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Abstract: Protein O-GlcNAcylation is a non-canonical glycosylation of nuclear, mitochondrial,
and cytoplasmic proteins with the attachment of a single O-linked β-N-acetyl-glucosamine
(O-GlcNAc) moiety. Advances in labeling and identifying O-GlcNAcylated proteins have helped
improve the understanding of O-GlcNAcylation at levels that range from basic molecular biology to
cell signaling and gene regulation to physiology and disease. This review describes these advances
in chemistry involving chemical reporters and their bioorthogonal reactions utilized for detection
and construction of O-GlcNAc proteomes in a molecular mechanistic view. This detailed view will
help better understand the principles of the chemistries utilized for biology discovery and promote
continued efforts in developing new molecular tools and new strategies to further explore protein
O-GlcNAcylation.
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1. Introduction

Protein O-GlcNAc-modification (O-GlcNAcylation) is a post-translational modification (PTM)
that involves the attachment of O-linked β-D-N-acetylglucosamine onto serine (Ser) or threonine (Thr)
residues of myriad intracellular proteins [1]. O-GlcNAcylation is a one-sugar modification with no
elongation into more complex structures that is found in the nucleus, cytoplasm, and mitochondria.
These features of O-GlcNAcylation make it different from other types of protein glycosylation
(i.e., protein N- or O-glycosylation), which exist mainly as oligosaccharides or polysaccharides in
the cell surface and extracellular compartments. O-GlcNAcylation is a dynamic process with a wide
turnover rate (0.02 h−1 to 1.6 h−1) [2] and the dynamics of the modification are catalyzed by a single
pair of enzymes in a nutrient- and stress-responsive manner. O-GlcNAc is added to the whole range
of protein substrates by O-GlcNAc transferase (OGT) [3] and removed by O-GlcNAcase (OGA) [4].
This intracellular form of protein glycosylation affects almost every cellular process ranging from
transcription and translation to signal transduction and metabolism [5,6]. A large body of evidence
has implicated an alteration of O-GlcNAc homeostasis in the pathogenesis of different kinds of chronic
diseases; an increase in O-GlcNAc levels has been observed in a number of insulin signaling proteins
and mitochondrial proteins in diabetic cells [7], as well as in various types of cancer [8]. In contrast,
decreased O-GlcNAc levels with inversely increased phosphorylation have been observed in the
microtubule-associated tau protein, which is believed to promote its oligomerization and lead to
Alzheimer’s disease (AD) [9]. Therefore, the characterization of O-GlcNAcylated proteins and the
dynamics of this modification are essential for a better understanding of the functions of O-GlcNAc
in human physiology and diseases. On the other hand, the substoichiometric and labile nature of
O-GlcNAcylation makes its detection and identification quite difficult and even more challenging
when the O-GlcNAcylated proteins are in low cellular abundance. To tackle these challenges,
several innovative strategies and novel chemical reporters in association with their corresponding
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chemoselective reactions have been developed over the past few years. This review discusses the recent
progress in labeling methods of protein O-GlcNAcylation, including synthetic chemical reporters and
their chemoselective reactions, in a mechanistic view.

2. Metabolic Chemical Reporters and Their Chemistries for Labeling O-GlcNAc Proteins

Metabolic chemical reporters (MCRs) are unnatural chemical functionalities with unique reactivity
and they can be introduced into naturally occurring biomolecules of a living system, generally through
the cell’s biosynthetic machinery. These chemical reporters are then reacted with specifically designed
molecular probes in bioorthogonal labeling reactions that allow the visualization and/or isolation of
biomolecules of interest. For the successful application of these techniques, chemical reporter groups
should be stable before the reaction occurs and nontoxic to living systems. Moreover, the reaction
between the chemical reporter groups and the probes must occur selectively under physiological
conditions with either of them being inert to the plethora of chemical functionality found in cells
(Figure 1). Since Bertozzi et al. originally utilized the versatility of the hexosamine salvage pathway
to deliver an azide moiety into O-GlcNAcylated proteins [10], other chemical reporters including
alkyne [11], alkene [12], and diazirine [13] functionalities have been introduced for O-GlcNAc studies.
This section describes unnatural sugars containing these chemical reporters for labeling O-GlcNAc
proteins and their bioorthogonal chemical reactions developed to date. In addition, a brief discussion
on how these molecular tools can be used to decipher O-GlcNAc functional roles is provided.
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as substrates for OGT allowing its incorporation into glycoprotein substrates (Figure 2 [10]). Zhao et 

Figure 1. Schematic description of detection and isolation using metabolic labeling followed by
bioorthogonal ligation. GP represents a glycoprotein.

