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ABSTRACT

The most crucial step in data processing from
high-throughput sequencing applications is the
accurate and sensitive alignment of the sequencing
reads to reference genomes or transcriptomes. The
accurate detection of insertions and deletions
(indels) and errors introduced by the sequencing
platform or by misreading of modified nucleotides
is essential for the quantitative processing of the
RNA-based sequencing (RNA-Seq) datasets and
for the identification of genetic variations and modi-
fication patterns. We developed a new, fast and
accurate algorithm for nucleic acid sequence
analysis, FANSe, with adjustable mismatch allow-
ance settings and ability to handle indels to accur-
ately and quantitatively map millions of reads to
small or large reference genomes. It is a seed-based
algorithm which uses the whole read information for
mapping and high sensitivity and low ambiguity are
achieved by using short and non-overlapping reads.
Furthermore, FANSe uses hotspot score to prioritize
the processing of highly possible matches and im-
plements modified Smith-Watermann refinement
with reduced scoring matrix to accelerate the
calculation without compromising its sensitivity.
The FANSe algorithm stably processes datasets
from various sequencing platforms, masked or
unmasked and small or large genomes. It shows a
remarkable coverage of low-abundance mRNAs
which is important for quantitative processing of
RNA-Seq datasets.

INTRODUCTION

Rapid technological advances in massively parallel,
high-throughput sequencing technologies (aka deep
sequencing) can deliver datasets of gigabases (1), which
are expressed in millions of ‘reads’ (i.e. short nucleotide
sequences, usually 17400 nt long, depending on the
platform, the protocol and the sample). In the studies of
de novo assemblies of whole genomes, millions of reads are
assembled together to build up an unknown genome (2,3).
In the analyses of genomic variations or epigenomic,
transcriptomic and translatomic studies, millions of
reads originating from DNA or RNA fragments are
mapped to an already known reference genome (4-7).
Read mapping approaches have to adequately respond
to the specifications and errors of each type of technology.
In RNA-based sequencing (RNA-seq) errors can be
introduced by stochastic misincorporation or misreading
of modified nucleotides by the reverse transcriptase (8), or
by default sequencing errors by the sequencing platforms
(9,10). Accurate dynamic programing algorithms,
including Smith—Waterman algorithm (11) or conven-
tional heuristic algorithms [FASTA (12) and BLAST
(13)] are suitable for the detection of misincorporations
since mismatches can be implemented within them.
However, high accuracy of aligning vast amount of
reads to a genome compromises the performance and
speed of the algorithms (14).

In general, the algorithms that are currently used to map
deep-sequencing datasets can be classified into two
major groups: seed-based (or ‘hash table-based’) and
Burrows—Wheeler Transform (BWT)-based algorithms
(14,15). Conceptually, the seed-based algorithms, including
BLAST, BLAT (16), SOAP (17), Genomemapper (18),
MAQ (19), Stampy (20) and SHRiMP (21) extract short
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subsequences called ‘seeds’ from the query sequence and
search for exact matches (in at least one of the seeds) to
the reference genome sequence (15). For each exact
match, the algorithms refine the alignment with more sen-
sitive methods (e.g. Smith—Waterman algorithm) and there-
after, the best alignment is selected. BWT-based algorithms,
e.g. Bowtie (22), BWA (23) and SOAP2 (24), compact the
reference genome into a data structure and search ‘suffixes’
of a read through the index to find a match (15).
BWT-approaches are faster than seed-based methods
when the exact reference genome is available; however,
if only transcriptomes of distant species are avail-
able, the seed-based algorithms show a much greater
sensitivity (25).

The DNA modifications, single-nucleotide polymor-
phisms (SNPs) or misincorporations at modified
ribonucleotides introduced by the reverse transcriptase
can alter the query sequence: RNA-seq datasets bear
higher error rates than DNA sequencing. Furthermore,
the sequencing platforms also contribute some alterations
to the read sequences, e.g. GS FLX sequencing is rather
more likely to include insertions and deletions (indels)
while the reads from Illumina-sequencing machines
contain mismatches (26,27). The sensitivity of the
BWT-based algorithms decreases exponentially with the
number of mismatches. Comparative analysis revealed
that Bowtie and BWA only map half of the reads
compared with seed-based algorithms (28); thereby,
reads with moderate- to low-abundance are markedly
affected which will bias the quantitative processing of
the RINA-seq data. Considering an error rate per nucleo-
tide of ~1.5% in RNA-seq applications (Illumina
platform) (10), a conventional 11-nt BLAST seed has
>15% probability of containing at least one mismatch.
Reducing the length of the seeds and/or applying larger
numbers of seeds from the query read sequence increases
the sensitivity, but it dramatically reduces the speed, spe-
cifically for large genomes. For example, BLAT needs 78
days to map 3.5 million reads to the human genome (28).
Three or more mismatches are likely to occur in one read,
particularly when using SOLiD and Helicos sequencing
platforms (2-7% average error rate) (9,10). By allowing
more mismatches, the accuracy is compromised while still
maintaining a high speed. For example, BFAST has a
sensitivity of only 80% when allowing five mismatches
in 50-nt long reads (28).

