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Abstract

Background: Permutation-based gene set tests are standard approaches for testing relationships between
collections of related genes and an outcome of interest in high throughput expression analyses. UsingM random
permutations, one can attain p-values as small as 1/(M + 1). When many gene sets are tested, we need smaller
p-values, hence largerM, to achieve significance while accounting for the number of simultaneous tests being made.
As a result, the number of permutations to be done rises along with the cost per permutation. To reduce this cost, we
seek parametric approximations to the permutation distributions for gene set tests.

Results: We study two gene set methods based on sums and sums of squared correlations. The statistics we study
are among the best performers in the extensive simulation of 261 gene set methods by Ackermann and Strimmer in
2009. Our approach calculates exact relevant moments of these statistics and uses them to fit parametric distributions.
The computational cost of our algorithm for the linear case is on the order of doing |G| permutations, where |G| is the
number of genes in set G. For the quadratic statistics, the cost is on the order of |G|2 permutations which can still be
orders of magnitude faster than plain permutation sampling. We applied the permutation approximation method to
three public Parkinson’s Disease expression datasets and discovered enriched gene sets not previously discussed. We
found that the moment-based gene set enrichment p-values closely approximate the permutation method p-values
at a tiny fraction of their cost. They also gave nearly identical rankings to the gene sets being compared.

Conclusions: We have developed a moment based approximation to linear and quadratic gene set test statistics’
permutation distribution. This allows approximate testing to be done orders of magnitude faster than one could do
by sampling permutations.
We have implemented our method as a publicly available Bioconductor package, npGSEA (www.bioconductor.org).
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Background
In a genome-wide expression study, researchers often
compare the level of gene expression in thousands of genes
between two treatment groups (e.g., disease, drug, pheno-
type, etc.).Many individual genesmay trend toward differ-
ential expression, but will often fail to achieve significance.
This could happen for a set of genes in a given pathway or
system (a gene set). A number of significant and related
genes taken together can provide strong evidence of an
association between the corresponding gene set and treat-
ment of interest. Gene set methods can improve power
by looking for small, coordinated expression changes in
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a collection of related genes, rather than testing for large
shifts in individual genes.
Additionally, single gene methods often require that all

genes are independent of each other; this is not likely
true in real biological systems. With known gene sets of
interest, researchers can use existing biological knowledge
to drive their analysis of genome-wide expression data,
thereby increasing the interpretability of their results.
Mootha et al. [1] first introduced gene set enrichment

analysis (GSEA) and calculated gene set p-values based
on Kolmogorov-Smirnov statistics. Since then, there have
been many methodological proposals for GSEA; no single
one is always the best. For example, some tests are bet-
ter for a large number of weakly associated genes, while
others have better power for a small number of strongly
associated genes [2].
One of the most important differences among gene set

methods is the definition of the null hypothesis. Tian
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et al. [3] and Goeman and Bühlmann [4] (among oth-
ers) introduce two null hypotheses that differentiate the
general approaches for gene set methods. The first mea-
sures whether a gene set is more strongly related with
the outcome of interest than a comparably sized gene
set. Methods of this type typically rely on randomizing
the gene labels to test what is often called the competi-
tive null hypothesis. This is problematic because genes are
inherently correlated (especially those within a set) and
permuting them does not give a rigorous test [4].
The second type of approach is used to determine

whether the genes within a set associate more strongly
with the outcome of interest than they would by chance,
had they been independent of the outcome. Methods that
test this self-contained null hypothesis usually judge sta-
tistical significance by randomizing the phenotype with
respect to expression data and assuming that gene sets are
fixed. While we acknowledge that the competitive hypoth-
esis is often of interest, we focus on methods that test the
self-contained hypothesis in this paper.
Most current GSEAmethods are based on random sam-

pling of permutations. The initial GSEA [1] and widely
used JG-score [5] methods both have closed form null
distributions for their enrichment statistics, Kolmogorov-
Smirnov and Gaussian, respectively, under appropriate
assumptions. Both papers suggest permutation to gain
robustness in case their assumptions don’t hold.
Lehmann and Romano [6] give a concise explana-

tion of how permutation inference works. It is common
to approximate the permutation distribution by a large
Monte Carlo sample [7,8]. Monte Carlo permutation tests
are simple to program and do not require parametric
distributional assumptions. They also can be applied to
almost any statistic wemight wish to investigate. However,
they are often computationally expensive, are subject to
random inference, and fail to achieve continuous p-values.
Each of these drawbacks is described in more depth
below.
Testing many sets of genes becomes computationally

expensive for two reasons. First, there are many test statis-
tics to calculate in each permuted version of the data.
Second, to allow for multiplicity adjustment, we require
small nominal p-values to draw inferences about our
sets, which in turn requires a large number of permuta-
tions. That is, to obtain a small adjusted p-value (e.g., via
FDR, FWER, Bonferroni methods), one first needs a small
enough raw p-value. In order to obtain small raw p-values,
the number of permutations (M) must be large, thereby
increasing computational cost. Suppose that a problem
requires p-values as small as ε. Rules of thumb derived
in our Discussion section show that one needs to take M
between 3/ε and 19/ε to get adequate power.
Because permutations are based on a random shuffling

of the data, we will usually obtain a different p-value for

our set of interest each time we run our permutation
analysis. That is, our inference is subject to a given random
seed.
Permutations are subject to two granularity issues. As

mentioned above, if we do M permutations, then the
smallest possible p-value we can attain is 1/(M + 1). We
call this the resampling granularity problem.
There is also a data granularity problem. In an experi-

ment with n observations, the smallest possible p-value is
at least 1/n!. Sometimes the attainable minimum is much
larger. For instance, when the target variable Y takes only
the values 1 (n1 times) and 2 (n2 times) then the p-value
cannot be smaller than ε = 1/

(n1+n2
n1

)
. For instance, with

n1 = n2 = 5, we necessarily have p � 1/252. More gen-
erally, when Y has tied values, taking K distinct values nk
times each, the granularity is at least ε = �K

k=1nk ! /n!.
Rotation sampling methods such as ROAST are able to
get around this data granularity problem [9], under a
Gaussian assumption on the data. Increased Monte Carlo
sampling with methods such as ROAST can mitigate the
data granularity problem but not the resampling granular-
ity problem.
Another aspect of the resampling granularity problem is

that permutations give us no basis to distinguish between
two gene sets that both have the same p-value 1/(M +
1). There may be many such gene sets, and they may
have meaningfully different effect sizes. Many current
approaches address this problem by ranking significantly
enriched gene sets by their corresponding test statistics.
This practice only works if all test statistics have the same
null distribution and correlation structure, which is not
the case for many current GSEA methods. Additionally,
the resulting broken ties do not have a p-value interpre-
tation and cannot be directly used in multiple testing
methods. To break ties in this way also requires the reten-
tion of both a p-value and a test statistic for inference,
rather than just one value.
Because of each of these limitations of permutation

testing, there is a need for an alternative to sampling per-
mutations for gene set testing. The methods we present
below are moment based approximations to the distri-
bution of some gene set test statistics. We specifically
target settings where there are no outliers, and where it is
extremely expensive or even infeasible to do all possible
permutations or to do the desired multiple of 1/ε permu-
tations. In our view, that range starts where the number
of distinct permutations is about 100,000, which corre-
sponds to binary Y with about 10 observations in each
group, or continuous Y with 9 or more values. If out-
liers are suspected, one could replace the genes by rank
statistics. If the number of distinct permutations is much
smaller than 100,000 then our software prints a warning.
A small number of permutations could be exhaustively
enumerated, and when the number is very small, then one
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would not expect a moment based approximation to be
suitable.
Many different gene sets tests are possible when one

combines all the choices that can be made. Recently,
Ackermann and Strimmer [10] compared 261 different
gene set tests, and found particularly good performance
from a sum of squared single gene t-test statistics. There
was also good performance for a plain sum of t statis-
tics such as the JG-score [5]. These results were surprising
because the winning test statistics are among the simplest
that have been proposed. They note that the performance
from the sum of squares is much better than the com-
plicated GSEA method in [11]. In their simulations the
excellent performance of those two classes of statistics
extended also to statistics that merely summed correlation
coefficients (or their squares). Those latter statistics are
the ones that we use. We develop fast approximations to
the permutation p-values for weighted sums and weighted
sums of squares of correlation coefficients.
Our approximate p-values are not as computation-

ally expensive, random, or granular as their permutation
counterparts. Our proposal results in a single number on
the p-value scale, suitable for use in multiple compar-
isons algorithms.We applied our approach to three public
expression analyses. Our moment based p-values closely
match those from an extensive permutation analysis. They
also reveal disease-associated gene sets not previously
discovered in these studies.