2.1. Azide- or Terminal Alkyne-Containing Metabolic Chemical Reporters

Azide functionality is the most widely used bioorthogonal group because it is essentially
absent from biological systems and its reactivity is orthogonal to the majority of biological
functionalities. Azide-bearing unnatural monosaccharides have been incorporated into proteins
and used in a range of biological research areas. To date, five types of per-O-acetylated
GlcNAc and GalNAc analogs containing an azide moiety have been developed and used
to label O-GlcNAc-modified proteins with an azide functional group: (1) per-O-acetylated
N-azidoacetylglucosamine (Ac4GlcNAz) [10]; (2) per-O-acetylated N-azidoacetylgalactosamine
(Ac4GalNAz) [14]; (3) per-O-acetylated 6-azido-6-deoxy-N-acetylglucosamine (Ac36AzGlcNAc) [15];
(4) per-O-acetylated 4-deoxy-N-azidoacetyl-glucosamine (Ac34dGlcNAz) [16]; and (5) per-O-
acetylated-N-pentynylglucosamine (Ac4GlcNAlk) [11].

Ac4GlcNAz is the first azidosugar that has been shown to be converted metabolically to
the nucleotide sugar uridine diphosphatidyl GlcNAc analog UDP-GlcNAz. Then, UDP-GlcNAz
serves as substrates for OGT allowing its incorporation into glycoprotein substrates (Figure 2 [10]).
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Zhao et al. used metabolic labeling with Ac4GlcNAz and the Staudinger ligation reaction for a global
O-GlcNAc proteomic study and identified 199 putative O-GlcNAcylated proteins with a wide range
of functions, suggesting that O-GlcNAc is involved in regulating multiple cellular pathways [17].
In addition to the Staudinger ligation, copper-catalyzed alkyne−azide cycloaddition (CuAAC) reaction
between an alkyne-functionalized agarose resin and whole-cell lysates from Ac4GlcNAz-fed HEK293
cells was also used to identify approximately 1500 putative O-GlcNAcylated proteins as well as
185 GlcNAcylation sites [18]. Natural UDP-GlcNAc is used for GlcNAc incorporation not only into
O-GlcNAc proteins, but also into the N-linked glycans and mucin-type O-linked oligosaccharides.
In addition, the interconversion of UDP-GlcNAc to UDP-GalNAc can lead to the incorporation of
GlcNAc at the core of mucin-type O-linked glycans. Similarly, GlcNAz is incorporated metabolically
into O-GlcNAc proteins, but also N-linked and/or mucin-type O-linked glycans are labeled.

Ac4GalNAz, which was originally developed for metabolically labeling mucin-type O-linked
glycans [19], has also been used in labeling O-GlcNAc proteins because UDP-GalNAz is found to be
epimerized efficiently to give UDP-GlcNAz by the enzyme UDP-galactose 4-epimerase (GALE) [14].
An application of metabolic labeling with Ac4GalNAz and the Staudinger ligation showed that
O-GlcNAcylation could be a cotranslational process and provides a mechanism for protecting nascent
polypeptide chains from premature degradation by decreasing ubiquitination [20].

Pratt et al. examined metabolic labeling with Ac4GlcNAlk, the terminal alkynyl analog of
GlcNAc and showed that GlcNAlk can be incorporated into O-GlcNAc proteins under low-glucose
growth conditions [11]. In their studies, GlcNAlk did not appear to be interconverted to GalNAlk,
thereby avoiding mucin O-linked glycoproteins’ labeling even though it labels N-linked glycans [11].
Gurel et al. applied GlcNAlk metabolic labeling and the CuAAC reaction method to examine the role
of O-GlcNAcylation in diabetic retinopathy [21]. A previous study shows that a high glucose-mediated
increase in O-GlcNAcylation in retinal pericytes impaired their migration, which plays an important
role in constructing healthy capillaries in the retina [22]. The authors discovered that the retinal
pericytes responded with a large increase in O-GlcNAcylation compared to other retinal vascular cells
under the conditions of either high glucose or the presence of an OGA inhibitor, resulting in elevated
apoptosis of retinal pericytes [21]. In addition, they identified approximately 34 O-GlcNAcylated
proteins that are involved in the cell death processes and found that the increased O-GlcNAcylation of
p53 was associated with its increased protein level in retinal pericytes, supporting the role of elevated
O-GlcNAcylation in the selective loss of retinal pericytes during diabetes [21].