Most of the currently available mapping algorithms
offer a limited ability, if any at all, to map reads with
indels (14), even though some deep sequencing platforms
deliver a relatively high indel rate (indels account for
more than two-thirds of the errors of GS FLX 454
pyrosequencing) (27). Furthermore, MAQ (19), SOAP
(17) and Bowtie (22) handle mismatches but cannot
detect indels, while PatMaN (29), SHRiMP (21) and
BWA (23) can detect limited number of indels. Even a
very low indel frequency (0.5/kb) can cause a mismapping
rate of 4-13% (30). The sensitive read mapping and
accurate detection of mismatches and indels to reference
genomes is crucial in studies aimed at identifying gen-
etic variations (e.g. SNPs) (5,31) or DNA methylation
patterns (32,33), or studies quantitatively analyzing
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RNA-seq data (6,34-37). Thus, there is a demand for a
versatile algorithm to quantitatively map sequencing
datasets with various lengths of reads with a higher
error rate. We developed a new mapping algorithm,
FANSe, which accurately and quickly maps millions of
reads with a scalable read length to reference genomes in
various sequencing applications. We validated the per-
formance of FANSe with short (24nt) and long reads
(>140nt). Long reads were generated using a prokaryotic
Escherichia coli DNA library sequenced with a 454 GS
FLX pyrosequencing platform and short reads were
obtained with an Illumina RNA-seq of randomly-digested
prokaryotic E. coli mRNA and eukaryotic HeLa mRNA.
We also verified FANse with an in silico simulated random
sequencing reads of different lengths (24 nt and 50 nt).

MATERIALS AND METHODS
Design of FANSe

FANSe is a seed-based algorithm with a simple design to
ensure accuracy, which comprises the following steps:

Step 1: A read is split into several non-overlapping
seeds. Each seed is n-base long with a typical seed size
of 6-8nt (Figure 1A). For reads that are not completely
covered by the non-overlapping 6- or §8-nt seeds, an extra
seed is taken at the end of the read that overlaps with the
penultimate one (Figure 1B).

Step 2: All seeds are aligned to the reference genome
sequence. Seeds with no mismatch and no indel ensure the
correct mapping of the whole read (Figure 1C). A read can
only be missed when all seeds contain at least one error
(mismatch or indel).

Step 3: Adjacent seeds are combined if they are likely to
be within one read, based on their offsets, and independ-
ent potential locations (‘hotspots’) are defined. The
number of combined matched seeds defines the score of
the hotspot. Hotspots with high scores are refined with
priority (Figure 1C).

Step 4: The alignment for each hotspot is refined in the
order of decreasing hotspot scores and the best alignment,
i.e. the hotspot that contains the least number of
mismatches, is chosen. Two methods can be used here:
(1) a simple alignment that is based on a nucleotide-by-
nucleotide comparison that does not detect indel in order
to achieve a faster speed or (ii) accelerated Smith—
Waterman alignment, providing 100% sensitivity for
indels (Figure 1D).

Acceleration of the FANSe

The relatively small seeds (6- or 8-nt) may be matched
several times, even within small reference genomes (e.g.
bacteria, yeasts). Thus, Step 2 is the most time-consuming
step. Acceleration is achieved by using a seed lookup
table comprising either 4° = 4096 different 6-nt seeds or
4% = 65536 various 8-nt seeds. Prior to mapping, a search
of all possible seeds is performed through the reference
genome and the locations of exact matches are recorded
in the seed lookup table. When designating a seed from a
real read, the locations of the exact matches are obtained
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Figure 1. Principle of the FANSe algorithm. Scheme of a read covered by non-overlapping seeds (A) or an additional overlapping seed (B). The
dashed lines mark the offset, i.e. the distance between the seed start position and the read start position. (C) Alignment of seeds to a reference
genome (black line). Hotspots are represented as gray bars and the number represents the hotspot score. (D) Accelerated Smith-Waterman scoring to
detect indels. Only the scoring area near the diagonal (gray shadow) is calculated. The dashed line represents the backtracking path without indel; the
brown line depicts the backtracking path with indels; k is the number of allowed errors.

directly from the table that can be accomplished very fast
(within microseconds). The number of entries in the seed
lookup table equals the length of the genome, and is not
expensive regarding the consumption of memory.

