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Abstract

Measuring the semantic similarity between words is important for natural language process-

ing tasks. The traditional models of semantic similarity perform well in most cases, but when

dealing with words that involve geographical context, spatial semantics of implied spatial

information are rarely preserved. Geographic information retrieval (GIR) methods have

focused on this issue; however, they sometimes fail to solve the problem because the spa-

tial and textual similarities of words are considered and calculated separately. In this paper,

from the perspective of spatial context, we consider the two parts as a whole—spatial con-

text semantics, and we propose a method that measures spatial semantic similarity using a

sliding geospatial context window for geo-tagged words. The proposed method was first val-

idated with a set of simulated data and then applied to a real-world dataset from Flickr. As a

result, a spatial semantic similarity model at different scales is presented. We believe this

model is a necessary supplement for traditional textual-language semantic analyses of

words obtained by word-embedding technologies. This study has the potential to improve

the quality of recommendation systems by considering relevant spatial context semantics,

and benefits linguistic semantic research by emphasising the spatial cognition among

words.

Introduction

With the recent advancements in artificial intelligence (AI) and computational linguistics, nat-

ural language processing (NLP) has attracted considerable attention, and the requirements for

representing human-computer interactions and senses have increased [1]. In recent years,

NLP research has focused on machine translation, information retrieval, text summarization,

question answering and network-based or graph-based text analysis [2–5]. To assess the suc-

cess of addressing these problems, the semantic similarity between components of natural
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language should be measured, especially for words [6, 7]. Currently, with the adoption of word

embeddings, models driven by neural networks and trained on large textual corpora can repre-

sent words as multidimensional vectors, such as Word2Vec [8], ESA [9] and fastText [10].

Consequently, the semantic similarity between two words can be measured by calculating the

distance between their vectors. These models are based on statistical inferences of large cor-

pora under the assumption that words with similar distributional properties in the same con-

text have similar semantic meanings [11]. However, when the semantic similarities are

measured by these models based on the co-occurrences of words in the corpora, the ‘true’

understanding of the words is unobtainable [7]; namely, the purely text-based approaches fail

when processing information with complex reasoning [12]. These models are sufficient to han-

dle most common scenarios for a general corpus. For example, some synonyms can be

obtained and measured by these models: happy-smile(), man-woman (). However, when deal-

ing with unstructured content that contains deep background meaning, such as addressing the

semantic similarity in geo-related information retrieval (IR) tasks, the semantic-based similar-

ity measurements based on plain text yield poor performances [13–17], such as similarities

between beer-smile, club-beer and more spatially and impliedly related pair of words, which

are contributed for optimizing and expanding the query results of geographic recommenda-

tion system and geographic search system. Moreover, due to the increase in geo-related infor-

mation searches on the Internet, precise similarity measurements of geo-related information

[18–22] are needed. In traditional geographic information retrieval (GIR) tasks, this problem

has been defined and generalized as a measurement of the similarity between triplets,

<theme><relationship><location>, formalized from documents [23, 24]. On the basis of

thematic similarity measurements in the textual context using standard traditional IR tech-

niques (such as TF-IDF, Word-Net, and other embedding methods), GIR-related studies typi-

cally apply a consensus approach, that is, they add spatial location similarity as a constraint

rule to address spatial losses in the ranking problem [24–27].

Typically, spatial location similarity is measured by comparing spatial footprints extracted

from textual content with information from digital gazetteers such as the Thesaurus of Geo-

graphic Names (TGN) [28] and the Alexandria Digital Library (ADL) [29]. Numerous existing

GIR systems, such as the Geo-referenced Information Processing System (GIPSY) [16], Spa-

tially Aware Information Retrieval on the Internet (SPIRIT) [30] and Frankenplace [31], are

based on one basic principle: addressing the similarity of geo-related information by consider-

ing textual semantic similarity and spatial similarity separately. For instance, the query of ‘bars
in New York’ requires both a theme (bars) and a spatial match (New York) between the query

and the most relevant documents in the database. Currently, these systems are applicable to

most GIR tasks, and their overall principle seems feasible. However, when addressing fuzzy

and ambiguous textual thematic geo-related documents, these methods have some limitations

and can cause underestimation and overestimation problems. Two examples are given below

to further illustrate these issues.