Results
The data
For definiteness, we present our notation using the lan-
guage of gene expression experiments. Let g, h, r, and s
denote individual genes and G be a set of genes. The car-
dinality of G is denoted |G|, or sometimes p. That is the
same letter we use for p-value, but the usages are distinct
enough that there should be no confusion. Our experi-
ment has n subjects. The subjects may represent patients,
cell cultures, or tissue samples.
The expression level for gene g in subject i is Xgi, and Yi

is the target variable on subject i. Yi is often a treatment,
or a phenotype such as disease. We let nk be the num-
ber of samples in the kth treatment group for K groups;
�K

k=1nk = n. We center the variables so that

n∑
i=1

Yi =
n∑

i=1
Xgi = 0, ∀g. (1)

The Xgi are not necessarily raw expression values, nor
are they restricted to microarray values. In addition to
the centering (1) they could have been scaled to have a
given mean square. The scaling factor for Xgi might even
depend on the sample variance for some genes h �= g if
we thought that shrinking the variance for gene j towards

the others would yield a more stable test statistic [12]. We
might equally use a quantile transformation, replacing the
j′th largest of the raw Xgi by �−1((j − 1/2)/n) where �

is the Gaussian cumulative distribution function. Further
preprocessing may be advised to handle outliers in X or Y.
We do require that the preprocessing of the X’s does not
depend on the Y ’s and vice versa.

Test statistics
Our measure of association for gene g on our target
variable is

β̂g = 1
n

n∑
i=1

XgiYi, (2)

the sample covariance of Xgi and Yi. If both Xgi and Yi
are centered and standardized to have variance 1, then
β̂g = ρ̂g , the sample correlation between Y and gene g.
The default in our software is to scale theXgi values so that∑n

i=1 X2
gi = n. With this default, our p-values are unaf-

fected by scaling of Yi and so they are equivalent to using
the correlations.
If it often recommended to scale every gene to have unit

variance, although the users may not always wish to. For
instance in a setting where low expression values arise
from probes with very low signal to noise level, scaling the
genes may have the effect of inflating the noise in those
probes relative to the signal in some others.
The usual t-statistic for testing a linear relationship

between these variables is tg ≡ √
n − 2ρ̂g/(1 − ρ̂2

g )
1/2. A

Taylor approximation to fourth order yields

tg
.= √

n − 2
(

ρ̂g + 1
2
ρ̂3
g

)
(3)

with an error of order ρ̂5
g . Gene-set tests are of most use

when each individual |ρ̂g | is small. In such cases tg is very
nearly a constant multiple of ρ̂g and we expect permuta-
tion analyses using t-statistics to be very similar to those
using correlations.
For reasons of power and interpretability, we apply

gene set testing methods instead of just testing individual
genes. Linear and quadratic test statistics have been found
to be among the best performers for gene set enrich-
ment analyses [10]; we thus consider two statistics for our
approach:

T̂G,w =
∑
g∈G

wg β̂g and ĈG,w =
∑
g∈G

wg β̂
2
g .

In this paper our null hypothesis is that Y is independent
of (Xg ; g ∈ G). We test this null by formulating a statistic
that is sensitive to the sort of departure we think is likely,
as measured by either T̂G,w or ĈG,w. If it were feasible, we
would use the permutation distribution of the observed
test statistic to get a p-value, but to save computation we
develop moment approximations instead.



Larson and Owen BMC Bioinformatics  (2015) 16:132 Page 4 of 17

When all wg = 1/|G|, then T̂G,w reduces to the average
over g ∈ G of the correlation between Xg , when the data
are standardized. Such a test statistic will be sensitive to
gene sets in which the non-null genes have correlations of
the same sign with Y. If we have a prior expectation that
some subset of G contains genes that move in opposite
directions from the others in response to changes in Y,
then we may choose positive wg for those genes and neg-
ative wg for the rest. Similarly if some subset of the genes
in G are more important to the analyst, then those genes
can be given larger absolute values of wg . The moment
approximations work with general wg .
The statistic T̂G,w can approximate the JG score [5]. The

JG score is

1√|G|
∑
g∈G

tg
.=

√
n − 2√|G|

∑
g∈G

ρ̂g =
√
n − 2√

sd(Y )|G|
∑
g∈G

1
sd(Xg)

β̂g

where the approximation is good for small ρ̂g and sd
denotes standard deviation.
When Xg and Y are standardized then the statistics ĈG

sums squared correlations. This statistics is useful when
we expect that Y is associated with many of the genes g ∈
G but we do not know a prioriwhat signs to expect for the
correlations, nor even to expect that they mostly share the
same sign.
The letters T and C are mnemonics for the t and χ2

distributions that resemble the permutation distributions
of these quantities. The wg are scalar weights. For the
quadratic statistics we will suppose that wg � 0. We won’t
need this condition to find moments of CG,w. Any posi-
tive β̂2

g contributes to evidence against the null hypothesis;
negative weights would let strong evidence in one gene
cancel evidence from another. Non-negative weights are
also used to simplify our algorithm.
Although linear and quadratic test statistics are fairly

restricted, they do allow customization through the
weights wg , and they are very interpretable compared to
more ad hoc statistics. They also performed well in [10] as
we describe next.

Motivation for these test statistics
Our chosen test statistics are supported by extensive sim-
ulations of Ackermann and Strimmer [10]. They com-
pared 261 gene set testing methods. They consider per
gene test statistics, that are then transformed and finally
aggregated over the gene set, in various ways. Our
quadratic test statistic ĈG,w is one of the ones that they
particularly favor. The following notes are based on the
summary in their pages 6–8.
They remark that they get roughly the same answers

using a t-test, a moderated t-test, or a correlation, as the
per gene statistic. Table two of their paper shows this. That
was a surprising result because they had anticipated that

moderated t-statistics might perform better. Moderated
t-statistics use more stable estimates of the standard devi-
ation of Xgi, suitable for small samples. See [13,14] and
[15] for moderation strategies. Ackermann and Strimmer
[10] offer an explanation that the lack of benefit from
moderation might be due to their simulation having sam-
ple sizes as large as 10. In our target setting, the sample
sizes are on the order of 10 or more.
Our β̂g is a sample correlation when, as usual, Xgi and Yi

are centered and scaled variables. They remark that squar-
ing the per gene statistics is a ‘very useful transformation’.
It works best on some of their scenarios. In the exceptional
cases, untransformed quantities, like our linear test statis-
tic, are best. They report that there is some advantage to
a rank transformation prior to squaring. Such a transfor-
mation is possible in our framework, upon replacing Xgi
by their ranks and then centering and scaling those ranks.
They found the mean or a maxmean over genes to be

the best ways to combine the transformed statistics. We
use a sum which gives the same p-values as using the
mean. Medians or Wilcoxon statistics are better than the
mean in one of their scenarios (correlated genes) for pur-
poses of testing a competitive null. But that advantage
vanishes when doing permutations as we do in testing the
self-contained null, which is our focus here.
Finally, our linear statistic is motivated by trying to

approximate the JG statistic, which is a sum of t statis-
tics. Ackermann and Strimmer [10] found little difference
between summing correlations and summing t-statistics,
and our Taylor approximation above gives a reasonable
explanation for their finding.