The hotspots with the highest scores will be processed
with priority since they may contain a lower number of
errors and are thus more likely to be mapped (Figure 1C).
If a high-scoring hotspot is successfully mapped, other
hotspots are not considered, which in turn saves compari-
son operations. If no high-scoring hotspots are mapped,
lower-scoring hotspots will then be processed. For a read
with x non-overlapping seeds, a hotspot with a score s
contains minimum x—s errors. Allowing k mismatches,
this read needs a minimum hotspot score of x—k to be
mapped successfully. All of the hotspots with x—s>k will
be neglected which minimizes the number of hotspots
examined.

Indel detection is a challenge for the mapping algo-
rithms since the most accurate Smith—Waterman method
is computationally very costly. When the indel detection
of FANSe is on, it first maps a read in a first trial

considering no indel. An indel-containing read, however,
contains a large number of mismatches in a simple align-
ment check. Only reads that failed to be mapped in the
first round will be further analyzed using the Smith—
Waterman refinement. An accelerated refinement of the
Smith—Waterman algorithm for complete indel sensitivity
is implicated in FANSe. The most time-consuming step in
this algorithm is the calculation of the scoring matrix with
a time complexity of O(r?). If maximum k errors,
including mismatches and indels are allowed, the final
back-tracking route (11) would maximally deviate by k
cells located away from the main diagonal in the scoring
matrix (Figure 1D). Therefore, it is only necessary to cal-
culate the cells near the main diagonal, reducing the time
complexity to O(n). The majority of the hotspots will
contain too many errors and in those cases the Smith—
Waterman scores in the first few rows will be very low.
If this is detected, the Smith—Waterman refinement is
aborted since the errors of the alignment at this hotspot
would exceed the allowed limit of k. This acceleration
of the Smith—-Waterman refinement does not affect its
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accuracy; it markedly reduces the running time by ~90%,
thus providing high sensitivity for indels at a minimal
computational cost.

RNA sequencing experiments to validate FANSe

One RNA-sequencing dataset was generated by the
high-throughput sequencing of randomly fragmented
E. coli mRNA using the following protocol: E. coli
MC4100 cells were grown in LB medium at 37°C until
the mid-log phase (OD600 ~ 0.5), then rapidly cooled
down by pouring through crushed ice and harvested by
centrifugation for Smin at 5000 g at 4°C. The cell pellet
was dissolved in resuspension buffer (0.016 M Tris—HCl,
pH = 8.1, containing 0.05M KCl and 0.2% EDTA) and
treated with 1 mg/ml lysozyme for 5Smin on ice, followed
by a total RNA extraction with TRIzol (Invitrogen). The
mRNA fraction was enriched via the subtraction of small
RNAs (5S and tRNAs) with the GeneJET RNA
Purification Kit (Fermentas) and depletion of 16S and
23S rRNA using the MICROBExpress Bacterial mRNA
Enrichment Kit (Ambion) (38). The enriched mRNAs
were heated up to 95°C for 40 min in alkaline fragmenta-
tion buffer (100mM NaCOj;, pH 9.2, containing 1 mM
EDTA), which cleaves the mRNA into short fragments
in a random and unbiased manner (35). Chemically
digested fragments were resolved on 15% denaturating
polyacrylamide gel and fragments between 20- and 35-nt
long were eluted from the gel with 300 mM sodium acetate
buffer, pH 5.5. The complementary DNA (cDNA) library
was prepared via direct adapter ligation according to
the method described already (39), followed by reverse
transcription with RevertAid™ H Minus Reverse
Transcriptase (Fermentas) and PCR-based amplification
with Pfu DNA Polymerase (Fermentas). The sequencing
was performed on the Illumina GAIIx platform. After
the sequencing, the adapter sequences were removed
and the high-quality reads with Phred score >20 were
further processed using different algorithms. The reads
which were aligned with rRNA sequences with no
mismatch or one mismatch were also removed. The re-
maining reads, which were enriched in mRNA reads,
were used as the input of the mapping algorithm; in
total 9387287 reads with a length ranging from 18 to
36 nt were used.

