). As long as the distance between the two consecutive nodes in the path
is less than or equal to a predefined threshold (maximum arm reachable distance), the node considered
as neighbor and path is valid. Otherwise, a node has been neglected, and the new pathfinding process
has been initiated for the neglected node. The process repeats for all neglected nodes. The Algorithm 1
outline the path planning scheme.

Nq = {q′ ∈ N|D(q, q′) = sqrt((Xq − X′q)
2) ≤ Dmax}, (5)

where Dmax is threshold, q is new generated node, q′ is neighbor node, and D(q, q′) is Euclidean
distance Equation (6).

D(q, q′) = ‖q− q′‖. (6)

Algorithm 1 Cleaning Path Generation

1: Step 1
2: N is an array holds all the nodes position
3: P is an array used to store the cleaning path
4: qstart = leftmost(N); Set uppermost left nodes as qstart
5: load qn = N − 1
6: qgoal = def_goal(litter collection point); the function load the litter collection point as qgoal
7: Step 2
8: while cleaning path between qstart to qn not discovered do

9: Q, backtracknode, internodes and Path are variable used for store the temporary value
10: for n = 0; n < qn; n ++ do

11: Q= dfs_paths(qstart, qn); Explore the path between qstart and N − 1 nodes
12: end for
13: backtracknode = backtrack.find(Q); the function find the backtrack node in the explored path
14: internodes = group.find(qstart, backtracknode); the function collect intermediate node between

qstart and backtracknode
15: Path = def_PRM_node_connect(qstart, internodes, backtracknode, qgoal , R); PRM function

connect the nodes according to threshold function R
16: plt.plot (Path)
17: end while
18: visited.add(Path); Mark all path identified node in N
19: Store the path in P
20: load qn = N − Path; exclude path generate node from N
21: set.new(qstart, N); set new qstart from updated N
22: Run the Step 2 up-to generate the path for remaining nodes

3. Experimental Setup & Results

This section describes the experimental setup and experimental results of the proposed scheme.
There are three phases in this section which including configuring algorithms in HSR, training data
preparation and validation, and evaluating the table cleaning and inspection with HSR.
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3.1. Configuring HSR

Toyota HSR is utilized in our experiment to test the proposed scheme. The contour structure of
the HSR robot is shown as in Figure 1. There are five key modules in the HSR robot, including an
RGB-D camera in the head region to perceive the objects in the environment, 4 degrees of freedom arm
manipulator with a capacity of flexible manipulation enabling it to reach all the points in the 3D space.
The proposed system is built on the Robot Operation System (ROS) platform [36]. ROS provides the
infrastructure and mechanism that enable hardware components to work smoothly together. The ROS
master installed on the main system monitors the entire ROS system. The ROS topics transmitted in
the ROS network through local connection or data networks enable the communication between ROS
nodes. The 3D robot coordinate frames such as the base movement of the robot, RGB camera, base,
arm, grabber are maintained by transformation frame service in the ROS system. By referring to the
lookup table in the transformation frame, HSR understands the relative 3D offset between the pair of
these frames to control the corresponding actuators. Figure 5 shows the schematic representation of
HSR hardware architecture configuration, which comprises of two computing units, namely primary
and secondary systems. The primary system contains master ROS which has access to the sensor
data and the motion planner framework. Here, the primary system is configured to perform the path
planning and arm manipulation task. The primary system uses the MoveIt open-source software
framework application program interface (API) to control and plan the motion of the robotic arms.

Figure 5. Human Support Robot (HSR) hardware architecture configuration.

The secondary system is Nvidia’s Jetson TK1 board (GPU), operating as a ROS slave. The slave
block contains a control block and a litter detection framework. The control block governs the interface
between the deep learning framework and ROS. It wraps the data received from the deep learning
framework into the ROS compatible messages and sends it to the primary system. Similarly, it
unwraps the ROS message into a suitable format that is required by the deep learning framework. Both
the primary and the secondary systems are connected over Transmission Control Protocol/Internet
Protocol (TCP/IP) and share all the ROS topics.

To execute the cleaning task, the primary system enables the RGB-D sensor and collect the RGB-D
stream of image data to the secondary system. The GPU in the secondary system, which is running the
deep learning framework, takes in the input data and performs the object detection and classification
task and returns detected information, which contains the coordinates and types of litters.