Moment based reference distributions
When we permute the data, our sample statistics T̂G,w and
ĈG,w take on new values, that we denote T̃G,w and C̃G,w. To
avoid the three main disadvantages to permutation-based
analyses (cost, randomness, and granularity) discussed
above, we approximate the distribution of the permuted
test statistics T̃G,w by Gaussians or by rescaled beta distri-
butions. For quadratic statistics C̃G,w we use a distribution
of the form σ 2χ2

(ν) choosing σ 2 and ν to match the sec-
ond and fourth moments of C̃G,w under permutation. The
family of scaled χ2 distributions is the same as the family
of gamma distributions.
For the Gaussian treatment of T̃G,w we find σ 2 =

var
(
T̃G,w

)
under permutation using Eq. 8 of our Methods

section and then report the p-value

p = Pr
(
N

(
0, σ 2) � T̂G,w

)
,

where T̂G,w is the observed value of the linear statistic. The
above is a left tail p-value. Two-tailed and right-tailed p
values are analogous.
For the linear test statistic, a scaled beta distribution

provides a useful alternative to the normal distribution.
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We use a scaled beta distribution, of the form A + (B −
A)beta(α,β). It allows us to match four parameters of
the permutation distribution (min, max, mean and vari-
ance) instead of just two as in the normal distribution. The
beta(α,β) distribution has a continuous density function
on 0 < x < 1 for α,β > 0. We choose A, B, α and β by
matching the upper and lower limits of T̃G,w, as well as its
mean and variance. Using Eq. 8 from ourMethods section
we have

A = min
π

1
n

n∑
i=1

∑
g∈G

wgXgiYπ(i), (4)

B = max
π

1
n

n∑
i=1

∑
g∈G

wgXgiYπ(i),

α = A
B − A

(
AB

var(T̃G,w)
+ 1

)
, and

β = −B
B − A

(
AB

var(T̃G,w)
+ 1

)
.

The observed left-tailed p-value is

p = Pr
(
beta(α,β) � T̂G,w − A

B − A

)
.

It is easy to find the permutations that maximize and
minimize T̃G,w by sorting theX and Y values appropriately
as described in our Methods. The result has A < 0 <

B. For the beta distribution to have valid parameters we
must have σ 2 < −AB. From the inequality of Bhatia and
Davis [16], we know that σ 2 � −AB. There are in fact
degenerate cases with σ 2 = −AB, but in these cases T̃G,w
only takes one or two distinct values under permutation,
and those cases are not of practical interest.
Like us, Zhou et al. [17] have used a beta distribu-

tion to approximate a permutation. They used the first
4 moments of a Pearson curve for their approach. Fit-
ting by moments in the Pearson family, it is possible to
get a beta distribution whose support set (A,B) does not
even include the observed value T̂G,w. That is, T̂G,w is even
more extreme than it would have to be to get p = 0; it is
almost like getting p < 0. We chose (A,B) based on the
upper and lower limits of T̃G,w to prevent our observed
test statistic from falling outside the range of possible
values of our reference distribution (Methods).
Our Beta approximation has the possibility of return-

ing a p-value of 0 if the observed test statistic equals the
most extreme possible value. A principled alternative that
avoids returning 0 is to replace the left sided pL-value by

p̃L = ε + (1 − 2ε)pL

where ε is the smallest possible permutation p-value. The
corresponding right and central p-values are p̃R = 1 − p̃L

and p̃C = 2min (̃pL, p̃R). When X has a continuous distri-
bution and Y takes K distinct values n1, . . . , nK times (due
to ties) then the granularity is ε = �K

k=1nk ! /n!.
For the quadratic test statistic C̃G,w we use a σ 2χ2

(ν)

reference distribution reporting the two-tailed p-value
Pr

(
σ 2χ2

(ν) � ĈG,w
)
after matching the first and second

moments of σ 2χ2
(ν) to E

(
C̃G,w

)
and E

(
C̃2
G,w

)
respectively.

The parameter values are

ν = 2
E

(
C̃G,w

)2
var

(
C̃G,w

) and σ 2 = E
(
C̃G,w

)
ν

= var
(
C̃G,w

)
2E

(
C̃G,w

) .
Our formulas for E

(
C̃G,w

)
and E

(
C̃2
G,w

)
under permu-

tation are given in Eq. 5 of our Methods. Those formulas
use E

(
β̃2
g

)
and cov

(
β̃2
g , β̃2

h

)
which we give in Corollar-

ies 1 and 2 of our Methods.
Another alternative to permutations is rotation sam-

pling. We have also shown in our Methods section that
some of the moments of our test statistics are equal to
rotation moments of those test statistics. The rotation-
based values for E

(
T̃G,w

)
, E

(
C̃G,w

)
and var

(
T̃G,w

)
are

same as for permutations; the variance of C̃G,w is depen-
dent upon the choice of rotation contrast matrix.
All of our reference distributions are continuous and the

χ2 and Gaussian ones are unbounded; hence they avoid
the granularity problem of permutation testing. We have
prepared a publicly available Bioconductor [18] package,
npGSEA, which implements our algorithm and calculates
the corresponding statistics discussed in this section.

Parkinson’s Disease
We illustrate our method using publicly available data
from three expression studies in Parkinson’s Disease (PD)
patients (Table 1) [19-21]. All three experiments contain
genomewide expression valuesmeasured via amicroarray
experiment. The values we use were normalized so that
every gene had unit variance. PD is a common neurode-
generative disease; clinical symptoms often include rigid-
ity, resting tremor and gait instability [22]. Pathologically,
PD is characterized by neuronal-loss in the substantia
nigra and the presence of α-synuclein protein aggregates
in neurons [22].

Visualizing permutation distributions
Using a selected set from the Broad Institute’s mSigDB
v3.1 [23] and the presence of PD as a response variable

Table 1 Three data sets used for non-permutation GSEA

Reference Tissue # Affected # Controls

Moran Substantia nigra 29 14

Zhang Substantia nigra 18 11

Scherzer Blood 47 21
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from the Zhang et al. [20] dataset, we visualized both per-
mutation distributions and our approximation of these
distributions (Figure 1). As discussed above, we use a
linear test statistic, T̂G,w = ∑

g∈G β̂g , and a quadratic
test statistic, ĈG,w = ∑

g∈G β̂2
g , where β̂g is a sample

covariance between gene expression and, in this case, dis-
ease status. Figure 1 shows these two test statistics with
a histogram of 99,999 recomputations of those statis-
tics for permutations of treatment status versus gene
expression for a steroid signaling pathway gene set from
mSigDB. It is possible for histograms of permuted test
statistics to be very complicated, but in practice, they
often resemble familiar parametric distributions, as in
Figure 1.
Using the fitted normal distribution to determine the

rarity of the observed gene set statistic results in a two-
tailed p-value of 0.0604 for the linear statistic while per-
mutations yield p = 0.0595. A fitted σ 2χ2

(ν) distribution
results in p = 0.0425 for the sum of squares gene set
statistic, while permutations yield p = 0.0458. The his-
togram for the sum of squared statistics has a somewhat
sharper peak than its moment approximation. The p-
values are nevertheless quite close; they are based on tail
probabilities not the density itself.

Moment-based p-values tightly correlated with permutation
p-values
We compared our non-permutation p-values to p-values
for linear and quadratic statistics for the 6,303 gene sets

from mSigDB’s curated gene sets and Gene Ontology
(GO) [24] gene sets collections (v3.1). One gene set was
removed because it contained only one gene in our exper-
iments. The average size of these gene sets is 79.40 genes.
For our gold standard we ran 999,999 permutations of the
linear statistic and 499,999 permutations of the quadratic
statistic. For all of our permutations, we first calculated
the observed test statistic for each of the 6,303 gene sets
and then permuted the Yi’s M times to obtain 6,303 ×
M permuted test statistics. We next compared the pre-
computed test statistic vector to our matrix of permuted
test statistics.
For each set, we computed left-sided p-values, pL, for

the linear statistic and two-sided p-values, pQ, for the
quadratic statistic using these permutations (Methods).
We also computed the normal and beta approximations of
pL with our method. (Figure 2, left two panels). We con-
verted these one-sided p-values to two-sided p-values via
p = 2min(pL, 1 − pL). For very small p-values (< 10−3),
the beta and normal approximations sandwich the per-
mutation values. At these values, the normal method is
slightly conservative, while the beta approach is slightly
anti-conservative. At larger p-values, the approximation-
based values are almost identical to the permutation
p-values.
The beta p-values can be quite a bit smaller than

their permutation counterparts. Comparing two-tailed
versions, we find that the beta approximate p-value is as
much as 2.2-fold smaller for the Scherzer et al. [21] data

Figure 1 Distributions of permuted statistics resemble known probability densities. Top panel shows a permutation histogram for a linear test
statistic for the steroid hormone signaling pathway gene set as described in the text. The bottom panel shows a quadratic test statistic. Solid red
dots indicate the observed values and curves indicate parametric fits, based on normal and χ2 distributions.
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Figure 2 Permutation and moment-based p-values are tightly correlated. Permutation p-values (x-axis) versus moment-based p-values (y-axis) for
6,303 gene sets. The left two column represents results for a linear test statistic versus the beta and Gaussian approximations; the right-most column
represents results for the sum of squares statistic versus the χ2 approximation. Data come from three genome-wide expression studies. We applied
the transformation− log10(p) to stretch the lower range of these distributions for a more informative visual. Red dotted lines represent the line y = x.

set, 155-fold smaller for the Zhang et al. [20] data set, and
almost 21,000-fold smaller for the Moran et al. [19] data
set.