The underestimation of the spatial context semantic similarity between words always

occurs when dealing with content that lacks clear textual topic keywords. For example, when

searching for ‘bars in New York’, a document about the ‘Spring Lounge’ (the name of a bar on

Spring Street) would be missed because the keywords 'spring’ and ‘lounge’ have limited textual

semantic similarity with ‘bar’. In addition, the textual content in this document includes

detailed and specific descriptions of the bar, such as surrounding information (‘band’, ‘music’,
and ‘beer’) and descriptors of the bar atmosphere (‘happy’, ‘relaxing’, and ‘hot’), but these

words are not similar to ‘bar’ in textual semantics. Words that are similar to ‘bar’ in textual

semantics, such as ‘pub’, ‘saloon’, ‘tavern’, and ‘restaurant’, are often absent in such

documents.
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The overestimation of the spatial context semantic similarity between words always occurs

when dealing with content that contains similar keywords but lacks practical relevance. For

example, when searching for ‘bars in New York’, a document about the general living habits of

New Yorkers, in which the author occasionally mentions ‘bar’, ‘nightclub’, ‘gym’, etc., may

appear in the search results. This document has a high similarity ranking because of certain

words in the document that have textual semantics similar to ‘bar’; however, the document

itself is not about ‘bars in New York’. As noted by Janowicz and Berry [32, 33], most spatially

aware query systems provide the “textual-related results that we ask for but not the spatially

related results that we want”.

The cause of such issues rooted in the method that considering textual context semantic

similarity and spatial similarity separately. However, this type of separation is inconsistent

with human spatial thinking, expression, and inquiry. As noted by Simon Scheider, vast

amounts of subtle information of place remain to be discovered [34] the so-called implications

of location-based social events [35]. Clark emphasized the crucial and indivisible influence of

the P-Space (perceptual space) developed based on human perception on the L-Space (linguis-

tic space), which consists of spatial terms and language expressions [36]. Succinctly, this prob-

lem can be conceptualized as follows:

Spatial context semantic similarity 6¼ spatial similarityþ textual context semantic similarity

Spatial similarity is an important theoretical issue of Geographic Information System that

measures the similarities of the spatial topologies or geometric relationships of spatial entities

and phenomena [37, 38]. Textual context semantic similarity measures the similar degree of

semantic meanings of words based on statistical inferences under the assumption that words

with similar distributional properties in the same context in textual corpora [39, 40]. The term

‘spatial context semantics’ can be understood from the perspectives of spatial ontology and

cognition. All aspects of human activity are rooted in geographic space, including individual

behaviours and languages [41–46]. Language expressions also stem from individuals’ under-

standing of the world and their cognition of the environment. Such understanding and cogni-

tion are significantly influenced by the local spatial environment; in other words, there are

close relationships between what we say and where we say it [47–53]. Therefore, expressions in

the same spatial context are more likely to be similar and closely related. In addition, assess-

ments of semantic similarity depend on the specific context in which information is generated

[54, 55]. Thus, when we measure the semantic similarity between spatially related information

sets, the measurement should include the spatial context, just as when measuring textual

semantic similarity in a textual context. Therefore, we can define the term Spatial context

semantic similarity: measuring the similarity of words under the context that formed by the

spatial distribution frequency and pattern resulted by the use of words in different scenes and

locations. The relationship between these three concepts is shown as Fig 1. In addition to spa-

tial entity names, they can include descriptions of human feelings, environmental atmo-

spheres, and so on. For example, people tend to use words such as ‘happy’, ‘enjoying’, ‘music’
and ‘band’ in bars, but at cemeteries and funerals, they commonly use terms such as ‘condo-
lences’, ‘mourning’ and ‘memory’. The relationships between<bar>-<joy> and

<cemetery>-<mourning> show close similarity to people’s spatial thinking, but this kind of

similarity is seldom reflected in the textual context.

