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Abstract

BACKGROUND—Necrotizing enterocolitis (NEC) is a devastating condition affecting 

premature infants and leads to high mortality and chronic morbidity. Severe form of NEC is 

associated with acute renal failure, fluid imbalance, hyponatremia and acidosis. We investigated 

the effect of NEC on tight junction (TJ) proteins in kidneys using a NEC mouse model to 

investigate the basis for the observed renal dysfunction.

METHODS—NEC was induced in C57BL/6 mice by formula feeding and subjecting them to 

periods of hypoxia and cold stress. NEC was confirmed by gross and histological examination. 

We studied various markers of inflammation in kidneys and investigated changes in expression of 

several TJ proteins and AQP2 using immunofluorecent staining and Western blotting.

RESULTS—We found markedly increased expression of NFκB, TGFβ and ERK1/2 along with 

claudin-1, -2, -3, -4, -8 and AQP-2 in NEC kidneys. The membrane localization of claudin-2 was 

altered in the NEC kidneys and its immunostaining signal at TJ was disrupted.

CONCLUSION—NEC led to a severe inflammatory response not only in the gut but also the 

kidneys. NEC increased expression of several TJ proteins and caused disruption of claudin-2 in 

renal tubules. These observed changes can help explain some of the clinical findings observed in 

NEC.
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INTRODUCTION

Necrotizing enterocolitis (NEC) is a commonly witnessed gastrointestinal emergency of the 

premature infants (birth weight <1500 grams), and is characterized by transmural 

coagulative necrosis, bacterial overgrowth, pneumatosis and severe intestinal inflammatory 

response (1–3). NEC affects nearly 6–10% of low birth weight infants in any neonatal 

intensive care unit and leads to mortality in 15–30% of subjects and chronic morbidity in 

survivors (4, 5). NEC leads to poor neurodevelopmental outcomes among survivors and 

estimated cost of caring for these infants range between 500 million to 1 billion dollars each 

year (3). Although the pathogenesis of NEC is still not well understood, it is considered 

multifactorial with prematurity, enteral feeding and abnormal bacterial colonization of the 

gut being the major risk factors.

Onset of NEC is intimately related to breach of the gut epithelial barrier with resultant 

change in intestinal permeability to foreign proteins, endotoxins and translocation of luminal 

bacteria into the circulation (6–10). Intestinal permeability is tightly regulated by several 

tight junction (TJ) proteins, especially the claudin group of proteins, which are a family of 

24 members (Mol Wt. 20–27 kD) with 4 transmembrane domains (9, 11). Endotoxins acting 

via NF-κB pathway have been shown to alter tight junctions and protein expression in 

kidneys (12). Claudins show a tissue-specific distribution pattern and are expressed on 

epithelial linings of both the gastrointestinal tract and nephrons (13–17). Claudins can form 

either paracellular size- and charge-selective pores or paracellular ion barriers to control 

transport across epithelial linings (18–22). Thus claudins play an intimate role in 

maintenance of the epithelial barrier and protect infants from development of NEC.

Likewise claudins and aquaporins play a significant role in maintenance of normal renal 

function. Paracellular ion transport, which is a passive process, occurs through pathways 

formed by claudins but it is driven by transepithelial electrochemical gradient. The 

paracellular permeability and ionic conductance of tight junctions vary along the length of 

nephron, with a decrease in overall leakiness from the proximal tubules towards the 

collecting ducts (23), which could be explained due to the differential transport processes 

and differences in driving forces along the nephron segments. The proximal renal tubules 

which are more leaky segments of the nephron express the channel-forming claudins (e.g., 

claudin-2 and -10), while the distal nephron which has reduced paracellular permeability and 

solute transport typically expresses the sealing claudins (e.g., claudin-4, -8, and -14) (24–

26).

Severe cases of NEC, especially those associated with high mortality, present clinically with 

a septic-shock like condition with acute renal failure, hyponatremia and metabolic acidosis 

(3, 5). These metabolic changes cannot solely be explained by intestinal inflammation and 

necrosis with subsequent generalized edema but are likely mediated through changes in 

renal function. We hypothesized that kidneys are affected by this gut inflammatory process 

and renal TJ proteins are affected in NEC. We used a neonatal NEC mouse model to 

investigate the effect of NEC on kidney TJ proteins. Our observations provide the 

experimental basis to help explain the reason behind the acute renal failure, fluid imbalance 

and hyponatremia which is commonly seen in neonates with severe NEC.