The very extreme ratio for the Moran data merits fur-
ther investigation. It arose for a gene set in which the
original data is more extreme than all 999,999 permuted
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versions. There were 16 gene sets where that happened.
The sample of permutations does not distinguish among
them; they all get a two-tailed p-value of 2 × 10−6. The
smallest beta approximate p-value is about 10−10. To have
sufficient power to verify such a p-value would require an
extremely large number of permutations.
It is not too onerous to consider 16 tied gene sets. But

a more reasonable number of permutations M = 999
leads to 555 gene sets tied at the most significant possi-
ble level and even M = 9999 leaves a tie among 186 of
them.
For our quadratic test statistic, we fit our moment based

σ 2χ2
(ν) approximation and computed two-sided p-values

across all sets (Figure 2, right panel).We see that the small-
est χ2 non-permutation p-values are slightly conservative.
This may reflect the boundedness of the permutation dis-
tribution combined with the unbounded right tail of the
χ2 distribution.
In each of the three experiments, there is a tight cor-

relation between the permutation-based p-values of all
sets and both of our moment-based methods (Table 2).
Close rankings are important as one of the main tasks of
gene set analysis is to order the gene sets so that followup
investigations can be prioritized. The beta and normal
approximations are almost identical. Our beta approxi-
mations are slightly closer to the gold standard than the
normal approximations, but not by a practically important
amount. The beta approximation has shorter tails than
the Gaussian approximation. It yielded p-values some-
what smaller than permutations did, while the Gaussian
approximation yielded p-values somewhat larger than the
permutations did. The χ2 approximations also reproduce
the ranking of the gold standard quite well, though not as
well as the normal and beta approximations to the linear
statistic.

Moment-based p-values are computationally inexpensive
For these data sets and 6,303 gene sets, both of the
linear statistics, which have more or less the same rank-
ordering of p-values as 999,999 permutations, could be
approximated in about the amount of time it takes to com-
pute 100 permutations (Table 3, top block). This is very
close to our estimated cost of |G| .= 80 permutations.

Table 2 Spearman correlations between gold standard
(999,999 and 499,999 permutations for linear and
quadratic statistics) and approximation p-values

Reference Normal pL Beta pL Normal pC Beta pC Chisq pQ

Moran 0.99991 0.99997 0.99973 0.99991 0.978

Zhang 0.99996 0.99997 0.99983 0.99991 0.990

Scherzer 0.99998 0.99999 0.99991 0.99997 0.994

pL and pC represent results for one and two-tailed linear test statistics,
respectively. Chisq pQ represents results for the sum of squares analysis.

Table 3 Time in seconds for p-value calculations for 6,303
gene sets in three genome-wide expression studies

Method Moran Zhang Scherzer

M = 100 31.03 29.84 34.71

M = 500 31.95 32.49 35.54

M = 1,000,000 5010.17 4434.77 3933.15

Normal 29.74 27.00 34.66

Beta 30.79 31.88 37.89

M = 30,000 9146.27 7217.59 11808.02

M = 40,000 12256.54 9636.06 16545.60

M = 50,000 16833.08 12564.06 21480.80

M = 500,000 149588.37 129667.73 187067.91

χ2 11020.62 10600.82 12677.15

Linear statistic results withM = 100,M = 500, andM = 1,000,000 permutations,
and the normal and beta approximations are in the top block. Timings for the
quadratic statistic withM = 30,000,M = 40,000,M = 50,000, andM = 500,000
permutations, and the χ2 approximation are presented in the bottom block.

While this is a close match, we remark that the time to
do M permutations is nearly an affine function a + bM
with positive intercept a. At such small M the overhead
costs dominated the total cost making the per permuta-
tion costs hard to resolve. The beta approximation was
slightly slower than the Gaussian one because it involves
the sorting of the data.
The χ2 approximation to the quadratic statistic has a

computational cost about as much as 35,000 to 45,000
permutations, yet has a similar rank-ordering of p-values
from 499,999 permutations (Table 3, bottom block). For
the quadratic statistic we expected our algorithm to cost
as much as doing a number of permutations equal to a
small multiple of the mean square gene set size. It cost
about as much as 35,000 to 45,000 permutations while the
mean square set size was 27,171.

Discovery of several gene sets associated with PD
After applying our permutation approximation meth-
ods to each dataset in 6,303 mSigDB gene sets, we
found many significantly enriched gene sets, even after
correcting for multiple testing with the Benjamini and
Hochberg method [25] (two-sided adjusted p-value <

0.05). The most significantly enriched sets are associated
with metabolism and mitochondrial function, neuronal
transmitters and serotonin, epigenetic modifications, and
the transcription factor FOXP3 (Additional file 1: Table
S1). Each of these categories has some previously discov-
ered associationwith PD, although not through traditional
gene set methods (metabolism and mitochondrial func-
tion [22]; neuronal transmitters and serotonin [26]; epige-
netic modifications [27]; FOXP3 [28]). Through our new
gene set enrichment method, we discovered a relationship
between the expression of these gene sets and PD.
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Discussion
Gene set methods are able to pool weak single gene
signals over a set of genes to get a stronger inference.
These methods and their corresponding permutation-
based inferences are a staple of high throughput methods
in genomics. Because an experiment for this purpose
may have a few to hundreds of microarrays or RNA-
seq samples, permutation can be computationally costly,
and yet still result in granular p-values. In this paper, we
introduce an approximate gene set method, which per-
forms similarly to permutation methods, in a fraction of
the computation time and which generates continuous
p-values.
Permutation methods have some valuable properties

that our approach does not share. Permutation inferences
are exact at p-values that are a multiple of their under-
lying granularity. But typical modern gene set problems
require finer resolution than permutation methods’ gran-
ularity allows, because of the large number of tests being
made.
The second advantage of permutations is that they

apply to arbitrarily complicated statistics. In our view,
many of those complicated statistics are much harder
to interpret and are less intuitive than the plain sum
and sum of squared statistics we present. Others have
observed that simple linear and squared statistics outper-
form more complex approaches [10]. Our method allows
for the weighting of coefficients in our statistics, grant-
ing users access to additional useful and interpretable
patterns.
Because of the disadvantages discussed above, there has

long been interest in finding approximations to permuta-
tion tests. Eden and Yates [7] noticed that the permutation
distribution closely matched a parametric distribution
that one would get running an F-test on the same data. It
has also been known since the 1940s that the permutation
distribution of the linear test is asymptotically normal as
n increases [29].
When a problem requires p-values as small as ε then a

Monte Carlo approach requires a number of sample per-
mutations in the range of 3/ε to 19/ε. The derivation is
as follows. Suppose that we do M = k/ε − 1 permu-
tations. We can then claim a p-value of ε or smaller if
k − 1 or fewer sampled statistics exceed the observed
value. With the true p-value (from enumeration) denoted
by p, our power is then Pr(Bin(M, p) � k − 1). We sup-
pose that the goal is to attain a p-value as small as ε with
80% power for p not much smaller than ε. For illustra-
tion, taking ε = 10−6 with p = 0.8ε and requiring power
at least 80%, means that we require k � 19. The thresh-
old is not sensitive to ε. The value k = 19 is required for
ε = 10−r , p = 0.8ε and integers r = 2, 3, . . . , 40. If we only
want 80% power in the event that p = 0.5ε, then k = 3
suffices.