Since the boundary box of the detected object is in the image coordinate frame, the knowledge
of the point in the 3D world coordinate system is essential for the robot to manipulate the arm and
grabber. The pixel coordinates in the color image of the boundary box, including the center, top left,
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bottom left, and top right, are converted to 3D coordinate in the world frame in meter from the robot
base frame. Then the 3D coordinate of the center of boundary box becomes the representative for each
object of interest. In this paper, we assume that the RGB-D camera is set up so that its Field of View
(FOV) covers the whole table, which needs to be cleaned. To do the 2D to 3D conversion, projective
geometry is used for mapping the point in the image plane to 3D point in the world frame. Intrinsic
and extrinsic parameters of the camera are estimated by the camera calibration method [6]. Translation
matrix T = [t1 t2 t3] is assumed from perception system after calibration from the origin of world
coordinate and orientation matrix R = [roll, pitch, yawn]. Camera intrinsic parameters lies in K with
focal length fx, fy, principle point (xc, yc), pixel size (sx, sy) and distortion coefficients σ, any pixel
p = [px py] on the image plane with 3D coordinate W = [X Y d] world plane and W can be calculated
by p = HW where H = K[R T] is the homogeneous matrix. After identifying the point in the 3D world
coordinate frame and assigning it to a specific object frame, the transformation frame service of ROS
will maintain the relative location between this point to robot coordinate frames.

Upon receiving the control information, the primary system then generates the cleaning map for
executing the cleaning action through arm motion. After the path has been derived from DFS and
PRM techniques, then Moveit [37] service of ROS has been used to path following, arm controlling,
and base motions which have been optimized by Toyota for HSR. Specifically, by considering robot
kinematics, curvature continuities of the robot arm, path feasibility, Moveit executes the robot arm
trajectory to avoid smooth sudden stops and collisions with fragile objects. Upon executing the motion
plan to clean the litters, the arms return to its home position. After visiting all the litters locations at
least once, the primary system requests the secondary system (GPU) for a confirmation of the cleaning
by sending in the RGB-D image data. If the food litters are still present, then the secondary system will
request the primary system for another round of cleaning.

3.2. Training Data Preparation and Validation

The HSR RGB-D camera is used to capture the litter data set. The specification of RGB-D camera
is given Table 2. Images are collected from the robot perspective with a different angle. In total, there
are 3000 images captured at different table backgrounds with various types of food litters, include
food scrub, liquid spillage, and stains.

Table 2. RGB-D camera specification.

Specification Details

Dimensions 18 × 3.5 × 5

Resolution SXGA (1280*1024)

Field of View 58◦ H, 45◦ V, 70◦ D (Horizontal, Vertical, Diagonal)

Distance of Use Between 0.8 m and 3.5 m

Power Consumption Below 2.5 W

Frame Rate 30 fps

In addition to that, the CNN learning rate was improved, and over-fitting was prevented by
applying data expansion to the captured images. Data expansion applies simple geometrical operations
on images like scaling, rotating, shifting, and flipping to increase the number of samples in the data
set. Further, the images are resized to 416× 416 pixels to reduce the computational time for training.
Furthermore, the dataset is labeled as two classes that include solid and liquid. The dataset was
divided into two classes, with 1500 images per class. One class of image contains only a single type
(solid or liquid) food litters. The other one consist of mixed food litter in the same image. The CNN
network was developed in the Tensorflow framework and trained in Intel Xeon E5-1600 V4 CPU with
64 GB RAM and an NVIDIA Quadro P4000 GPU with 12 GB Video memory.
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K-fold cross-validation is adopted in this work to validate the dataset. In this method, the dataset
is divided into k subsets, and K-1 is used for training. This work uses 10 fold cross-validation. The
images shown are obtained from the model with the highest accuracy.

3.3. Evaluate the Table Cleanliness Inspection with HSR

The cleanliness inspection part has been assessed through food litter detection on the dining
table. This is a crucial component of the proposed scheme. Hence, the performance of the robot was
ensured for the accuracy of the detection model. To carry out the first experiment, the trained model
was configured in HSR secondary system. The experiment was tested in square and circular dining
tables, which are arranged like a food court dining pattern, as shown in Figure 6. After configuring
the algorithm in hardware, the robot is placed in a work-space. For experimental purposes, various
food litter (solid food class, stains, and spillage) are scattered on the table looks like unclean table, and
detection has been analyzed through a remote console.

Figure 6. Experimental test bed.