Garg et al. Page 2

Pediatr Res. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Histological examinations of intestines and kidneys

After 4 days of formula feeding and stress treatment, about 50% of mice developed NEC 

compared to none in the dam fed group. As shown in Figure 1a, the NEC pups were much 

smaller in size compared to the control pups and showed clinical signs of disease. The NEC 

intestines were swollen in appearance and developed hemorrhagic necrosis as indicated by 

the arrow in Figure 1b in comparison to control intestines. The NEC phenotype was 

confirmed by histopathology examination using standard criteria (27). Intestinal sections 

from control pups displayed intact villi and submucosa (Figure 2a) with minimal 

mononuclear cells in the villi. However, the intestinal sections from NEC pups showed 

disrupted villi and submucosa with intense mononuclear cell infiltration. Some villi showed 

complete sloughing of epithelial cells with breach of epithelium (Figure 2b, arrow).

Kidneys from pups whose intestines were showing NEC histological grading >2 were 

grossly normal in appearance but on histology showed interstitial edema and mononuclear 

interstitial infiltrates as compared to the kidneys from the control group (Figure 3b and d, 

arrows). The increased infiltrating immune cells in the NEC kidneys were also confirmed by 

the immunostaining of the CD11b antibody that recognizes the monocytes and macrophages 

(Figure 3e). There was no global or segmental sclerosis and no interstitial fibrosis in either 

group of renal sections, ruling out any pre-existing renal pathology.

Altered expression and localization of tight junction proteins and water channel AQP2 in 
NEC kidneys

We found increased expression levels of claudin-1, -2, -3, -4, and -8 in NEC kidneys on 

Western blot analysis compared to controls (Figure 4). Immunofluorescent staining method 

was used to examine the localization of several claudin proteins (Figure 5). We noted 

increased signals of claudin-1 and -2 in the NEC kidneys (Figure 5b, d). Claudin-2 is known 

to be located in the proximal tubules of kidneys and responsible for paracellular Na+ 

reabsorption (20). Interestingly, claudin-2 subcellular localization was altered in the NEC 

kidneys. Its TJ staining pattern was disrupted compared to that of the control kidneys 

(Figure 5c, d, arrows), while claudin-1 and -7 showed the conventional TJ staining pattern 

for both control and NEC kidneys (Figure 5a, b, e, and f, arrow). The NEC kidneys also 

showed increased expression of water channel AQP2 by Western blot analysis (Figure 6a) as 

well as by immunofluorescence staining (Figure 6b) as compared to control kidney samples. 

The statistical analysis shows that both the number of the AQP2 signal and the intensity of 

the signal were significantly increased in the NEC kidneys (Figure 6c and d).

Elevation of markers of inflammation in NEC kidneys

Histological examination of NEC kidneys revealed a markedly increased number of immune 

cells compared to controls (Figure 3). On Western blot analysis, we found elevated 

expression levels of TGFβ and NFκB p65 as well as ERK1/2 and p38 in NEC kidneys 

compared to control kidneys (Figure 7a). We also observed an increased number of 

apoptotic cells in NEC kidneys on TUNEL (Terminal deoxynucleotidyl transferase dUTP 

nick end labeling) staining, indicating that NEC leads to acute kidney injury (Figure 7b). 
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The apoptotic cells were located on the tubular epithelial cells labeled with occludin, a TJ 

membrane protein marker (Figure 7c, arrows).

DISCUSSION

Our data provides evidence of renal inflammation with changes in expression of several TJ 

proteins and water channel secondary to gut injury in an experimental mouse model of NEC. 

To our knowledge this is the first report to demonstrate this effect of renal inflammation and 

changes in TJ proteins after onset of NEC, though there are several reports of disruption of 

TJ proteins in the GI tract (7), in cisplatin-induced nephrotoxicity (28) and in experimental 

type 1 diabetic nephropathy (29). Endotoxemia (12) and cisplatin treatment (28) have been 

shown to alter TJ protein expression in kidneys, but we did not find any reference to similar 

findings in NEC cases. NEC with associated gut inflammation leads to extravasation of 

intestinal contents including luminal pathogens across the epithelial barrier leading to 

systemic inflammation and septicemia. Whether this inflammatory process can extend to the 

kidneys in cases of NEC has not been recognized in the past, therefore these findings open 

the possibility of newer treatment approaches to this life-threatening complication of NEC. 