Some previous studies optimized GIR query results by collecting implicit geographic evi-

dence related to geospatial information from textual materials, for example, those studies pro-

vided by Wikipedia [56–59]. This approach is only one step away from underestimation

results; these studies have measured spatial context semantic similarity from the textual con-

text perspective while not consider the spatial context semantics of words as a whole.
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In this study, we use continuous spatial regions as spatial contextual windows to measure

the semantic similarities of words in a spatial context using a globally geo-tagged, user-gener-

ated corpus. The spatial semantic similarity (s-SIM) of words is measured by calculating the

co-occurrence probability of words appearing in the same window. A larger s-SIM between

two words indicates a more similar spatial semantic relationship between them. In addition,

the multiscale effects of spatial semantic similarity of word pairs are analysed and discussed. In

addition, we explore implied geographic relevance between words by comparing two co-

occurrence matrixes calculated by our method and Word2vec without deeper transformations

and normalizations. This method is devoted to introducing spatial context semantics into the

textual semantic similarity between words, it also has the potential to improve the quality of

contextuality and geographic relevance of recommendation systems that takes into account

Fig 1. The relationship between spatial context semantic similarity, spatial similarity and textual context semantic similarity.

https://doi.org/10.1371/journal.pone.0236347.g001
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semantics [60, 61]. Besides, it’s also contributed for optimizing the result of network-based lan-

guage processing tasks especially for geo-related corpora [62–65].

The remainder of this article is organized as follows. In Section 2, we present a method for

measuring the spatial semantic similarity of words using a sliding spatial context window;

then, the correctness and effectiveness of this method are verified by simulation experiments.

In Section 3, we apply our method on a real-world experiment using a geo-tagged corpus

extracted from Flickr as a data source [66]. Next, we establish a spatial semantic similarity

model ranging from a small spatial scale (1 km) to a large spatial scale (100 km). Moreover, we

construct a textual semantic similarity model for complementary comparison. In Section 4, we

present the results of the simulation experiments and the real-world experiment. A spatial

explanation and demonstration of some examples of words in the spatial semantic similarity

model are provided in Section 5, and we compare the textual and spatial semantic similarity

models. Finally, conclusions and future work are given in Section 6.

Method

A geospatial context window-based method is proposed in this paper to measure the spatial

semantic similarity (s-SIM) of words. There are two parts in this section: (1) a detailed descrip-

tion of the method and (2) a verification of the validity and correctness of this measurement

approach based on simulation experiments.

Sampling of a geo-tagged corpus and calculation of the spatial semantic

similarity of words

Our method measures the spatial semantic similarity (s-SIM) of words using a geo-tagged cor-

pus. First, we determine the range of the coordinates of all words and limit this range to a rect-

angular area. Then, a fixed-size spatial window with side length x is set as the geospatial

context for sampling from the corpus. After each round of sampling, the window slides a cer-

tain step size s in the horizontal direction. When the sampling along the current horizontal

line is complete, the window moves one step size s in the vertical direction and sampling con-

tinues in the new horizontal direction. This process is shown in Fig 2. When all the samples

have been collected, the set of samples is used to calculate the semantic similarity of words. For

this geo-tagged corpus C, various spatial contexts d exist, represented as C:{d1,d2. . .dn}. For

each spatial context di, different numbers of words are represented by di:{w1,w2. . .wn}. The

spatial semantic similarity s� SIMw1w2
between every pair of words (w1 and w2 here) is calcu-

lated by the following formula:

s� SIMw1w2
¼

P
dw1

T
w2

P
dw1
þ
P

dw2
�
P

dw1

T
w2

where
P

dw1

T
w2

represents the number of spatial contexts in which w1 and w2 appear together

and
P

dw1
and

P
dw2

represent the number of spatial contexts in which w1 and w2 appear,

respectively.

In this way, a model containing the spatial semantic similarities between each pair of words

in the geo-tagged corpus C can be obtained.

In addition, by adjusting the size of the geospatial window, we can sample words at different

scales. Therefore, for the same geo-tagged corpus, s-SIM models can be acquired at different

scales.
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Verification with simulation data

In this section, we set up groups of simulation data with known spatial similarity relation, and then

use our method to calculate the spatial semantic similarities of them to see if the results are consis-

tent with the known relationship, in order to verify the effectiveness and correctness of the method.

Three simulation experiments were performed to simulate a real-world situation. In each experi-

ment, there were eight groups of controlled trials. Every groups of trials were based on the calcu-

lated results of the spatial similarity between the simulated word ‘A’ and ‘B’. Because in our

followed real-world experiment, YFCC100M dataset was used and the mean number of words in

that dataset is 30,000, the three simulation experiments are based on the same order of magnitude.