It may easily happen that the necessary number M =
k/ε − 1 of permutations is onerous or even completely
infeasible to do. In that case our moment based approxi-
mation provides a low cost substitute. Themain limitation
of our method is that we rely on a parametric approxima-
tion to the permutation distribution of our test statistic.
An alternative is to employ a parametric model such as the
Gaussian for Xgi. Unfortunately, parametric models are
also inexact due to lack of fit. This applies to ROAST [9]
which assumes Gaussian data. The root of the problem is
the non-existence of nonparametric confidence intervals
for the mean [30]. In the case of npGSEA, one can do a
spot check with a modest number, say M = 10,000 per-
mutations, to check on the accuracy of the moment based
p-values.
Phipson and Smyth [31] remark that sampling permu-

tations without replacement can be more efficient than
independent sampling, and even allows access to p-values
somewhat smaller than 1/(M + 1) especially when the
number of distinct permutation values is not very large.
In our target settings though, the number of distinct per-
mutation values becomes combinatorially large, and the
bookkeeping to handle sampling without replacement is
cumbersome.
Knijnenburg et al. [32] approach the granularity issue

by taking a random sample of permutations and fitting a
generalized extreme value (GEV) distribution to the tail
of their distribution. They use several thousand permuta-
tions, and report better ordering of gene sets using their
fits than using ordinary randomization. Knijnenburg et al.
[32] report that the observed test statistic may be larger
than the maximum of their fitted GEV distribution. They
find that the problem is reduced (though perhaps not
eliminated) by working with either the cube or the fifth
power of the test statistic.

Conclusions
We have developed a new and intuitive method for gene
set enrichment analysis that is computationally inex-
pensive, and avoids the resampling granularity issue. A
Gaussian, beta, or χ2 approximation gives a principled
way to break ties among genes or gene sets whose test
statistics are larger than any seen in the M permutations.
We applied our moment based approximations to three
human Parkinson’s Disease data sets and discovered the
enrichment of several gene sets in this disease, none of
which were mentioned in the original publications.

Methods
Permutation procedure
A permutation of {1, 2, . . . , n} is a reordering of
{1, 2, . . . , n}. There are n! permutations. We call π a uni-
form random permutation of {1, 2, . . . , n} if it equals each
distinct permutation with probability 1/n!.
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In a permutation analysis, we replace Yi by Ỹi where
Ỹi = Yπ(i) for i = 1, . . . , n. Then β̃g = (1/n)

∑n
i=1 XgiỸi,

and when Ỹ is substituted for Y, T̂G,w becomes T̃G,w and
ĈG,w becomes C̃G,w.
The n! different permutations form a reference distribu-

tion fromwhich we can compute p-values. There are often
somany possible permutations that we cannot calculate or
use all of them. Instead, we independently sample uniform
random permutations M times, getting statistics C̃m =
C̃G,w,m, and similarly T̃m, form = 1, . . . ,M. We then com-
pute p-values by comparing our observed statistics to our
permutation distribution:

pQ = #
{
C̃m � Ĉ

} + 1
M + 1

pC = #
{|T̃m| � |T̂ |} + 1

M + 1

pL = #
{
T̃m � T̂

} + 1
M + 1

, or pR = #
{
T̃m � T̂

} + 1
M + 1

,

where pQ and pC are p-values for two-sided inferences on
the quadratic and linear statistic, respectively, and pL (left)
and pR (right) are for one-sided inferences based on the
linear statistic. We use the mnemonic C in pC to denote
the central (or two-sided) p-value, which corresponds to
a central confidence interval. The +1 in numerator and
denominator of the p-values corresponds to counting the
sample test statistic as one of the permutations. That is,
we automatically include an identity permutation. After
adding 1, the permutation distribution of the p-value is
uniform on {1/(M + 1), 2/(M + 1), . . . , 1}.

Permutation moments of test statistics
Under permutation, E

(
Ỹi

) = 0 by symmetry, and so
E

(
β̃g

) = 0 too. We easily find that,

E
(
T̃G,w

) = 0,

var
(
T̃G,w

) =
∑
g∈G

∑
h∈G

wgwhcov
(
β̃g , β̃h

)
E

(
C̃G,w

) =
∑
g∈G

wgE
(
β̃2
g

)
, and (5)

var
(
C̃G,w

) =
∑
g∈G

∑
h∈G

wgwhcov
(
β̃2
g , β̃2

h

)
.

The means, variances and covariances in (5) are taken
with respect to the random permutations with the data X
and Y held fixed. We adopt the convention that moments
of permuted quantities are taken with respect to the per-
mutation and are conditional on the X’s and Y ’s. This
avoids cumbersome expressions likeE

(̃
β2
g | Xgi,Yi, g ∈ G

)
.

We will need the following even moments of X and Y :

μ2 = 1
n

n∑
i=1

Y 2
i , μ4 = 1

n

n∑
i=1

Y 4
i ,

X̄gh = 1
n

n∑
i=1

XgiXhi, and

X̄ghrs = 1
n

n∑
i=1

XgiXhiXriXsi

for g, h, r, s ∈ G. Although our derivations involve O(p4)
different moments when the gene set G has p genes, our
computations do not require all of those moments.

Lemma 1. For an experiment with n � 2 including genes
g and h,

E
(
β̃g β̃h

) = μ2X̄gh

n − 1
.

Proof. This appears in [33] but we prove it here to keep
the paper self-contained. First

n2E
(
β̃g β̃h

) =
∑
i

∑
i′

XgiXhi′E
(
ỸiỸi′

)
Recall that μ2 = 1

n
∑n

i=1 Y 2
i . Then

E
(
ỸiỸi′

) =
⎧⎨⎩ μ2, i′ = i

− 1
n − 1

μ2, i′ �= i

and so

n2E
(
β̃g β̃h

) =
∑
i

∑
i′

XgiXhi′E
(
ỸiỸi′

)
= μ2

∑
i

∑
i′

XgiXhi′
(
1i=i′ − 1

n − 1
1i�=i′

)

= μ2
∑
i

∑
i′

XgiXhi′
(

n
n − 1

1i=i′ − 1
n − 1

)
= n

n − 1
μ2

∑
i
XgiXhi

≡ n2

n − 1
μ2X̄gh,

proving Lemma 1.

Corollary 1. For an experiment with n � 2 including
genes g and h,

cov
(
β̃g , β̃h

) = μ2X̄gh/(n − 1).

Proof. This follows from Lemma 1 because E
(
β̃g

) = 0.
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From Corollary 1, we see that the correlation between
permuted test statistics β̃g and β̃h is simply the correlation
between expression values for genes g and h.

Lemma 2. For an experiment with n � 4 including genes
g, h, r, s,

E
(
β̃g β̃hβ̃rβ̃s

) =
(

μ2
2

μ4

)T

ATB
(
X̄∗
ghrs/n

2

X̄ghrs/n3

)

where X̄∗
ghrs = X̄ghX̄rs + X̄gsX̄hr + X̄grX̄hs, with AT given by⎛⎝ 0 0 n

n−1
−n

(n−1)(n−2)
3n

(n−1)(n−2)(n−3)

1 −1
n−1

−1
n−1

2
(n−1)(n−2)

−6
(n−1)(n−2)(n−3)

⎞⎠ ,

and

B =

⎛⎜⎜⎜⎜⎝
0 1
0 −4
1 −3

−2 12
1 −6

⎞⎟⎟⎟⎟⎠ .

Proof. The fourth moment contains terms of the form

XgiXhjXrkXs�E
(
ỸiỸjỸkỸ�

)
and there are different special cases depending on which
pairs of indices among i, j, k and � are equal. We need the
following fourth moments of Y in which all indices are
distinct:

μ4k = E
(
Ỹ 4
i
)

μ3k = E
(
Ỹ 3
i Ỹj

)
μ2p = E

(
Ỹ 2
i Ỹ

2
j

)
μ1p = E

(
Ỹ 2
i ỸjỸk

)
μ∅ = E

(
ỸiỸjỸkỸ�

)
,

and where the subscripts are mnemonics for terms four
of a kind, three of a kind, two pair, one pair and nothing
special.
We can express all of these moments in terms of μ2 and

μ4 = (1/n)
∑n

i=1 Y 4
i . Each moment is a normalized sum

over distinct indices. We can write these in terms of nor-
malized sums over all indices. Many of those terms vanish
because

∑
i Yi = 0.