Severe cases of NEC are frequently associated with acute renal failure, hyponatremia and 

acidosis which may last for several days to weeks and are associated with much higher 

mortality in affected neonates. Clinicians assumed that renal failure in NEC is related to a 

“shock like condition” with leaky capillaries and generalized edema resulting in decreased 

perfusion pressure of nephrons, thus leading to acute renal failure. The common approach in 

this situation is to provide fluid boluses followed by use of highly potent diuretics, even 

though there may also be acute kidney injury in these cases. Kidneys in severe cases of NEC 

have an altered function and lose their capacity to excrete waste products and water 

appropriately. Our histopathology studies using H&E staining revealed interstitial 

infiltration of glomeruli and tubules by abnormally higher numbers of mononuclear cells in 

NEC kidneys compared to control kidneys. In addition, we found increased expression of 

several inflammatory marker proteins, including NFκB p65 and TGFβ along with a marked 

increase in ERK1/2 and p38 signals on Western blot analysis. Since ERK and TGFβ are 

considered protective molecules for the renal tissue, their upregulation may also be a 

reaction to the tissue injury seen in our mouse model of NEC. We found evidence of 

increased apoptosis on TUNEL staining in NEC kidneys. Thus NEC may lead to acute 

kidney injury in severe cases.

We observed increased expression levels of several TJ proteins, namely claudin-1, -2, -3, -4 

and -8 in our experimentally induced NEC mouse pup’s kidneys by Western blot analysis. 

Claudin proteins selectively form paracellular channels or barriers. It is known that 

claudin-1 is largely expressed at the TJ of parietal epithelial cells of the Bowman’s capsule 

and claudin-2 is present in proximal tubules and thin descending limb of the loop of Henle 

(30, 31). It has been reported that claudin-1 functions as a barrier to ion conductance and to 

the permeation of 4–40 kD dextran in vitro, suggesting that it may be responsible for the 

barrier function of Bowman’s capsule (32, 33). There are several studies showing that 

overexpression of the pore-forming claudin-2 in MDCK II or C7 cells preferentially 

increases the permeability of Na+ over Cl− (20, 34, 35). We noted similar findings of 

increased expression of claudin-1 and -2 in NEC kidneys, which may enhance the barrier 
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function of Bowman’s capsule and modulate Na+ reabsorption to help maintain intravascular 

volume in NEC cases.

Claudin-3 is expressed in the thick and thin ascending loops of Henle, distal convoluted 

tubules and collecting ducts (30). Claudin-3 has been shown to have a sealing function 

against the passage of small ions of both charged or uncharged solutes, and mainly acts as a 

general barrier forming protein (36). In contrast, Claudin-7 is mainly expressed in the distal 

convoluted tubules and collecting ducts, which is the aldosterone sensitive segment of the 

nephron and plays a vital role in the control of extracellular volume (19, 25, 37). Deletion of 

claudin-7 leads to the dehydration and salt wasting phenotype in mice (38). Moderately 

increased claudin-7 in NEC kidneys suggests that the kidneys may attempt to retain water 

and modulate the sodium and chloride levels in the body.

Aquaporin-2 (AQP2) is a water channel that plays a vital role in water balance regulation. It 

is expressed mainly in the collecting ducts and is regulated via the action of vasopressin. 

Our results showed that AQP2 was significantly increased by both Western blot analysis and 

immunofluorescent staining. This suggests that in NEC pups suffering from decreased 

intravascular volume, the kidneys try to increase reabsorption of water to maintain 

intravascular volume. On the other hand, changes in the AQP2 expression could also be due 

to changes in systemic osmotic pressure induced by formula feeding and/or changes in 

intestinal absorption.

In conclusion, our study demonstrates for the first time that NEC leads not only to 

inflammation in the GI tract, but also renal inflammation, apoptosis and altered expression 

of several TJ proteins, which may help explain the clinical features such as oliguria, 

hyponatremia, and fluid imbalance seen in human neonates with NEC.