The GlcNAc analogs described above have a limitation of “off-target” labeling necessitating
careful data analysis. To address this limitation, Pratt et al. explored 6AzGlcNAc and showed
the exclusive labeling of intracellular proteins with a background labeling level of mucin O-linked
glycoprotein [15]. 6AzGlcNAc bypasses the first step of phosphorylation at the 6-hydroxyl of the
sugar by N-acetylglucosamine kinase (GNK) and directs the phosphorylation of its 1-hydroxyl
by the phosphoacetylglucosamine mutase (AGM1) enzyme in the presence of a cofactor, such as
GlcNAc-6-phosphatein in the process of its conversion to UDP-6AzGlcNAc [15]. An O-GlcNAc
proteomic study of NIH3T3 cells using this MCR and CuAAC reaction method led to the identification
of 366 6AzGlcNAc-labeled proteins, 350 of which were annotated as intracellular proteins [15].
Although the probe, Ac36AzGlcNAc, also labels N-linked glycans, it exhibits improved selectivity in
labeling O-GlcNAc proteins. On the other hand, the labeling efficiency with Ac36AzGlcNAc is low
because it cannot be processed by canonical GlcNAc salvage pathway.

Recently, a new GlcNAc analog, Ac34dGlcNAz, lacking the hydroxyl at C4 was reported [16].
The probe, 4dGlcNAz, has been proposed to be processed by the GalNAc salvage pathway involving
GalNAc kinase 2 (GK2) and AGX1 to form UDP-4dGlcNAz [16]. The majority of glycosidic linkages to
GlcNAc or GalNAc in glycoconjugates, such as N-linked/O-linked glycans, link to the C4 hydroxyl
group of the sugar. Therefore, the lack of a hydroxyl at C4 of this probe greatly reduces its incorporation
into the cell surface glycoconjugates. In addition, a previous study reported that 4dGalNAc is
not a substrate of the polypeptide α-GalNAc transferase T1 (ppGalNAc-T1) to produce O-linked
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glycan proteins [23]. These features allow 4dGlcNAz to have a higher selectivity over previous
metabolic chemical reporters for O-GlcNAcylation. Metabolic labeling of proteins can be removed by
endogenous OGA, which attenuates the labeling efficiency. In particular, O-4dGlcNAz modification
was reported to increase the resistance to OGA hydrolysis, leading to enhanced labeling efficiency for
O-GlcNAcylation [16]. Proteome wide analysis of O-GlcNAcylated proteins in HEK293 cells using this
OGA-resistant MCR and CuAAC reaction discovered 507 putative O-GlcNAcylated proteins including
281 previously known and 266 novel ones, 484 of which were annotated as intracellular proteins [16].
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Figure 2. Metabolic chemical reporters (MCRs) of GlcNAc analogs bearing azide, alkyne or cycloproene
functionalities and their possible salvage pathways.

2.2. Chemoselective Reactions Involving Azide-Functionality

Figure 3 shows the most widely used orthogonal chemistries with azide or alkyne functionality.
The Staudinger ligation and CuAAC reactions have been reviewed thoroughly previously [24];
this section briefly discusses these reactions.