Let
∑∗ represent summation over distinct indices, as in

∑
ij

∗
fij =

n∑
i=1

n∑
j=1,j �=i

fij,

∑
ijk

∗
fijk =

n∑
i=1

n∑
j=1,j �=i

∑
k=1,k �=i,k �=j

fijk

and so on. We can write these sums in terms of unre-
stricted sums:∑

ij

∗
fij =

∑
ij

fij −
∑
i
fii

∑
ijk

∗
fijk =

∑
ijk

fijk −
∑
ij

(
fiij + fiji + fijj

) + 2
∑
i
fiii, and

∑
ijk�

∗
fijk� =

∑
ijk�

fijk�−
∑
ijk

(
fijki+fijkj+fijkk+fijik+fijjk+fiijk

)
+

∑
ij

(
2

(
fijjj + fijii+fiiji + fiiij

)+fijij + fijji + fiijj
)

−6
∑
i
fiiii.

See Gleich and Owen [34] for details.
We will use the last expression in a context where fijk�

vanishes when summed over the entire range of any one
of its indices. In that case∑

ijk�

∗
fijk� =

∑
ij

(
fijij + fijji + fiijj

) − 6
∑
i
fiiii. (6)

We also use the notation n(k) = n(n − 1)(n − 2) · · · (n −
k + 1), often called ‘n to k factors’, where k is a positive
integer. Now

μ4k = 1
n

n∑
i=1

Y 4
i = μ4,

μ3k = 1
n(2)

∑
ij

∗
Y 3
i Yj = 1

n(2)

⎛⎝∑
ij

Y 3
i Yj −

∑
i
Y 4
i

⎞⎠
= − μ4

n − 1
,

μ2p = 1
n(2)

∑
ij

∗
Y 2
i Y

2
j = 1

n(2)

⎛⎝∑
ij

Y 2
i Y

2
j −

∑
i
Y 4
i

⎞⎠
= 1

n − 1
(
nμ2

2 − μ4
)
, and

μ1p = 1
n(3)

∑
ijk

∗
Y 2
i YjYk

= 1
n(3)

⎛⎝∑
ijk

Y 2
i YjYk−

∑
ij

(
2Y 3

i Yj+Y 2
i Y

2
j

)
+2

∑
i
Y 4
i

⎞⎠
= −nμ2

2 + 2μ4
(n − 1)(n − 2)

.

Finally using (6), n(4)μ∅ equals∑
ijk�

∗
YiYjYkY� = 3

∑
ij

Y 2
i Y

2
j − 6

∑
i
Y 4
i = 3n2μ2

2 − 6nμ4

so that

μ∅ = 1
(n − 1)(n − 2)(n − 3)

(
3nμ2

2 − 6μ4
)
.
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Wemay summarize these results via

⎛⎜⎜⎜⎜⎝
μ4k
μ3k
μ2p
μ1p
μ∅

⎞⎟⎟⎟⎟⎠ = A
(

μ2
2

μ4

)
,

where the matrix A is given in the statement of Lemma 2.
Now

n4E
(
β̃g β̃hβ̃rβ̃s

) =
∑
ijk�

XgiXhjXrkXs�E(ỸiỸjỸkỸ�)

= μ4k
∑
i
XgiXhiXriXsi

+μ3k
∑
ij

∗ (
XgiXhiXriXsj + XgiXhiXrjXsi

+ XgiXhjXriXsi + XgjXhiXriXsi
)

+μ2p
∑
ij

∗ (
XgiXhiXrjXsj + XgiXhjXriXsj

+ XgiXhjXrjXsi
)

+μ1p
∑
ijk

∗ (
XgiXhiXrjXsk + XgiXhjXriXsk

+ XgiXhjXrkXsi + XgiXhjXrjXsk

+ XgiXhjXrkXsj + XgiXhjXrkXsk
)

+μ∅

∑∗
XgiXhjXrkXs�.

Next, we write the terms of n4E
(
β̃g β̃hβ̃rβ̃s

)
using X̄ghrs

and similar moments.
The coefficient of μ4k is

∑
i XgiXhiXriXsi = nX̄ghrs. The

coefficient of μ3k contains∑
ij

∗
XgiXhiXriXsj =

∑
ij

XgiXhiXriXsj −
∑
i
XgiXhiXriXsi

= −nX̄ghrs

and after summing all four such terms, the coefficient
is −4nX̄ghrs. The coefficient of μ2p contains

∑
ij

∗
XgiXhiXrjXsj =

∑
ij

XgiXhiXrjXsj −
∑
i
XgiXhiXriXsi

= −nX̄ghrs

and accounting for all three terms yields −3nX̄ghrs.

The coefficient of μ1p contains∑
ijk

∗
XgiXhiXrjXsk =

∑
ijk

XgiXhiXrjXsk −
∑
ij

XgiXhiXriXsj

−
∑
ik

XgiXhiXrjXsi −
∑
jk

XgiXhiXrjXsj

+ 2
∑
i
XgiXhiXriXsi

= − n2X̄ghX̄rs + 2nX̄ghrs.

Summing all 6 terms, we find that the coefficient is

−2n2
(
X̄ghX̄rs + X̄grX̄hs + X̄gsX̄hr

) + 12nX̄ghrs.

The coefficient of μ∅ is, using (6),∑
ijk�

∗
XgiXhjXrkXs� =

∑
ij

(
XgiXhjXriXsj + XgiXhjXrjXsi

+ XgiXhiXrjXsj
) − 6

∑
i
XgiXhiXriXsi

= n2
(
X̄ghX̄rs+X̄grX̄hs + X̄gsX̄hr

) − 6nX̄ghrs.

We may summarize these results via

E
(
β̃g β̃hβ̃rβ̃s

) =

⎛⎜⎜⎜⎜⎝
μ4k
μ3k
μ2p
μ1p
μ∅

⎞⎟⎟⎟⎟⎠
T

B
(
X̄∗
ghrs/n

2

X̄ghrs/n3

)
, for

B =

⎛⎜⎜⎜⎜⎝
0 1
0 −4
1 −3

−2 12
1 −6

⎞⎟⎟⎟⎟⎠ ,

where X̄∗
gh,rs = X̄ghX̄rs + X̄grX̄hs + X̄gsX̄hr , completing the

proof of Lemma 2.

These moment expressions have been checked by com-
paring the variance expression for the quadratic test statis-
tic to that obtained by enumerating all permutations of a
small data set. They match.
The expression in Lemma 2 is complicated, but it is sim-

ple to compute; we need only two moments of Y, two
cross-moments ofX, and the 2×2matrixATB. The matrix
A depends on the experiment through n. Using Lemma 2
we can obtain the covariance between β̃2

g and β̃2
h .

Corollary 2. For an experiment with n � 4, and genes
g, h,

cov
(
β̃2
g , β̃2

h

)
=

(
μ2
2

μ4

)T

ATB
(
X̄∗
gghh/n

2

X̄gghh/n3

)
− μ2

2
(n − 1)2

X̄ggX̄hh,

where X̄∗
gghh = X̄ggX̄hh + 2X̄2

gh with A and B as given in
Lemma 2.
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Proof. The covariance is E

(
β̃2
g β̃

2
h

)
− E

(
β̃2
g

)
E

(
β̃2
h
)
.

Applying Lemma 2 to the first expectation and Lemma 1
to the other two yields the result.