Figures 7 and 8 shows the detection results for different types of food litter captured by HSR in
different angles. The results ensure that the performance of the developed litter detection framework
can detect most of the food litters includes solid class foods, stains, and liquid spillages on the dining
table. Solid food litter detected typically has a 97% or higher confidence level and stains, and liquid
spillage has been recognized at 96% or higher confidence level, respectively. Further, the miss rate
(Equation (7)) and false rate (Equation (8)) metric [13] are evaluated for the proposed litter detection
framework. These two scenarios can be better understood by observing the Figure 9b,c,h. In Figure 9b,c
are examples of miss detection, where some food litter is not detected by the model. Figure 9h is an
example of false detection where the solid type food liters are detected as the liquid class. Here the
miss rate represents the case, where target litter is not detected by the model from given input image
set. Whereas, false positive indicates that the type of litter (solid, liquid etc.) is wrongly detected
from the input image set. In our model, the overall miss rate and false rate is less than 3% and 2%
respectively for an input image set comprising of hundred solid and liquid food litter objects.Since
the depth features of the solid and liquid litter of trash are not so obvious and are affected by depth
sensor noise, perspective viewpoint, depth data alone is not sufficient. In addition, using only the
depth is hard to identify litter from other solid and liquid objects such as food or items on the table
because they have the same depth features as litter. As a consequence, the DNN network needs to be
customized to give the acceptable solid/liquid classification on the table with only depth information.
We will consider using depth data directly for classification in the future works

ηmiss =
nmissnum
ntestset

× 100% (7)
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η f alse =
n f alsenum

ntestset
× 100% (8)

where ntestset is total number of test objects.

Figure 7. Solid litter detection results.



Sensors 2020, 20, 1698 13 of 20

Figure 8. Liquid spillage and stains detection results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. (a–c,g–i): Food litter detection results, (d–f,j–l): Cleaning path map for detection results.

3.4. Comparison with Existing Schemes

This section describes the comparative analysis of proposed work with other existing case studies
in the literature. The comparison analysis has been performed based on CNN and non-CNN methods
used on different cleaning robot applications for the detection of different kinds of litter ( dirt, garbage,
marine debris). Table 3 shows the comparison with non-deep learning based approaches. Table 3
results indicate that non-deep learning based schemes detection accuracy is average of 80%, and
detection accuracy heavily relies on background surface and brightness of the litter objects which lead
to false detection of objects. However, the authors describe that false detection can be overcome by
re-scaling the filter response manually. Further, models are able to detect the litter based filter function
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and cannot classify the litter classes, which is the fundamental limitation of non-deep learning based
litter detection model.

Table 3. Non-Deep Learning Based Detection.

Case Study Algorithm Detection Accuracy

Floor cleaning: Dirt and Mud detection on floor [14] Spectral residual filter 75.45

Floor cleaning: Dirt and mud detection [38] Spectral residual filter + Maximally Stable Extremal Regions 80.12

Garbage Detection [39] Histogram of Oriented Gradients (HOG) + Gabor + Color 80.32

Trash detection [40] SVM + Scale-invariant feature transform (SIFT) 63

Table 4 shows CNN case study and Table 5 shows comparative analysis of CNN based litter
detection schemes, which are implemented using various CNN based object detection schemes.
Generally, the object detection framework efficiency has been assess through accuracy, precision,
recall, and F-1 score, miss rate and false rate metric [13]. In literature point of view, compare our
proposed method with the other litter detection frameworks is very hard, because each model uses a
different CNN topology and training parameters. Also, the data-sets are different. Hence, we resort
to describing the essential characteristics of each model and enlist its pros and cons for the common
attributes.

Table 4. CNN Case Study.

Case Study CNN Description Number of Classes Detection Accuracy Average Detection Time

Garbage detection on grass [8] SegNet + ResNet 5 96 8.1

Marine debris detection [41]
Faster RCNN Inception v2 3 81.0

SSD MobileNet v2 3 69.8 NA

Tiny-YOLO 3 31.6

Floor debris detection [13] Faster RCNN ResNet 2 97.8 184.1

Mobilenet V2 SSD 95.5 71

Trash classification [27] 11 layer CNN 6 22 NA

Proposed system Customized 16 layer CNN 2 96 NA

Table 5. Performance of different models for litter detection.

CNN Network Prec Rec F1

Faster RCNN Resnet 96.9 99.4 98.1

SSD MobileNet V2 94.6 99.3 97.2

Proposed scheme 96.3 97.7 95.8

In the literature, Faster RCNN with ResNet or inception, Mobilnet V2 SSD [42], and YOLO [] object
detection framework are widely reported framework for litter detection. The table results indicate that
faster RCNN- resnet or faster RCNN-inception framework has higher accuracy compared to other
models. However, faster RCNN requires tremendous computing resources due to its region-based
convolutional, which makes it less suitable to be deployed in low computing devices. At the same time,
SSD-MobileNet based implementation provides a right balance between accuracy and computational
time where the SSD mobilenet model uses a defined set of sizes for the bounding boxes and uses the
more efficient depthwise convolution layers which significantly reduces the computation time and
inference time. YOLO v2 is much faster than SSD Mobilenet, which is built on a dark flow framework
and uses a single convolutional network to predict the bounding boxes and the class probabilities for
these boxes. Hence, it required less computation power and low inference time than other models.
Furthermore, our framework follows the YOLO dark flow; hence it achieves considerable accuracy
and low computation time similar to the YOLO model. YOLO is prone to overfitting, and therefore,
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we have set the learning rate to be much less than many other previous works. Further, we have also
limited the number of hidden after the convolutional and Max pooling layers. Finally, we have made
sure that the training data is not skewed that is, the number of training data in each of classes is pretty
much equivalent for training.