Staudinger ligation: Azide-bearing proteins have been reacted with arylphosphines to finally
form a stable amide bond in Staudinger ligations (Figure 3A, upper) [25]. This reaction has been
applied to label biomolecules in a variety of biological systems [26,27] and its mechanistic details
have been reviewed thoroughly [24]. The Staudinger ligation, however, has slow reaction kinetics
with second-order constants in the range of 10−3 M−1 s−1 [28]. In addition, phosphine reagents tend
to oxidize in the presence of air or metabolic enzymes, thereby requiring a high concentration of
reagents [29].
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Copper-catalyzed alkyne-azide cycloaddition (CuAAC): Azide also reacts with terminal alkynes in
the presence of a Cu(I) catalyst to form a conjugation product of 1,2,3-triazole (Figure 3A, middle) [30].
The CuAAC reaction is a regioselective conjugation reaction, giving only 1,4-regioisomer product
of 1,2,3-triazole and is second order with respect to copper [31]. The rates depend on the amount
of Cu(I) and its coordinating ligands [32] used but the reaction generally proceeds considerably
faster (k2 = 10~100 M−1 s−1) in the physiological conditions [33]. Owing to its fast and effective
bioconjugation of an azide-labeled biomolecule with an appropriate tag, CuAAC has been used
widely in numerous studies including proteomic studies [10,18]. On the other hand, the toxicity and
undesirable perturbation in the cellular function that copper complexes introduce limits its broad
applicability in a living system [34].
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Figure 3. Bioorthogonal reactions with azide (A); and a series of cycoalkyne reagents developed for
SPAAC with corresponding k2 values for the 1,3-dipolar cycloaddition with benzyl azide (B). Simplified
mechanistic views of each reaction (Staudinger ligation in the upper, CuAAC in the middle, SPAAC in
the bottom in (A)) are described in the box.

Strain-promoted alkyne-azide cycloaddition (SPAAC): SPAAC was developed to eliminate the
use of a cytotoxic Cu(I) catalyst. In SPAAC, the rate of alkyne-azide cycloaddition is accelerated
with respect to the reaction without Cu(I) by introducing ring strain into the alkyne [35]. The first
example of SPAAC is a cyclooctyne (called OCT) and the reaction proceeds as a standard concerted
1,3-dipolar cycloaddition to produce a regioisomeric mixture of triazoles (Figure 3A, bottom) [33,35].
OCT reacts with azide under physiological conditions without toxicity but its kinetics (rate constant
(k2) of 0.0024 M−1 s−1) are similar to the Staudinger ligation [33,35]. Further optimization has
led to the development of a series of structurally varied cyclooctyne-based probes that display
differential reactivities through either stain or electronic modulation. The electronic modulation
of cyclooctyne scaffolds utilizes electron-withdrawing fluorine atom(s), which has an effect on
lowering the LUMO energy of the alkyne and the HOMO–LUMO gap, thereby increasing the reaction
rate [33,36]. Strain-modulated cyclooctyne derivatives have two aryl rings fused to a cylcooctyne
structure, enhancing the ring strain, which increases the reaction rate. Some examples are
dibenzocyclooctyne (DIBO) [37], dibenzoazacyclooctyne (DIBAC) [38], and biarylazacyclooctyne
(BARAC) [39]. The cyclooctyne system has been tuned further by employing a heteroatom or a sp2-like
center, such as an amide bond to the cyclooctyne ring structure to improve the water solubility or to
impart additional strain to the ring, as shown in the examples of dimethoxycyclooctyne (DIMAC) [40]
and BARAC [39]. The optimization of bioorthogonal reagents requires a delicate balance between
the reactivity, chemical stability, and selectivity to minimize their off-target [41] reactivity; Figure 3B
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describes several cycloalkyne derivatives used in biomedical research areas. The SPAAC reaction
rates with these reagents lies in the middle of Staudinger ligation and CuAAC reaction (k2 = 10−2 to
1 M−1 s−1).

2.3. Cycloalkene-Containing Metabolic Chemical Reporter

Inverse-electron demand Diels–Alder (iEDDA) reactions between diene 1,2,4,5-tetrazines and
dienophile alkene or alkyne dienophiles have emerged as bioorthogonal, and metal-free “click”
chemistry (Figure 4A) [42]. Since iEDDA was applied to metabolic chemical reporter engineering,
several dienophiles, such as alkenes [43], isonitriles [44], and cyclopropenes [45], have been
incorporated in carbohydrate derivatives. Owing to the small size and high reactivity of the
cyclopropenyl group, the iEDDA reaction between cyclopropene tags and tetrazines has become
a popular ligation reaction for detecting and isolating the biomolecules of interest [46,47]. One such
study employs the cyclopropene GlcNAc analog Ac4GlcNCyoc as a metabolic chemical reporter
for O-GlcNAc protein labeling (Figure 2) [12]. Ac4GlcNCyoc has been shown to label intracellular
O-GlcNAc proteins as well as the lesser labeling of extracellular glycans [12]. An important
aspect of the iEDDA reaction is that it can be orthogonal to azide-alkyne cycloaddition. Therefore,
a cycloproene-containing chemical reporter could be combined with an azide-containing chemical
reporter to achieve dual labeling of different targets in cells within a single experiment. Continued
improvement in the specificity and incorporation efficiency of metabolic probes will advance their
applications in O-GlcNAc biology.