HeLa cells (ATCC CCL-2) were cultivated to 80% con-
fluence in DMEM (PAN Biotech) supplemented with 10%
FCS (PAN Biotech GmbH) and 2mM L-glutamine
(Gibco), at 37°C and 5% CO,. Cells were washed in 1x
DPBS (Gibco), harvested by trypsinization and total
RNA was isolated using TRIzol (Invitrogen), according
to manufacturer’s instructions. The poly(A)” mRNA was
isolated from total RNA using the Dynabeads mRNA
Purification Kit (Invitrogen). Alkaline fragmentation of
mRNA, size selection of the fragments, preparation of
the sequencing library and the sequencing reaction was
performed as described above. The set contained
19347370 reads with a length ranging from 16 to 34nt.
The first one-tenth of the reads (1934 737 reads) was used
as the input of the mapping algorithm. The reads were
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mapped to the human chromosome 21 reference
sequence (hgl9/GRCh37, downloaded from UCSC
Genome browser, http://hgdownload.cse.ucsc.edu).
Furthermore, we downloaded one dataset of E. coli
genomic DNA sequenced with the 454 GS FLX
pyrosequencing platform as a typical dataset for long
reads (Human Microbiome Project, data accession
number SRRO057661, downloaded from DDBJ (DNA
Data Bank of Japan) Sequence Read Archive (DRA,
https://trace.ddbj.nig.ac.jp/dra/index.shtml) (40). In total
168 890 high-quality reads (with a Phred score >5) longer
than 140 nt were selected and used to feed the algorithms.

Comparison of various mapping programs

We compared eight widely used, non-commercial read
mapping algorithms, including BLAT (16), SOAP (17),
Genomemapper (18), mrsFAST (41), SHRiMP (21),
SOAP2 (24), Bowtie (22) and BWA (23) (Supplementary
Table S1). The BLAT, SOAP, Genomemapper, mrsFAST
and SHRiMP programs are seed-based algorithms,
whereas SOAP2, Bowtie and BWA belong to the
BWT-based algorithms. The performance test was
performed on a quad-core Intel i5-2300 machine with
8GB RAM. Windows 7 64-bit and Ubuntu 10.10
64-bit (Linux) were installed to run the programs
accordingly.

Two terms are defined here that were used to evaluate
the accuracy of read mapping algorithms: sensitivity and
correctness [adapted from Reference (42)]. For the algo-
rithms that report mapping quality values we considered a
read with a minimum mapping quality of 20 in the Phred
score scale (i.e. <1% possibility of false-positive mapping)
as a ‘mapped read’. A read that is processed by an algo-
rithm can result in one of the following three categories: (i)
correctly mapped (C), if the read is mapped to the genome
at the correct place; (ii) incorrectly mapped (/), if the read
is mapped to the genome but at an incorrect place or (iii)
unmapped (U), when a read fails to be mapped to the
genome and is then discarded. Sensitivity is defined as a
fraction of the total mapped reads out of all reads, 5,
and the correctness means a fraction of the correctly
mapped reads from the total mapped reads, CLH Only
the sensitivity can be calculated from a deep-sequencing
dataset, which is proportional to the number of mapped
reads. Correctness can be evaluated using simulated
random datasets. Random datasets were simulated from
the E. coli genome and human chromosome 21 masked
reference sequences. Each dataset contained 500 000 reads
with an identical read length (24nt or 50nt). We also
simulated a series of indel-free datasets with a substitution
rate ranging from 0.5% to 8% and a series of
indel-containing datasets fixed at a substitution rate of
1% and variable indel rate from 0.5% to 4%, in which
the indel length (the number of consecutive nucleotide in-
sertions or deletions) was set as 1.