METHODS

Generation of Neonatal NEC mouse model

Four-day old C57BL/6 pups were divided into two groups: the control group was dam-fed 

and the experimental group was fed with 50 μl of 33% Esbilac formula (Pet-Ag, New 

Hampshire, IL) every 3 hours for 96 hours using a 26 gauge feeding tube. NEC was induced 

in the experimental group of pups using a modification of the model described by Jilling et 

al (27) where pups fed Esbilac formula were subjected to asphyxia (100% N2 for 60 sec) 

and cold stress (4°C for 10 min) twice a day for 4 days (27, 39). Pups were nursed in an 

incubator (37°C) during the 4 day period and provided caloric intake of approximately 800 

KJ/Kg per day. In both experimental and control groups, pups were euthanized by 96 hours 

after the treatments. The gastrointestinal tract and kidneys were carefully removed and 

visually evaluated for signs of NEC (areas of bowel necrosis, intestinal hemorrhage, 

perforation). NEC was confirmed by published tissue injury criteria (40). The severity of 

NEC was graded histologically as follows: grade 1, sloughing of epithelial cells at tip of 

villi; grade 2, sloughing of epithelial cells to the mid villus level; grade 3, necrosis of the 

entire villus; grade 4, transmural necrosis (40). Kidney and intestinal samples were collected 

for histopathological, cellular and molecular studies. Our Animal Use Protocol (AUP) was 

approved by the Animal Care and Use Committee of East Carolina University.

Garg et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Antibodies and reagents

The rabbit polyclonal anti-claudin-1, -2, -3, -4, -10 and anti-occludin antibodies were 

purchased from Invitrogen (Carlsbad, CA). The rabbit polyclonal anti-claudin-7 antibody 

was obtained from Immuno-Biological Laboratories (Hokkaido, Japan). The rabbit anti-

claudin-8 antibody was generated in this laboratory (41). The antibodies against ERK1/2, 

p38, TGFβ, NFκB p65 and GAPDH were purchased from Cell Signaling Technology 

(Beverly, MA). The anti-monocyte/macrophage antibody CD11b was from Milenyi Biotech 

(Auburn, CA). The anti-AQP2 antibody was purchased from CALBIOCHEM (Billerica, 

MA). The Cy3-conjugated anti-mouse IgG and FITC-conjugated goat anti-rabbit IgG were 

obtained from Jackson ImmunoResearch (West Grove, PA) and EMD Millipore (Billerica, 

MA), respectively. The HRP-conjugated anti-rabbit and anti-mouse secondary antibodies 

were purchased from Promega (Madison, WI). All other chemicals and reagents were from 

Sigma (St. Louis, MO) unless indicated otherwise.

Histology examinations

Mouse kidneys and intestines from both control and experimental groups were removed 

from the body after experiments and fixed with 10% buffered Formalin overnight at 4°C. 

Intestines were carefully arranged in a Swiss roll orientation. Subsequently, tissues were 

rinsed with phosphate buffered saline (PBS) and processed through graded ethanol 

solutions. Paraplast (Fisher, Pittsburgh, PA) embedded tissues were cut on a microtome at 5 

μm thickness and sections were placed onto Unifrost Plus glass microscope slides (Azer 

Scientific, Morgantown, PA). Slides were dried overnight at 43°C and stored at room 

temperature until stained. Hematoxylin & Eosin (H&E) and Periodic acid Schiff (PAS) 

staining was performed according to Armed Forces Institute of Pathology (AFIP) 

Laboratory methods in Histotechnology (42).

Western blot analysis

Kidney tissues from control and NEC pups were minced on ice and then sonicated in ice 

cold RIPA buffer (1% Triton X-100, 0.5% sodium deoxycholate, 0.2% SDS, 150 mM NaCl, 

10 mM Hepes, pH7.3, 2 mM EDTA, 10 μg/ml each of chymostatin, leupeptin and pepstatin 

A) to obtain tissue lysates. The total protein concentration of each sample was measured 

using the BCA protein assay kit (Pierce laboratories, Rockford, IL) and adjusted to equal 

concentration (2 mg/ml). Proteins were separated by SDS-PAGE and transferred to 

nitrocellulose membranes. Membranes were then blocked in 5% nonfat dry milk in PBS plus 

0.1% Tween 20 and incubated with primary antibodies at 4°C overnight followed by 

incubation with appropriate secondary antibodies for one hour at room temperature. After 

blotting, the signals were detected by enhanced chemiluminescence (Amersham, Arlington 

Heights, IL) on Blue Devil autoradiography film (Genesee Scientific, Inc., San Diego, CA).