2.4. Chemoselective Ligation Reactions Involving Strained Alkene (or Alkyne) with Tetrazine through
iEDDA Reaction

Tetrazine is composed of a six-membered aromatic ring with four nitrogen atoms and its ligation
chemistry was first reported in 2008 [48,49]. Among several tetrazine isomers, 1,2,4,5-tetrazine
is used most often in tetrazine ligation. A reaction of 1,2,4,5-tetrazine with strained alkenes or
alkynes uses an “inverse” electron-demand Diels–Alder reaction, in which dienes (tetrazines) are
electron-deficient due to electron withdrawing substituents (dienes; Ψ3 is considered the lowest
unoccupied molecular orbital), whereas dienophiles (alkenes or alkynes) are electron-rich due to
electron donating substituents (dienophiles; Ψ2 is considered the highest occupied molecular orbital).
Figure 4B represents the mechanism of the iEDDA-initiated conjugation [42]. This begins with
a Diels–Alder [4+2] cycloaddition to produce a highly strained cyclic adduct and the adduct then
proceeds rapidly via a retro-Diels–Alder reaction to release nitrogen gas and form the corresponding
4,5-dihydropyridazine, which is then converted to the corresponding 1,4-dihydro -isomer through
1,3-prototropic isomerization. Stable 1,4-dihydropyridazine requires an oxidant to be converted to the
pyridazine. In contrast, when the alkyne is used as a dienophile, the pyridazine is formed without
the additional oxidants. In the iEDDA reaction, the rates depend on the nature of the alkenes and the
nitrogen contents of substituents on the tetrazine scaffold and their relative reactivities are shown in
Figure 4C.

The iEDDA rates are extraordinarily high, reaching up to 105 M−1 s−1 when
trans-bicyclo[6.1.0]nonene is used as the dienophile [50], which is more than five orders of
magnitude higher than SPAAC. In addition, fluorescence-quenching mechanism can be exploited in
the tetrazine ligation through iEDDA. In this approach, tetrazines are conjugated to some fluorophores,
where fluorescence is quenched by tetrazine, but quenched fluorescence is released to give its
fluorescence upon tetrazine ligation through iEDDA [51,52]. Tetrazines generally have high reactivity,
particularly those with a high nitrogen content. Therefore, their synthesis is advised to be performed
in a well-ventilated hood. The prices and availability of the precursors of tetrazines have resulted
in their synthesis on a small scale. On the other hand, their fast reaction rates, bioorthogonality,
and mutual orthogonality with other click reactions will allow this chemistry to be used widely in
a variety of biological research including protein O-GlcNAcylation.
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2.5. Diazirine-Containing Metabolic Chemical Reporter