In the first experiment, the number of ‘A’ and ‘B’ was set to the same (30,000) to simulate

some cases in which the number of two words is the same and is close to the average. In the

second experiment, the number of ‘A’ and ‘B’ was also set to the same (60,000) to simulate

some cases in which the number of two words is the same but more than the average. In the

third experiment, the number of ‘A’ and ‘B’ was set to the different (3,0000 and 60,000) to sim-

ulate more common cases in which the number of two words are different. In each experi-

ment, the average distance (d) between ‘A’ and ‘B’ differed in each group. Parameters of these

three experiments were set as shown in Table 1. In addition, the size of the sample window in

each simulation experiment was changed continuously.

Fig 2. The process of sampling from a geo-tagged corpus using a fixed-size sliding geospatial context window.

https://doi.org/10.1371/journal.pone.0236347.g002

Table 1. Parameters in the three simulation experiments.

Experiment Number of a Number of b x (km)

No. 1 30,000 30,000 10, 15, 20, 30, 40, 50, 60, 80

No. 2 60,000 60,000 10, 15, 20, 30, 40, 50, 60, 80

No. 3 60,000 30,000 10, 15, 20, 30, 40, 50, 60, 80

https://doi.org/10.1371/journal.pone.0236347.t001
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The simulation data were generated according to the following criteria: two sets of points

representing the distributions of two words were defined—Set A and Set B. Points were ran-

domly generated in a rectangular field to form Set A. Around each point a, point b was gener-

ated. There were two constraints when generating b: 1) the orientation of b relative to a was

random and 2) for these two point sets, d represented the average distance between Set A and

Set B. For each a-b pair, the distance between them followed a Gaussian distribution in which

the mean (μ) equalled d and the variance (σ) equalled d
10

. In general, there were three parameters

in this simulation experiment: 1) the number of points in Set A and B, 2) the average distance

(d) between each a-b pair, and 3) the size (x)of the geospatial window in the rectangular field.

Application

Data pre-processing

Our method was applied to the Yahoo Flickr Creative Commons 100 M (YFCC100M) dataset

[67], which contains 100 million photos that were taken and uploaded by users between April

2004 and August 2014. In total, 33,823,261 of these photos contain tags consisting of one or

several descriptive words about the photo. The data is obtained through the official API of

Flickr. In addition, every tagged photo included GPS coordinates that indicate the location

where the photo was taken. This dataset has three main advantages: first, it provides wide geo-

graphic coverage and an includes an extremely large number of words–nearly 200 million

words with coordinates at the global scale. Second, because the user-generated tags record real

personal observations and thoughts associated with a certain place, the meanings of the words

in tags can reflect the real environment as well as the user’s mental cognition about the envi-

ronment. Also, these tags were generated by many different users. Consequently, the diversity

of the content can be guaranteed. Third, the words of tags span a wide semantic range. Specifi-

cally, in addition to words that represent spatial entities with explicit locations, such as the

names of POI points and place names (e.g., from gazetteers), many words have indistinct spa-

tial representations in this corpus, such as ‘smile’ and ‘beer’, which are generally not included

in general geo-related content. The data pre-processing workflow is described in detail below;

it involves several steps, including data cleaning, formatting, projection, gridding, and calcula-

tions, as shown in Fig 3.

Fig 3. Data pre-processing steps.

https://doi.org/10.1371/journal.pone.0236347.g003
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The words (tags) in this corpus were generated by people in different countries; thus, multi-

ple language tags exist, including English, Japanese, Korean, and Chinese. Because this study

only focuses on English, we filter and remove all the words composed of non-Latin letters,

such as Japanese and Chinese words. In addition, duplicate words were removed. Then, words

in tags that were automatically generated by cameras and software, such as ‘app’, ‘canon’,
‘EOS’, ‘Nikon’, and ‘FourSquare’ (a social app), and some unclear abbreviations, such as ‘fi’,
‘ii’, and ‘ff’, were removed. Next, 6,148 words with greater than 5,000 coordinates were

selected and saved in a look-up table with their respective coordinates. In this table, the num-

ber of coordinates associated with each differed; specifically, ‘of’ had the largest number of

coordinates, with a total of 1,383,059, and ‘Park’ had the second largest number of coordi-

nates, totalling 1,378,429. The word ‘growing’ appeared 5001 times–the lowest number of

occurrences in this set.