The FANSe algorithm is accessible at http://bioinfor
matics.jnu.edu.cn/software/fanse/. The web site contains
a detailed tutorial and the source code for download.


http://hgdownload.cse.ucsc.edu
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RESULTS
Concept of FANSe

The large amount of reads generated by high-throughput
sequencing has triggered the development of many
mapping algorithms towards greater speed but with com-
promises regarding completeness (15). Quantitative pro-
cessing of the sequencing data, which may contain
mismatches and indels, rather sets the demands for a
higher accuracy. Here, we aimed to develop an algorithm
that will accurately and quantitatively map sequencing
reads while still maintaining a reasonable speed. FANSe
uses the core of a seed-based algorithm, but unlike most
seed-based mapping algorithms that usually use large
seeds (10-14nt), the typical seed size here is 6-8nt. In
addition, it uses the entire information from a sequencing
read which added to the small seed size increases the sen-
sitivity. Importantly, the reads are also designed in a
non-overlapping manner which minimizes their number
and achieves their independency (Figure 1A and B). A
read can be mapped if at least one of the seeds aligns
without a mismatch. Offsets are further used to combine
the seeds within one read (Figure 1A and B); this oper-
ation reduces the number of hotspots, which are the
putative alignment locations in the genome. A
24-nt-long read usually generates 10004000 hotspots in
the E. coli reference genome when 6-nt seeds are used and
one order of magnitude fewer hotspots when 8-nt seeds
are used. The hotspot scoring approach prioritizes the
processing of hotspots with the highest number of exact
matches, thus reducing any further efforts to find the best
hotspot (Figure 1C). Scoring of the hotspots is a novel
feature of FANSe which decreases significantly the
number of hotspots to be refined and consequently accel-
erates the mapping. The alignments need to be further
refined, which computationally is an inexpensive oper-
ation (Figure 1D).

When detecting indels, FANSe implements a reduced
Smith—Waterman refinement that significantly accelerates
the calculation and unlike other Smith—Waterman algo-
rithms is hardware unspecific. Furthermore, instead of
using ‘2-bits-per-base encoding’ to process masked
genomes and/or genomes with undefined nucleotides,
FANSe implies 8-bits-per-base which is not restricted to
only four characters (A T G C) and can also identify
masked or undefined nucleotides (N).

Sensitivity, correctness and scalability of FANSe

A read split into x non-overlapping seeds can be reliably
mapped to a genome when <x—1 mismatches are allowed,
so that at least one seed contains no errors. Alternatively,
reads that contain f mismatches and (f+1) seeds can
always be successfully mapped to a genome. This corres-
ponds to a minimal length of n(f+1), where n is the seed
length (Table 1). Commonly used sequencing platforms
typically provide read length of 18-24 nt (microRNA) or
longer 36-125nt (mRNA, DNA, etc.) that can be fully
mapped, typically allowing two to three mismatches.
When allowing more mismatches the performance of
some algorithms decreases, e.g. the sensitivity of BFAST
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Table 1. Minimal read length and errors allowed per read to achieve
complete mapping with FANSe

Error(s) allowed Minimal read length for complete mapping

6-nt seeds 8-nt seeds
1 12 16
2 18 24
3 24 32
4 30 40
5 36 48
10 66 88

drops to 80% for 50-nt reads allowing five mismatches
(28). The simple design of FANSe allows a theoretical
estimation of the mapping error rate when more errors
are allowed (see Supplementary Data). Within the range
of error rate in the current next-generation sequencing
platforms, the rate of losing a mappable read is very
low: 107°~107° (Supplementary Figure S1).

Next, we compared the ability of FANSe to map short
reads generated from RNA-seq with other algorithms. We
extracted the total mRNA from exponentially growing
E. coli or eukaryotic HeLa cells, randomly fragmented
them into short fragments and sequenced them on the
IMlumina GAIIx platform. Compared with all of the
tested programs, FANSe showed the highest sensitivity
in read mapping with disabled indel detection
(Figure 2A). When indels were considered, FANSe also
achieved the best sensitivity among the algorithms that are
capable of handling indels (e.g. BLAT, BWA, mrsFAST
and SHRiMP) (Figure 2B). Even though the Illumina
GAIllx platform operates at a very low indel rate
[estimated to be 0.0032% per nucleotide (43)], the indel
search with the Smith—-Waterman refinement in FANSe
was enabled that increased the mapped reads by 6.5%.
With a minimum read length of 18nt in this dataset,
FANSe achieved a complete mapping of all reads when
6-nt seeds were used and one or two mismatches were
allowed (Table 1). Note that SOAP2 did not work for
this dataset because of an internal error, and
Genomemapper only mapped a very small fraction of
the reads. When using 8-nt seeds, only 0.27% fewer
reads were mapped with FANSe than when 6-nt seeds
were used; however the mapping speed was accelerated
by >12-fold.