Diazirines are a class of cyclopropene ring with the replacement of two double-bonded carbons of
the ring with two nitrogen atoms. Diazirines form reactive carbenes upon irradiation with ultraviolet
light (UV), which can be inserted into C-H, N-H, or O-H bonds. The diazirine functionalities are
generally used to crosslink the neighboring molecules covalently in the construction of an interaction
network between a protein of interest and its binding partners. The elucidation of interacting proteins
is an important aspect of understanding of protein functions. However, glycan binding proteins
are difficult to isolate because of their low binding affinities and the short duration of the complex
they form [53]. One approach to tackle this obstacle is to stabilize glycoprotein interactions with the
corresponding binding partners by forming a covalent bond between them using photoactivatable
cross-linking reagents. On the other hand, photoactivatable cross-linking functionality can be
introduced to a monosaccharide, which is then incorporated metabolically into the proteins of
interest to identify their interacting proteins. Kohler et al. used diazirine as a photoactivatable
cross-linking functional group and introduced this functional group to GlcNAc to identify the
binding partners of O-GlcNAcylated proteins [13]. Despite this, the first diazirine derivative of
GlcNAc, per-O-acetylated N-diazirine-acetylglucosamine (Ac4GlcNDAz), was not a compatible
substrate for the GlcNAc salvage pathway [13]. To address this issue, they introduced a precursor
of diazirine-carrying GlcNAc-1-phosphate, which was referred to as Ac3GlcNDAz-1-P(Ac-SATE)2,
where 1-O-phosphate is protected with two S-acetyl-2-thioethyl (Ac-SATE) groups to produce its
corresponding UDP-GlcNAc analog carrying diazirine (Figure 2). In addition, the authors mutated
the enzyme, AGX1, which converts GlcNAc-1-phosphate to UDP-GlcNAc to enhance the conversion
efficiency of the azirine-containing analog [13]. They further optimized by mutating the natural OGT,
which originally favors UDP-GlcNAc over UDP-GlcNDAz to its mutant OGT(C917A), which prefers
UDP-GlcNDAz over its natural nucleotide sugar, leading to significantly improved O-GlcNDAz
incorporation [54]. The diazirine-bearing GlcNAc analog is resistant to hydrolysis by OGA, resulting in
the accumulation of O-GlcNDAz-modified proteins in cells. The ability to efficiently capture interacting
proteins by forming covalent bonds with O-GlcNAc will offer a useful tool to globally profile glycan
binding proteins for the functional characterization of O-GlcNAcylation. For instance, nucleoporins
that contain phenylalanine and glycine peptide repeats are heavily O-GlcNAcylated, but the function
of this modification is unclear. Through the use of a diazirine-containing GlcNAc analog, Yu et al.
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provided evidence on a direct interaction between the nucleus transporter factor-1 and nucleoporins
NUP153 and NUP358, suggesting that O-GlcNAcylation plays a role in the essential recognition events
in nuclear transport [13].

2.6. Chemoselective Reactions Involving Diazirine-Functionality

Photo-activatable diazirine reaction chemistry: Photo-reactive crosslinking chemistries are used
widely for non-specific bioconjugation. Although various photo-reactive groups have been introduced,
the two most common groups are diazirines and aryl azides. Compared to aryl azides, diazirines
are a newer class of photo-activatable chemical groups and much smaller in size that can allow their
incorporation into the proteins of interest in the form of a metabolic chemical reporter. Diazirines have
better photostability than phenyl azides, and they are activated more efficiently with long-wave UV
lights. Upon UV radiation, a reactive carbene intermediate is formed and this reactive intermediate
can form covalent bonds through an addition reaction with any neighboring molecules (Figure 5).
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2.7. Important Aspects of Consideration for Metabolic Chemical Reporters

The utility of metabolic chemical reporters has been expanded widely to the majority classes of
posttranslational modifications. Ideally, metabolic chemical reporters are expected to enter a single
biosynthetic pathway, resulting in the labeling of one type of modification. However, as described
earlier, synthetic analogs developed for labeling O-GlcNAc label N-linked and/or O-linked glycans
as well. For example, UDP-GlcNAz produced from unnatural GlcNAz metabolism is interconverted
enzymatically to UDP-GlaNAz, resulting in incorporation into other classes of glycoproteins [14].
In addition, carbohydrate MCRs might enter the branch metabolic pathways before the formation
of their corresponding UDP-sugar analogs. One discovered branching pathway involves a protein
acetylation metabolism from the GlcNAc salvage pathway. An understanding of this “metabolic
crosstalk” is essential to decipher the biological functions of a single type of glycosylation.