In contrast to a non-deep learning model, Deep learning techniques offer a significant advantage
in scenarios when sufficient data is available. These techniques are able to autonomously extract
features from images, which allow them to learn features and patterns which are difficult to figure out
statistically. CNN architectures are specifically good for extracting features from images since they use
a combination of pixels next to each other for features.

3.5. Validate the Planner Module

The efficiency of the planner module has been tested through cleaning path generation and
table cleaning tasks using generated cleaning path. Two experiments are conducted to assess the
table cleaning function. In the first experiment, Robot cleans the solid food litter on the table. The
second experiment is set to clean the presence of both solid waste and liquid spillages. To carry
out the experiments, firstly, the litter detection module was run to recognize the food litter, then the
planner was executed to generate the cleaning path. Figure 9 shows the litter detection results and
their respective cleaning path for two experiments. The experimental results indicate that the path
planner covers most of the detection region efficiently. Further, the generated path was loaded into
the arm and base motion planning module to execute the cleaning task. The outcome of the cleaning
task was verified after executing all the cleaning path. Figure 10 shows the outcome of the task after
executing the cleaning task. Here, the stains and liquid spillage litters were spread when the robot
tries to clean. So, those litter regions need to do multiple rounds of cleaning action and cleanliness
inspection, as shown Figure 11 (cleanliness inspection after executing the cleaning task). Further, the
solid food litter was cleaned in one iteration. However, some of the litter’s regions are not able to clean
in the first iteration because some food litter is scattered, and some of the litter regions are not able to
cover accurately due to noise of depth data, which affect the process of 3D coordinate into the world
coordinate.

Figure 10. Outcome of cleaning task for stains and spillages.

Figure 11. Cleanness inspection after execute the cleaning task.

The Table 6 shows the average computation time for detection, path planning, and motion
planning. The planner part runs on the CPU and takes about an average of 0.0145 seconds. Further, for
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cleaning the three to five food litters, the execution module takes approximately an average of 210.5
seconds.

Table 6. Execution time.

Function Computational Cost (Seconds) (avg.)

Path planning 0.0145

Motion planning 210.5

The test results indicate that the proposed algorithm can satisfy the real-time requirement. It is
more suitable for executing the cleanliness inspection and table cleaning application using HSR.

3.6. Practical Limitations

In this work, the cleaning actions depend upon the precise value of the depth information acquired
by the RGB-D cameras, which have a restricted resolution. Even though the use of cloth has some
advantages, the expected movement of the litter is not reached by the actions. Further, The Toyota
arm has 5 degrees of freedom rotation, because of which the arm planning becomes complicated by
involving the robot base to reach certain points on the table. This can be solved by adding an additional
degree of freedom to the robotic arm. In our feature work, we plan to improve the quality of the
RGB-D vision system and HSR motion planner function, which helps to predict the object position and
orientation accurately and improve the cleaning efficiency. The computing power of the existing CPU
installed on the HSR is relatively slow, an extra computing board with additional hardware computing
power can be used to expedite the detection and identification of food litter.

4. Conclusions

Developing a cleaning robot platform should have two critical features. The environment should
be of real-world setting, and the platform should be able to reach every nook and corner of the cleaning
region. This proposed cleaning platform Toyota HSR is developed for assisting humans in a general
setting, and proven to be efficient in conventional environments. The proposed framework is tested on
a common food-court like setting so that the real-world implementation can be without any issues.
Unlike the earlier results, the proposed work focuses on classifying the litter into various types, for
which the cleaning process is different. Moreover, the classification module is augmented with an
optimal path planning module and control module to achieve high efficiency. The efficiency of the
detection framework is evaluated through cleanliness inspection, and its detection accuracy was
measured through standard quality metrics. The experimental results show that the proposed cleaning
framework detects most of the food litter with highest detection accuracy among the considered
methods, and HSR cleaning part takes an average of reasonable time to clean the three to five food
litters on the table. The proposed method can be used to clean vertical surfaces like glass panels,
windows in homes, among others. The module can be used to identify litters not only on tables but
also on the floors. This scaling of this application can open new doors in the cleaning industry.
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