We next compared the read hits for each gene mapped
by FANSe, BWA and BLAT (Figure 2C). Similar to
FANSe, BWA showed a high ability to map the reads of
highly-abundant mRNAs, whereas BLAT mapped signifi-
cantly fewer reads, thereby proportionally losing also
reads of high-abundance mRNAs. Both BWA and
BLAT  algorithms, however missed reads of
low-abundance mRNAs (Figure 2C): when the read hits
of a gene dropped below 200 (BWA) or 1000 hits (BLAT),
these algorithms disproportionally lost mappable reads
that could create a bias if the RNA-seq set is used for
further quantitative analysis.
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Figure 2. Sensitivity and speed of FANSe compared with other mapping algorithms. Mapped reads (left panels) and running time (right panels) for
the mapping of E. coli mRNA random fragments to the reference genome with deactivated (A) or activated (B) indel detection using 8-nt seeds. One,
two or three mismatches were allowed when indel detection was switched off. (C) Comparison of the read hits for the mRNA random fragments of
each E. coli gene mapped by FANSe and BWA (left panel) or BLAT (right panel). (D) Mapped reads (left panel) and running time (right panel) by
mapping the HeLa mRNA random fragments to the masked human chromosome 21 allowing three mismatches. Note that some algorithms were
only run in indel-enabled (mrsFAST, BLAT) or indel-disabled mode (Bowtie). BLAT mapped 1459 reads within 1 min and is not included in the
plots as it is out of scale compared with the other algorithms. GM, Genomemapper.

The FANSe algorithm showed a high level of sensitivity
not only for mapping reads to small reference genomes,
e.g. bacteria, but also to large eukaryotic genomes. We
compared the performance of FANSe and the other algo-
rithms in mapping reads generated by sequencing
randomly fragmented mRNA from HeLa cells to the
human chromosome 21 reference sequence. We used a
masked genome sequence, in which the highly repetitive

regions are already masked to avoid ambiguous multiple
mapping of one read to the repetitive regions. FANSe
mapped double amount of reads compared with the
other algorithms (Figure 2D). When indel detection was
enabled, the number of the mappable reads increased by
53% compared with 44% when using BWA. The SOAP,
Genomemapper and SHRiMP algorithms do not support
masked genomes; SOAP2 failed to run because of an
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Figure 3. Comparison of the sensitivity and running time of FANSe and Bowtie on mapping long reads (>140nt). Escherichia coli genomic DNA
sequenced with a 454 GS FLX pyrosequencing platform (40) was used as a dataset. FANSe was set to allow 3 or 10 mismatches; three mismatches
were allowed for Bowtie. Mapping was performed with the indel detection switched on (gray bars) or off (black bars). MM, mismatches.

internal error. Although some of these reads may be
mapped to other human chromosomes with the same or
even fewer mismatches, FANSe has the potential to report
more locations of the alignments compared with the other
algorithms if all mapping locations need to be reported
instead of the just the best one. Such a requirement was
recently demanded by some RNA quantification applica-
tions for eukaryotes (44). The high sensitivity of FANSe is
a tradeoff with its speed: the running time of FANSe was
slightly slower than the other seed-based algorithms (e.g.
BLAT, SOAP and SHRiMP), particularly when indel de-
tection was enabled (Figure 2A, B and D).

The majority of the read mapping algorithms are
designed to map short reads with a maximum length of
60-127nt. Tools to map long reads generated by
sequencing platforms like 454 GS FLX are limited.
Next, we tested the scalability of FANSe to map long
reads. We mapped a dataset generated on the 454 GS
FLX sequencing platform to the E. coli reference
genome. Although DNA-seq methods have a lower error
rate than the RNA-seq, it is still very likely that long reads
(140-300nt) contain more than three mismatches and
indels. The number of mismatches in FANSe is flexible
and we compared its mapping performance using 3 or
10 mismatch settings with a maximal allowance of three
mismatches for Bowtie (Figure 3). FANSe mapped a
higher number of reads compared with Bowtie, which
only identified a small fraction of the mappable reads
(Figure 3). To validate the mapping result of FANSe,
we randomly chose 20 mapped reads (indel-free and
indel-containing reads) and manually verified the unique
and correct mapping of all these reads using the NCBI
nucleotide BLAST tool. Clearly, by allowing a higher
mismatch number, 24% more reads were mapped with
FANSe without Ilosing much speed (Figure 3).
Furthermore, by enabling the Smith—Waterman refine-
ment 66% more reads were mapped, albeit at a slower
speed (Figure 3). The BWA-Smith Waterman Alignment
algorithm, a variant of BWA that is designed to map long
reads, failed to function, most likely due to its limitations
on mapping small (i.e. bacterial) genomes (45). BLAT
gave a large amount of mapped reads; however were
mostly local alignments, only aligning part of the read
instead of the whole read with the reference genome.