Rotation moments of test statistics
Rotation sampling [35,36] provides an alternative to
permutations, and is justified if either X or Y has a
Gaussian distribution. It is simple to describe when Y ∼
N (μ, σ 2In), and simplifies further in the special case μ =
0. In the latter case we can replace Y by Ỹ = QY where
Q ∈ R

n×n is a random orthogonal matrix (independent of
both X and Y ), and the distribution of our test statistics
is unchanged under the null hypothesis that X and Y are
independent.
Rotation tests work by repeatedly sampling from the

uniform distribution on random orthogonal matrices and
recomputing the test statistics using Ỹ instead of Y.
They suffer from resampling granularity but not data
granularity because Q has a continuous distribution (for
n � 2).
To take account of centering we need to use a rota-

tion test appropriate for Y ∼ N (μ, σ 2In). Langsrud [36]
does this by choosing rotation matrices that leave the
population mean fixed. He rotates the data in an n − 1
dimensional space orthogonal to the vector 1n. To get such
a rotation matrix, he first selects an orthogonal contrast
matrix W ∈ R

n×(n−1). This matrix satisfiesW TW = In−1
and W T1n = 0n−1. Then he generates a uniform ran-
dom rotation Q∗ ∈ R

(n−1)×(n−1) and delivers Ỹ = QY ,
where Q = 1

n1n1
T
n + WQ∗W T. More generally if Y ∼

N (Zγ , σ 2In), for a linear model Zγ , Langsrud [36] shows
how to rotate Y in the residual space of this model, leaving
the fits unchanged.
Wu et al. [9] have implemented rotation sampling for

microarray experiments in their method, ROAST. They
speed up the sampling by generating a random vector
instead of a random matrix. For some tests, permutations
and rotations have the same moments, and so our approx-
imations are approximations of rotation tests as much as
of permutation tests.
Our rotationmethod approximation performs very sim-

ilarly to the permutation method. We let Ỹ = QY for
Q = ( 1n1n1

T
n + WQ∗W T) where Q∗ is a uniform random

n − 1 × n − 1 rotation matrix and the contrast matrix
W ∈ R

n×(n−1) satisfies W T1n = 0n−1 and W TW = In−1
and then β̃ , T̃ and C̃ are defined as for permutations,
substituting Ỹ for Y.
The variance of the quadratic test statistic depends on

which contrast matrix W one chooses, and so it cannot
always match the permutation variance. This difference
disappears asymptotically as n → ∞. Our main results on
rotation sampling are that the other moments match, as
follows.

Lemma 3. For an experiment with n � 2 including genes
g and h, the moments E

(
β̃g

)
and E

(
β̃g β̃h

)
are identical

to their permutation counterparts, regardless of the choice
for W.

We prove Lemma 3 below. It has the following immedi-
ate consequence.

Corollary 3. For an experiment with n � 2, E
(
T̃G,w

)
,

var
(
T̃G,w

)
and E

(
C̃G,w

)
are the same whether Ỹ is formed

by permutation or rotation of Y.

Proof of Lemma 3. We begin with some low order
moments of orthogonal random matrices. For integers
n � k � 1, let Vn,k = {

Q ∈ R
n×k | QTQ = Ik

}
, known as

the Stiefel manifold. We will make use of the uniform dis-
tributions on Vn,k . There is a natural identification of Vn,1
with the unit sphere.
Let Q ∈ R

n×n be a uniform random rotation matrix.
This implies, among other things, that each column of
Q is a uniform random point on the unit sphere in n
dimensions.
By symmetry, we find that E(Qij) = 0. Similarly

E(Q2
ij) = E((1/n)

∑n
j=1Q2

ij) = 1/n and E(QijQrs) = 0
unless i = r and j = s. Let Xi ∈ R

p where p = |G|
and Yi ∈ R for i = 1, . . . , n. Both Xi and Yi are centered:∑

i Xi = 0 and
∑

i Yi = 0.
The sample coefficients for genes g ∈ G are given by the

vector β̂ = (1/n)
∑

i XiYi ∈ R
|G|. The reference distribu-

tion is formed by sampling values of β̃ = (1/n)
∑

i XiỸi
where Ỹ is a rotated version of Y.
The rotation is one that preserves the mean of Y while

rotating in the n− 1 dimensional space of contrasts. As in
[36], we letW ∈ R

n×(n−1) be any fixed contrast matrix sat-
isfyingW TW = In−1 andW T1n = 0n−1. Then the rotated
version of Y is

Ỹ = WQW TY , where Q ∼ U(Vn−1,n−1)

is a uniform random n − 1 dimensional rotation matrix.
It is convenient to introduce centered quantities Xc =

W TX ∈ R
(n−1)×p, Yc = W TY ∈ R

n−1 and Ỹ c = W TỸ ∈
R
n−1. These sum to zero even when X, Y and Ỹ do not.

Their main difference from those variables is that they
have n − 1 rows, not n.
Now β̃ = (1/n)XTỸ = (1/n)XTWQW TY = (1/n)XcT

QYc, so

E
(
β̃
) = (1/n)XcT

E(Q)YcT = 0,

matching the moment under permutation. For the rest of
the proof, we need the covariance matrix of β̃ . Now

E
(
β̃β̃T)= 1

n2
XcT

E

(
QTYcY cTQ

)
XcT= 1

n2
XcT

E
(
QTZQ

)
Xc

where Z = YcY cT ∈ R
(n−1)×(n−1).
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The ij element of QTZQ is (QTZQ)ij = ∑n−1
k=1

∑n−1
�=1 Zk�

QkiQ�j which has expected value

n−1∑
k=1

n−1∑
�=1

Zk�1k=�1i=j/(n−1)= 1i=j

n − 1

n−1∑
k=1

Zkk =1i=j
n

n − 1
μ2

where μ2 = (1/n)
∑n

i=1 Y 2
i = (1/n)

∑n
i=1 Yc

i
2. That is

E
(
QTZQ

) = nμ2
n − 1

In−1

and so

E
(
β̃β̃T) = μ2

n(n − 1)
XcTXc.

In particular E
(
β̃g β̃h

) = E
(
β̃β̃T

)
gh = X̄ghμ2/(n − 1),

matching the value under permutation.

Fourth moments
Here we show that the variance of C̃G,w in rotation sam-
pling can depend on the specific matrixW used. We need
fourth moments like E

(
β̃2
r β̃

2
s
)
. Those in turn depend on

fourth moments of Q.
Anderson, Olkin and Underhill [37] give

E

(
Q4
ij

)
= 3

n(n + 2)
. (7)

We are interested in all fourth moments E(QijQk�
QrsQtu) of Q. If any of j, �, s,u appears exactly once then
the fourth moment is 0 by symmetry. To see this, suppose
that index � appears exactly once. Now define the matrix
Q̃ with elements

Q̃ij =
{ −Qij j = �,
Qij j �= �.

If Q ∼ U(Vn,n) then Q̃ ∼ U(Vn,n) too by invariance of
U(Vn,n) to multiplication on the right by the orthogonal
matrix diag(1, 1, . . . , 1,−1, 1, . . . , 1), with a −1 in the j′th
position. Then

E(QijQk�QrsQtu) = 1
2
E

(
QijQk�QrsQtu + Q̃ijQ̃k�Q̃rsQ̃tu

)
= 1

2
E

(
QijQk�QrsQtu+Qij(−Qk�)QrsQtu

)
= 0.

Similarly, because QT is also uniformly distributed on
Vn,n we find that if any of i, k, r, t appear exactly once the
moment is zero. If one index appears exactly three times,
then some other moment must appear exactly once. As a
result, the only nonzero fourth moments are products of
squares and pure fourth moments. Their values are given
in the Lemma below.

Lemma 4. Let Q ∼ U(Vn,n). Then

E

(
Q2
ijQ

2
rs

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3

n(n+2) , i = r & j = s

1
n(n+2) , 1i=r + 1j=s = 1

n+1
n(n−1)(n+2) , i �= r & j �= s.

Proof. The first case was given by [37]. For the sec-
ond case, there is no loss of generality in comput-
ing E

(
Q2
11Q

2
21

)
. The vector (Q11,Q21, . . . ,Qn1) is uni-

formly distributed on the sphere. Given Q11, the point
(Q21,Q31, . . . ,Qn1) is uniformly distributed on the n −
1 dimensional sphere of radius

√
1 − Q2

11. Therefore
E

(
Q2
21 | Q11

) = (
1 − Q2

11
)
/(n − 1) and so

E
(
Q2
11Q

2
21

) = 1
n − 1

E
(
Q2
11 − Q4

11
)

= 1
n − 1

(
1
n

− 3
n(n + 2)

)
= 1

n(n + 2)
.

For the remaining case we let θ = E(Q2
ijQ2

rs) for i �= r
and j �= s. Summing over n4 combinations of indices we
find that

n∑
i=1

n∑
j=1

n∑
r=1

n∑
s=1

Q2
ijQ

2
rs =

⎛⎝∑
ij

Q2
ij

⎞⎠2

= n2

by orthogonality of Q. Therefore

n2 = E

⎛⎝∑
ij

∑
rs

Q2
ijQ

2
rs

⎞⎠
= n2E

(
Q4
11

) + 2n2(n − 1)E(Q2
11Q

2
12) + n2(n − 1)2θ .