Immunofluorescence microscopy

Frozen kidney sections were fixed in 100% acetone for 5 minutes at −20°C, and then 

washed with PBS before blocking in 5% BSA for 60 minutes at room temperature. The 

tissues were incubated with primary antibodies followed by incubation with appropriate 

secondary antibody for 60 minutes at room temperature. Coverslips were mounted with 
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ProLong Antifade Kit (Molecular Probes Inc., Eugene, OR). Samples were analyzed and 

photographed using a Zeiss Axio Imager M2 microscope (Carl Zeiss Inc., Thornwood, NY) 

equipped with AxioVision imaging software.
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Figure 1. 
Generation of NEC mouse model. (a) Four-day old pups were either dam-fed (CON) or fed 

with Esbilac formula and underwent asphyxia and cold stress treatments twice a day for 4 

days (NEC). The NEC pup is much smaller than the control pup. (b) The control and NEC 

intestines were rolled up as a Swiss roll. Compared to the control intestine, the NEC 

intestine shows the severe hemorrhage (arrow).
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Figure 2. 
Histopathology of small intestine sections (H&E staining) from control and NEC pups. (a) 

Representative control sample shows the normal villous structure with intact crypt region. 

(b) The induction of NEC led to the disruption of villous structure (arrow). Magnification: 

x200.
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Figure 3. 
Histopathology of kidneys and the infiltration of immune cells. The control (a, c) and NEC 

(b, d) kidney sections from cortex regions (H&E staining) show normal glomerular and 

tubular architecture. However, NEC kidneys display the interstitial edema and mononuclear 

cell infiltration (arrows). (e) Frozen sections of control and NEC kidneys were stained with 

the CD11b antibody (red) recognizing monocytes and macrophages (arrows). The hoechst 

(blue) was used to stain nuclei. Scale bar: 60 μm.
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Figure 4. 
Expression levels of tight junction proteins in control and NEC kidneys. Kidney tissues were 

homogenized and lysed in the lysis buffer. A total of 30 μg protein for each sample were 

loaded on the SDS-polyacrylamide gel. Membranes were blotted against claudin-1, -2, -3, 

-4, -7, -8, -10 and occludin antibodies. GAPDH served as a loading control.

Garg et al. Page 13

Pediatr Res. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Localization of claudin-1, -2 and -7 in control and NEC kidneys. Control and NEC kidneys 

were removed from the body and frozen in liquid nitrogen. Frozen sections (5 μm thickness) 

were immunostained with anti-claudin-1 (a, b), -2 (c, d) and -7 (e, f) antibodies. Arrows in 

a, b, c, e, and f indicate the conventional TJ staining and arrows in d point to the altered 

staining pattern. Scale bar: 20 μm.
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Figure 6. 
Expression of AQP2 in control and NEC kidneys. (a) Kidneys from control and NEC pups 

were homogenized and lysed in the RIPA buffer. A total of 30 μg protein for each sample 

were loaded on the SDS-polyacrylamide gel. Membranes were blotted against AQP2 

antibody. GAPDH served as a loading control. (b) Frozen sections (5 μm thickness) of 

control and NEC kidneys were immunostained with anti-AQP2 antibody and detected by 

Cy3-conjugated anti-rabbit secondary antibody. The hoechst (blue) was used to stain nuclei. 

Scale bar: 50 μm. (c) The number of AQP2 signal on each image field was counted by 

AxioVision imaging software. Twelve images of control and NEC kidney samples were 

randomly selected for statistical analysis. *Value is significantly different from the control 

(P<0.05). (d) The AQP2 signal intensity was measured by AxioVision imaging software. 

Sixty individual AQP2 signals from control and NEC kidneys were randomly selected for 

statistical analysis. *Value is significantly different from the control (P<0.05).

Garg et al. Page 15

Pediatr Res. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Increased levels of inflammatory marker proteins and apoptotic cells in NEC kidneys. (a) 

Control and NEC kidney lysates were loaded on the SDS-polyacrylamide gel. Membranes 

were blotted against ERK1/2, p38, TGFβ and NFκB p65. GAPDH served as a loading 

control. (b) Control and NEC kidneys were fixed with 100% acetone and incubated with 

10% BSA in PBS for 30 min at 37°C before applying TUNEL reaction mixture (Roche 

Diagnostics, Indianapolis, IN) to the tissues for one hour at 37°C. The red signal indicates 

the apoptotic cells. The blue signal is the nuclear staining. Scale bar: 50 μm. (c) Frozen 

sections from control and NEC kidneys were double stained with occludin (green) and 

TUNEL (red). Arrows indicate the apoptotic cells localized in occludin-positive tubular 

epithelial cells. The blue signal is the nuclear staining. Scale bar: 20 μm.
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