After cleaning the above series of data, the dataset ultimately contained words correspond-

ing to 20,59,61,561 coordinates. Fig 4 shows that the words are mainly distributed in the

United States, Europe, Japan, New Zealand, and India, as well as along the coastline of Africa

and the east coast of Australia. Inland Africa and India, Russia, and Asian countries had few

words. The coordinate counts for most of these words (approximately 95%) ranged from 5,000

to 200,000. The remaining words (approximately 5%) had counts ranging from 200,000 to

1,400,000. All 20,59,61,561 coordinates were mapped to a rectangular field using the Behr-

mann projection.

Spatial semantic similarity s-SIM calculation

For these 6148 words, they were matched in pairs to form 18,895,878 word pairs, we used 100

geospatial context windows (ranging from 1 km to 100 km with an interval of 1 km) to sample

and calculate the spatial semantic similarities of words at different spatial scales. Then, a s-SIM
model containing spatial semantic similarity curves for all the pairs of words was established.

Fig 4. Visualization of the spatial distribution of the 20,59,61,561 coordinates of 6,148 words from the YFCC100M dataset, the map

derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.g004
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According to our algorithm, as the geospatial context window becomes larger, the similarity

of different words increases gradually, but different growth rates occur at different scales (x).

Therefore, the growth rate of each similarity curve were calculated. And the spatial scale (x)

corresponding to the maximum growth rate can be defined as the typical scale of each word

pair. According to the differences of typical scales of all the word pairs, these words can be

divided into different categories and we defined three typical scales: neighbourhood, city, and

national scales. The statistics of the classification result are shown in Table 2.

Textual semantic similarity t-SIM calculation

To acquire the textual semantic similarity of these words, we calculated the cosine similarity of

the vectors of words using a pretrained word vector model. This model was trained by Face-

book using a corpus from Wikipedia and the skip-gram model [67]. Finally, we obtained a tex-

tual semantic similarity (t-SIM) model that contained 18,895,878 pairs of words.

A complementary comparison

To explore the relationship between the s-SIM model and the t-SIM model, s-SIM values calcu-

lated using 10 km�10 km geospatial context window were selected. To facilitate the compari-

son, min-max normalisation was first employed in the two models; then, a joint distribution

was established for these two different modes.

Results

Results of the experiment using simulated data

To verify the correctness and effectiveness of the proposed method, three simulation experi-

ments are performed. Each simulation experiment contains eight groups of comparisons with

different average distances, as shown in Fig 5(A). The parameters and results of the three

experiments are shown in Fig 5.

In Fig 5, there is an obvious common feature of each experiment: at a certain spatial scale

(geospatial window), the groups of words that have closer spatial similarity have larger spatial

semantic similarity values. The experiment results illustrate that our method has detected the

differences of the distance between two given point sets successfully, despite the number of the

two words sets is different.

Results of the experiment using real-word data from the YFCC100M dataset

Using the data from YFCC100M, both the s-SIM model and t-SIM model are calculated. We

select three sets of spatial semantic similarity values at three typical spatial scales and calculate

the corresponding statistics to compare the results with those for the textual semantic similar-

ity. The statistical quantities include the size of the geospatial context window, maximum,

minimum, mean, variance, and coefficient of variation of the two types of similarity values.

The probability distribution is shown in Fig 6, and the statistics are shown in Table 3.

Table 2. Statistics for the three characteristic scales.

Scale Size of the geospatial context window (km) Number of pairs of words

Neighbourhood scale 1–20 17,696,440

City scale 20–50 473,678

National scale 50–100 787,285

https://doi.org/10.1371/journal.pone.0236347.t002
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Fig 6(A) shows the kernel density estimate of the spatial semantic similarity values at three

different typical spatial scales. The values are mainly distributed between 0 and 0.4. As the size

of the spatial scale increases, the peak of the distribution of similarity moves to the right, and

the mean, variance and coefficient of variation increase. Fig 6(B) shows the kernel density esti-

mation of textual semantic similarity. The values are mainly distributed between 0 and 0.4,

and the distribution contains a few negative values.