Solving for θ we get

θ = n2 − 3n
n+2 − 2n(n−1)

n+2
n2(n − 1)2

= n + 1
n(n − 1)(n + 2)

.

The exact value of E
(
β̃2
r β̃

2
s
)
is a very bulky expression.

It does however include a term with a nonzero coefficient
multiplied by

∑n
i=1(Yc

i )
4 times a similar quantity involv-

ing X. This fourth moment depends on the matrix W
used. To see this in an example consider that for n = 3, we
could take

W T =
( 1√

2 − 1√
2 0

1√
6

1√
6 − 2√

6

)
Then

∑
i(W TY )4i = (5/9)Y 4

1 + (5/9)Y 4
2 + (1/9)Y 4

3 .
Permuting the columns of W T would then change which
Yi got the small coefficient. Lemma 4 convinces us that
the effect of W on ROAST vanishes for var(C̃G,w) as n
increases. That Lemma shows that the cross moments
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E

(
Q2
ijQ2

rs

)
for i �= r or j �= s, are of the same order of mag-

nitude as E(Q4
ij). Those moments appear in coefficients of

only second moments of W TY and XTY . Also there are
many more of them so they dominate the cross moments
E

(
β̃2
r β̃

2
s
)
.

Computation and costs
To facilitate computation for the linear statistic, we reduce
each gene set to a single pseudo-geneXGi = ∑

g∈G
wgXgi and

then let

X̄G = 1
n

n∑
i=1

XGi and X̄GG = 1
n

n∑
i=1

X2
Gi.

The weights w have been absorbed into the pseudo-gene
to simplify notation. We define

β̂G =
∑
g∈G

wg β̂g = 1
n

∑
i
XGiYi, and

β̃G =
∑
g∈G

wg β̃g = 1
n

∑
i
XGiỸi.

Our permuted linear test statistic is T̃G,w = β̃G, with

var
(
T̃G,w

) = var
(
β̃G

) = μ2
n−1 X̄GG. (8)

For the beta approximation, we need the range of T̃G,w.
Let the sorted Y values be Y(1) � Y(2) � . . . � Y(n) and
the sorted XGi values be XG(1) � XG(2) � . . . � XG(n).
Then the range of T̃G,w is [A,B], where

A = 1
n

n∑
i=1

XG(i)Y(n+1−i), and B = 1
n

n∑
i=1

XG(i)Y(i).

For a σ t(ν) reference distribution we would also need
E

(̃
T4
G,w

)
= E

(
β̃4
G
)
. We can apply Lemma 2 to the pseudo-

gene resulting in

E(β̃4
G) =

(
μ2
2

μ4

)
ATB

(
3X̄2

GG/n2
X̄GGGG/n3

)
, (9)

where X̄GGGG = 1
n

∑n
i=1 X4

Gi.

We considered using a σ t(ν) reference distribution for
T̃G,w, taking into account the fourth moment of T̃G,w (9).
We have often (in fact usually) found that E

(
T̃4
G,w

)
<

3E
(
T̃2
G,w

)2
; that is, lighter tails than the normal. This

implies a negative kurtosis for the permutation distribu-
tion, and t distributions have positive kurtosis. For this
reason we use a beta approximation and not a t approxi-
mation.
For the quadratic statistic we have found it useful to

replace Xgi by
√wgXgi in precomputation. That step is

only valid for non-negative wg , but those are the ones of
most interest. Note that mixing positive and negative wg ’s
would lead to a test statistic where evidence that gene g

is non-null could cancel out the evidence of gene h being
non-null for g, h ∈ G. Then we use formulas for E

(
C̃G,w

)
and var

(
C̃G,w

)
with all wg = wh = 1 (5).

Now we consider the computational cost. The cost to
compute all of the XGi is dominated by np multiplica-
tions. It then takes n more multiplications to get β̂G and
another n to get X̄GGe. It costs n multiplications to get
μ2 and μ4. That step can be done once and can be used
for all gene sets. The cost for the Gaussian approximation
N

(
0, var(T̃G,w)

)
is dominated by n(p+2) multiplications.

For the beta approximation there is also a cost propor-
tional to n log(n) in the sorting to compute limits A and
B. That adds a cost comparable to a multiple of log(n)

permutations. We judge that the cost of sorting is usually
minor for n and p of interest in bioinformatics.
A permutation analysis requires nM multiplications,

after computing XGi, for a total of n(M + p). It is very
common for p to be a few tens and M to be many thou-
sands or more. Then we can simplify the costs to n(M +
p) ≈ nM and n(2 + p) ≈ np. The moment method costs
about as much as doing p permutations. When the gene
set has tens of genes and the permutation method uses
many thousands or even several million permutations, the
computational cost is quite large.
The pseudo-gene technique is more expensive for the

quadratic statistics. The dominant cost in computing ĈG,w
is still the np multiplications required to compute β̂g for
g ∈ G. We can also compute E(C̃G,w) in about this amount
of work.
The cost of computing var(C̃G,w) by a straightforward

algorithm is at least np2, because we need X̄gh and X̄gghh
for all g, h ∈ G. Some parts of that computation can be
sped up to O(np) by rewriting the expression as described
below. One of the terms however does not reduce to
O(np). A straightforward implementation costs O(np2)
while an alternative expression costs O(n2p). The latter
is valuable in settings where the gene sets are large com-
pared to the sample size. In the former case, the moment
approximation has cost comparable to O(p2) permuta-
tions. If n < p then the latter case is like np permutations,
so the quadratic cost is comparable to on the order of
p ∗ min(n, p) permutations.
Recall from Corollary 2 that in an experiment with n �

4 and genes g, h,

cov
(
β̃2
g , β̃2

h

)
=

(
μ2
2

μ4

)T

ATB
(
X̄∗
gghh/n

2

X̄gghh/n3

)
− μ2

2
(n − 1)2

X̄ggX̄hh,

where X̄∗
gghh = X̄ggX̄hh + 2X̄2

gh and ATB is a given 2 × 2
matrix.
To compute

var
(
C̃G,w

) =
∑
g∈G

∑
h∈G

wgwhcov
(
β̃2
g , β̃2

h

)



Larson and Owen BMC Bioinformatics  (2015) 16:132 Page 16 of 17

we need μ2, μ4 and ATB which are very inexpensive. We
also need

S1 ≡
∑
g∈G

∑
h∈G

wgwhX̄ggX̄hh =
⎛⎝∑

g∈G
wgX̄gg

⎞⎠2

.

By expressing S1 as a square, we find that it can be
computed inO(np)work, notO(np2)which a naive imple-
mentation would provide. We can compute all of the X̄gg ’s
in npmultiplications and this is the largest part of the cost.
If gene g belongs to many gene sets G we only need to
compute X̄gg once and so the cost per additional gene set
could be lower.
A similar analysis yields that

S2 ≡
∑
g∈G

∑
h∈G

wgwhX̄gghh = 1
n

n∑
i=1

( ∑
g∈G

wgX2
gi

)2

is also an O(np) computation. Unfortunately S3 ≡∑
g∈G

∑
h∈G X̄2

gh does not reduce to an O(np) computa-
tion. As written it costs O(np2). In cases where p > n, we
can however reduce the cost to O(n2p) via

S3 =
∑
g∈G

∑
h∈G

wgwh

(
1
n

n∑
i=1

XgiXhi

)2

= 1
n2

∑
g∈G

∑
h∈G

wgwh

n∑
i=1

XgiXhj

n∑
j=1

XgjXhj

= 1
n2

n∑
i=1

n∑
j=1

⎛⎝∑
g∈G

wgXgi

⎞⎠2

.

In terms of these sum quantities,

var(C̃G,w) =
(

μ2
2

μ4

)T

ATB
(

(S1 + 2S3)/n3

S2/n3

)
− μ2

2
(n − 1)2

S1.

Additional file

Additional file 1: Table S1. A table of the moment-based p-values for
6,303 gene sets in three genome-wide expression studies.
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