3. Chemical Reporters and Their Chemistries for Labeling O-GlcNAc In Vitro

3.1. Ketone-Functionalized Chemical Reporter for Labeling O-GlcNAc In Vitro

Ketone-bearing monosaccharides are the first generation of the metabolic chemical reporters
for studying glycoproteins [29,55]. The unnatural monosaccharides carrying ketone functionality
have been used to incorporate cell surface glycoproteins metabolically [29,55], but its metabolic
O-GlcNAc analogs for the incorporation of O-GlcNAcylated proteins in cells have not been reported.
In general, ketone condensation reactions have rather slow kinetics (k2 = 10−4 to 10−3 M−1 s−1) [55,56]
requiring a high concentration of nucleophile reagents to obtain good labeling, which might lead
to cell toxicity and background signal. In addition, carbonyl condensation takes place under weak
acidic pH conditions, which is difficult to achieve inside most cellular compartments. Therefore,
ketone condensation reactions are believed to be best suited for probing in vitro or cell-surface labeling
rather than probing the intracellular biomolecules in cells, including protein O-GlcNAcylation. A few
methods can introduce carbonyl functionalities to the glycoproteins. Although the chemical oxidation
method does not provide the specific labeling of O-GlcNAc with ketone/aldehyde functionalities [57],
the chemoenzymatic method allows for the specific incorporation of ketone functionality to the
O-GlcNAcylated proteins [58,59]. In the chemoenzymatic labeling method, ketone-functionalized
nucleotide sugar analog (referred as UDP-2-keto-Gal) has been used for O-GlcNAc proteomic studies
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from cell lysates (Figure 6A) [58,59]. This strategy uses an engineered mutant galactosyltransferase
GalT1 (Y289L), which has the enlarged donor-substrate-binding pocket thereby enhancing the substrate
tolerance of the enzyme toward the more sterically hindered sugar-donor substrate, such as the ketone
isostere of GalNAc (2-keto-Gal) or GalNAz onto O-GlyNAcylated proteins [58,59]. UDP-2-keto-Gal has
been used in a number of O-GlcNAc proteomic studies [58–60]. For example, Khidekel et al. exploited
a combination method of chemoenzymatic tagging using UDP-2-keto-Gal and the mutant GalT1 and
isotopic labeling strategy to identify and quantify changes in O-GlcNAcylation of proteins in the
cultured cortical neurons from embryonic rats upon an OGA inhibitor treatment [59]. The authors
discovered several proteins (e.g., translational initiation scaffolding eIF4G, OGA, transcriptional
repressor p66β and zinc finger RNA-binding protein) which increased in the O-GlcNAcylation level
in the range of 24–40-fold, suggesting that O-GlcNAcylation is dynamically modulated by excitatory
stimulation of the brain in vivo [59].
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3.2. Chemoselective Reactions Involving Ketone-Functionality

Carbonyl condensation with hydrazide or alkoxyamines: Carbonyl functionality in ketones and
aldehydes are the first functionality to be explored as bioorthogonal reporters [55]. These react with
strong α-effect nucleophiles, such as hydrazines, hydrazides, and alkoxyamines [61,62]. The α-effect
refers to the enhanced nucleophilicity of an atom arising from the presence of an adjacent (α) atom
with a lone pair of electrons. Ketone condensations with those nucleophiles have been shown to
have second-order rate constants, ranging from 10−4 to 10−3 M−1 s−1, which are lower than the
other orthogonal chemical reactions described above. On the other hand, the conjugation products of
carbonyl conjugations (i.e., hydrazones, acyl hydrazones, and oximes) are sufficiently stable to be used
widely in protein-labeling applications.

3.3. Azide-Functionalized Chemical Reporter for Labeling O-GlcNAc In Vitro

The azide-labeled UDP-GalNAc analog (UDP-GalNAz) has also been introduced in the
chemoenzymatic labeling substrate (Figure 6B) [63] and it has become a popular method for imparting
azide-functionality to O-GlcNAcylated proteins in vitro in a larger number of O-GlcNAc proteomic
studies [63–67]. All three azide-involving chemistries (Studinger ligation, CuAAC, and SPAAC) can be
employed after chemoenzymatically installing the GalNAz moiety to the O-GlcNAcylated proteins,
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even though only CuAAC reactions have been reported in experiments involving chemoenzymatic
strategy [65–67]. By exploiting the chemoenzymatic approach using UDP-GalNAz and mutant GalT1
combined with CuAAC reaction, Hsieh-Wilson et al. discovered that phosphofructokinase 1 (PFK1),
a major regulatory enzyme that controls glucose flux through glycolysis [68], was O-GlcNAcylated
at the S529 site under tumor growth conditions [69]. In their study, hyper O-GlcNAcylation of PFK1
inhibited its enzymatic activity and redirected the metabolic flux through the pentose phosphate
pathway to produce the metabolites essential for DNA biosynthesis and antioxidants to quench the
reactive oxygen species, which are critical for cancer cell proliferation and survival [69].