To avoid bias as a result of choosing the dataset and
application, we used simulated, random sequencing

datasets and compared the accuracy of FANSe and
Bowtie. For both simulated E. coli reads and human
chromosome 21 reads, FANSe and Bowtie achieved a
comparably high level of sensitivity, ~100 %, when the
substitution rate was varied from 0.5% to 1%
(Figure 4A). Further increase in the substitution rate of
up to 8% caused a decrease in the sensitivity of Bowtie by
30-80% depending on the read length, whereas the sensi-
tivity of FANSe only decreased by 10% (Figure 4A). In
almost all indel-free cases (Figure 4A) the correctness of
FANSe ranged from 97.2% to 99.7% (average 98.8%)
which is similar to the correctness of Bowtie
(98.0-99.7%, average 98.8%). Increasing the mismatches
from three to four decreased the number of unmapped
reads by half (Figure 4A); however only a marginal
decrease in the correctness, from 98.2% to 99.6% to
97.2% to 99.5%, was detected. The high sensitivity and
correctness found when mapping in silico- generated
datasets confirms the theoretically estimated accuracy
(Supplementary Figure S1).

Furthermore, the sensitivity and correctness were
almost identical for both the bacterial and eukaryotic ref-
erence sequences under the same settings, illustrating the
high robustness of FANSe. For the more difficult datasets
with a 1% substitution rate mixed with a 0.5-4% indel
rate, FANSe provided a sensitivity higher than 99.7% and
correctness between 95.9% and 98.6% (average of 98.0%)
when the indel search was enabled, whereas Bowtie dis-
carded a large fraction of mappable reads most likely due
to its limited ability to handle indels (Figure 4B). Together
these data underpin the advantage of using FANSe, par-
ticularly when mapping datasets with relatively high error
rates.

Mapping speed and memory consumption of FANSe

Next, we tested the running time of FANSe and compared
it with the other algorithms by recording it on the same
computer with one CPU core. Construction of the index
file is a separate step in some algorithms (FANSe, BWA,
Bowtie, SOAP2 and Genomemapper) and the time
consumed during this step was not included in our com-
parison because the file can be reused and therefore is not
included in these comparisons. The time required to create
an index file varies between the algorithms; e.g. construc-
tion of the lookup table for human chromosome 21 for
FANSe only took several seconds. This step is integrated
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Figure 4. Comparison of the sensitivity between FANSe and Bowtie by mapping of in silico simulated datasets. (A) Sensitivity of mapping indel-free
reads from the E. coli genome and masked human chromosome 21 reference sequence. FANSe was run with 6-nt seeds. (B) Sensitivity of mapping
reads from the E. coli genome with a 1% substitution rate and an indel rate ranging from 0.5% to 4%. Indel search is enabled. All tests with Bowtie

were run with three mismatch allowance. MM, mismatches.

within FANSe as it simplifies usage and saves disk space.
For short reads, FANSe performed slower than the other
algorithms when using 6-nt seeds due to its high accuracy
(Supplementary Figure S2). When using 8-nt seeds for
reads longer than 24nt, the speed of FANSe increased
by 2-fold, whereas a marginal decrease in sensitivity was
detected and 0.07% of the reads were missed. When using
8-nt seeds for all reads, the speed was significantly
faster than the BWT-based algorithms (Bowtie and
BWA), whereas missing only 0.27% of the mappable
reads when three mismatches were allowed (Figure 2A
and B and Supplementary Figure S2). Ten million reads
can be mapped to large genomes, e.g. mouse or human,
on one quad-core computer within 1day. When a few
errors were allowed, enabling the Smith—Waterman refine-
ment in order to detect all indels increased the running
time two to five times for short reads and more than six
times for long reads (Figures 2 and 3 and Supplementary
Figure S2).

It should be noted that allowing a lot of mismatches
while enabling indel detection significantly increased the
running time due to the much larger area of the Smith—
Waterman scoring matrix to be calculated, especially for

long reads (Figure 3). For platforms that provide short
reads and intrinsically have very low indel rates (e.g.
Illumina platforms), enabling the indel detection only
gained 6.5% more reads. For practical reasons, the indel
search might be disabled when mapping short reads from
these platforms. In the platforms with high indel rates (e.g.
Helicos) or when long reads are generated (e.g. 454 GS
FLX), where indels are more likely to occur, it is recom-
mendable to enable the indel search. As the current
sequencing platforms that generate very long reads (e.g.
454  pyrosequencing sequencers) do not provide
multi-million reads in a single run, the current mapping
speed is still acceptable when using multi-core processors.