Recently, GalNAz incorporation using the chemoselective labeling method has been combined
with a DNA polymerization technique to increase the detection sensitivity of O-GlcNAc to the attomole
levels [70]. A novel strategy called “Glyco-seek” sequentially employs chemoenzymatic labeling of
the chemical reporter, affinity probe bioorthogonal conjugation, proximity ligation, and quantitative
polymerase chain reaction (PCR) [70]. In an example of O-GlcNAc detection (Figure 6C), first the
O-GlcNAcylated proteins are labeled with GalNAz using the chemoselective method and then reacted
with a biotin-alkyne probe through CuAAC to conjugate the biotin epitope. The use of two independent
DNA-tagged antibodies specific for biotin and the target protein allows the attached single-stranded
DNA into proximity if the target protein is O-GlcNAcylated. Following DNA-ligation and quantitative
PCR, the protein’s O-GlcNAcylation can be measured. The ultrahigh detection sensitivity of this
technique allows dynamic O-GlcNAcylation in low abundance proteins, which have not been detected.
For example, Bertozzi et al. measured both the O-GlcNAc level on endogenous c-Rel protein, a member
of the nuclear factor κB transcription factor family, and the protein expression level after a treatment
of Jurkat cells with the specific OGA inhibitor Thiamet G (TMG) [70]. C-Rel was shown to be
modified with O-GlcNAc at the S350 site, which is required for its DNA binding and transactivation
functions [71]. The authors discovered that the TMG treatment increased O-GlcNAcylation on c-Rel
significantly, whereas the c-Rel protein level remained unperturbed [70]. One limitation of this
technique is that it may be unsuitable for discovering new O-GlcNAcylated proteins.

4. Conclusions and Future Perspective

Since the first discovery of protein O-GlcNAcylation in 1984 [72], remarkable advances have
been made in identifying which proteins are modified by O-GlcNAc and which pathways are affected
by this modification. Novel bioorthogonal chemical reporters developed for the incorporation of
O-GlcNAcylated proteins and the new conjugation chemistries with the epitope probes highlighted
in this review have been providing powerful tools to track these biomolecules in living systems
and illuminating unknown aspects of O-GlcNAc biology. Although recently reported MCRs have
higher specificity for O-GlcNAcylation labeling and detection, they do not escape from “off-target”
labeling completely. Therefore, continued improvements in the incorporation efficiency and specificity
of MCRs to achieve exclusive labeling of O-GlcNAc will be needed to advance their application
in O-GlcNAc study. In addition, Glc-6-Phosphate, an intermediate in the hexosamine biosynthetic
pathway enters another metabolic pathway involving protein acetylation [73]. Therefore, another area
of future research will be to investigate the possible metabolic pathways of each known MCR to
avoid false interpretations. The novel and even more efficient bioorthogonal conjugation reactions
between chemical functionalities and epitope-conjugated probes could also be developed. Continued
progress toward more sensitive and specific strategies, which are accessible, biocompatible, and simple
to use, will help to discover the unknown O-GlcNAcylated proteins in low abundance that have
been elusive using previous detection techniques. For example, a recently developed “Glyco-seek”
strategy allows researchers to detect protein O-GlcNAcylation down to unprecedented attomole levels.
Further developments and applications of chemical reporters and bioorthogonal labeling methods
should help translate the information encoded in the O-GlcNAc proteomes into their biological function.
One function of protein O-GlcNAcylation is its ability to regulate various protein–protein interactions,
for which photoactivatable GlcNAc analogs are anticipated to provide considerable insights.
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Although the past decade has seen considerable progress in the understanding of O-GlcNAc
biology, many questions remain unanswered or partially acknowledged. Answers on “how”
O-GlcNAc enzymes (OGT and OGA) recognize their numerous substrates; how O-GlcNAc modulate
protein–protein interactions in time as a response to cellular stimuli, thereby affecting the diverse
proteins’ functions in the cell; and how cells maintain O-GlcNAc homeostasis are still far from complete.
In addition, the role of O-GlcNAcylation in Alzheimer’s disease and other neurological disorders as
well as its role in transcriptional and epigenetic regulation are not completely understood. To answer
these questions, many goals include improved OGT and OGA specific inhibitors in cells, improved
MS detection and data-analysis tools, and site-specific O-GlcNAc antibodies. Cross-disciplinary
collaborations between chemists and biologists should be effective in advancing this thriving field and
uncovering the key mechanisms of human diseases for therapeutic intervention.
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