The FANSe algorithm requires a memory approxi-
mately six times the size of the reference genome and is
almost independent of the length of the reads and the
errors allowed. This keeps the memory consumption
within a reasonable range. In comparison, some algo-
rithms require gigabytes of RAM even when mapping
reads to the E. coli genome (Genomemapper,
mrsFAST and SHRiMP) that is prohibitive, especially
in the case of parallel computing of multiple datasets
(Figure 5).
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Figure 5. Memory consumption of different algorithms when mapping randomly fragmented E. coli (A) and HeLa (B) mRNA short reads. Panel A
represents the memory consumption when running the mapping with the same parameter as in Figure 2A; panel B corresponds to the mapping

shown in Figure 2D. GM, Genomemapper.

DISCUSSION

Massively parallel deep-sequencing technology provides a
powerful tool for unraveling new biological information
and brings new challenges to data processing. The align-
ment or mapping of the reads to a reference genome is a
fundamental step of the data processing from RNA-seq
and all subsequent analyses are based on it. Therefore, the
accuracy of the mapping algorithm (including sensitivity
and correctness) is crucial, whereas the speed might be
considered as a subordinate feature. We developed a
seed-based mapping algorithm that performs with a high
sensitivity and accuracy when aligning the reads to small
(E. coli genome) and large (e.g. human masked genome)
reference genomes. Even at high error rates of the
sequencing datasets, FANSe maintains a high sensitivity.
The flexibility in the allowance of mismatches increases
the accuracy and coverage of data processing. This is par-
ticularly crucial in transcriptome analysis, since prior to
sequencing, RNA is converted into cDNA by reverse tran-
scriptase whose fidelity is imperfect and may introduce
multiple mis-incorporations at modified nucleotides, thus
adding an extra error to the error rate generated by the
sequencing machine itself.

Furthermore, the flexible mismatch settings within a
read and the ability to completely detect indels provide
advantages in the analysis of genetic variations (e.g.
SNPs) and methylation patterns. The high sensitivity of
FANSe is traded off with mapping speed which compared
with the other seed-based algorithms is slightly slower.
The implementation of an accelerated Smith—-Waterman
refinement increases the speed without compromising the
accuracy and reduces the computational cost compared
with the traditional Smith-Waterman algorithm (9).
FANSe is the first mapping algorithm that provides the-
oretical estimation of the sensitivity thus allowing for
chosing the best parameter sets to achieve the desired
sensitivity.

The mRNA abundance of different genes differs by
more than three orders of magnitude (46) and
low-abundance mRNAs are a major technical challenge
for transcriptome sequencing. Incomplete mapping can
lose critical information and create a significant bias in

quantification and downstream analyses. Notably,
FANSe shows a remarkable coverage of low-abundance
mRNAs: the mapping increased between 7% and 131%
for short reads and by six times for long reads compared
with other mapping algorithms when run at comparable
settings (Figures 2 and 3). Currently, FANSe does not
detect reads across the splicing junctions like some other
mapping programs (e.g. BLAT). However, FANSe appli-
cations can be extended towards detecting splicing junc-
tions. Alternatively, an algorithm that is designed to
specifically detect splicing junctions [e.g. TopHat (14)
and MapSplice (4)] can be used to process any reads
that fail to be directly mapped to the reference genome.

The deep understanding of the diversity in biology and
human disease biology is dependent on accurate genome
sequencing. The increasing variety of deep sequencing
techniques and applications requires versatility of the
data processing tools. There is a great variability in the
maturity of the available computational tools (25). We
believe that FANSe will find broad applications as it can
accurately and sensitively map millions of short reads with
different lengths from a large variety of platforms, con-
taining different mismatch, error and indel rates.
Importantly, FANSe can stably map to both short and
large reference genomes and even to masked genomes or
reference sequences containing unspecific nucleotides
(‘N’-s). Finally, FANSe can be compiled in various
operating systems (Windows, Linux, MacOS, etc.) thus
it is suitable for users who might only be familiar with
one operating system.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1 and 2,
Supplementary Methods and Supplementary References
[47.,48].
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