Fig 5. The illustration of eight groups of words and the results of three simulation experiments (the vertical axis represents the value of spatial semantic

similarity; s-sim), and the horizontal axis represents the size of the geospatial context window, which continuously varies.

https://doi.org/10.1371/journal.pone.0236347.g005
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To explore the relationship between spatial semantic similarity and textual semantic simi-

larity, we choose the s-SIM model at the neighbourhood scale (10km) and formed a joint dis-

tribution model with the t-SIM model, as shown in Fig 7.

The result shows that the Pearson correlation coefficient of these two sets of values is 0.095

and is statistically significant. While this finding indicated that the correlation of these two

models was statistically significant, the collinearity between spatial semantics and natural

semantics was low, further, for the same corpus, there are great differences between the textual

semantic similarity and spatial semantic similarity.

To facilitate further analysis, the joint distribution was qualitatively divided into four parts

(Fig 8) using the mean value: 0.240 for textual semantic similarity and 0.046 for spatial seman-

tic similarity. Two groups of examples of pairs of words are illustrated. The first group includes

three words: ‘smile’, ‘love’ and ‘beer’, while the second group includes ‘surfing’, ‘sailing’ and

‘autocross’. The t-SIM and s-SIM models of these word pairs are shown in Table 4.

In addition, at the three typical spatial scales, we can find different word paris that yield sig-

nificant spatial knowledge at a certain scale. Several example pairs of words are illustrated in

Fig 9. In Fig 9, the horizontal axis represents the size of the geospatial context window; the ver-

tical axis represents the normalised rate of increase of spatial semantic similarity for the word

pairs; and 24 word pairs are divided into three groups and represented using different colours.

A detailed discussion of the results is given in Section 5.

Discussion

The results of spatial semantic similarity measurements using real-world data are shown in Fig

8. The joint distribution contains information regarding both spatial semantic and textual

Fig 6. (a) Kernel density estimation of spatial semantic similarity. (b) Kernel density estimation of textual semantic similarity.

https://doi.org/10.1371/journal.pone.0236347.g006

Table 3. Statistics of the t-SIM and s-SIMmodels.

Results Size of the geospatial context window (km) Min Max Mean Var CV

t-SIM model - 0.095 0.985 0.164 0.005 2.268

s-SIM model at the neighbourhood scale 10×10 0.000 0.959 0.045 0.001 1.221

s-SIM model at the city scale 30×30 0.000 0.967 0.074 0.003 1.318

s-SIM model at the national scale 70×70 0.000 0.971 0.113 0.006 1.434

https://doi.org/10.1371/journal.pone.0236347.t003
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semantic similarity for 18,895,878 pairs of words. The numbers of pairs of words in the first

and third quadrants together account for 55% of all the pairs. In these two quadrants, the tex-

tual semantic similarity represents the co-occurrence distribution of these words in the textual

Fig 7. The joint distribution of two semantic similarity models.

https://doi.org/10.1371/journal.pone.0236347.g007
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context, which is correlated with the co-occurrence distribution in the spatial context. For 55%

of the word pairs, the degree of similarity in both natural semantics and spatial semantics is

consistent. However, 45% of the pairs of words in the second and fourth quadrants display dif-

ferences between the textual and spatial semantic similarities. This finding suggests that the

corresponding types of spatial semantic and textual semantic information are inconsistent

because for these words, the spatial semantic relations are neglected by most current textual

semantic similarity measures. Furthermore, these methods can be divided into two categories

according to their values, as illustrated below with several examples. In addition, the scale

Fig 8. Data distribution in four quadrants and several examples (the centroid is (0.240, 0.046)).

https://doi.org/10.1371/journal.pone.0236347.g008

Table 4. The t-SIM and s-SIM results for the example word pairs in Fig 8.

Example word pairs t-SIM s-SIM
beer-love 0.28 0.57

beer-smile 0.27 0.53

love-smile 0.58 0.57

surfing-autocross 0.52 0.04

sailing-autocross 0.43 0.06

sailing-surfing 0.55 0.37

https://doi.org/10.1371/journal.pone.0236347.t004
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effects of spatial semantic similarity and other discoveries from spatial semantic similarity are

presented.

Underestimation of spatial semantic relations

One issue is the underestimation of spatial semantic relations, that is, the similarity values

would be higher if geographic implication were considered. In Fig 8, for example, the word

pair<love>-<smile> is located at the first quadrant from the textual semantic perspective,

suggesting that these two words often appear together in text because they both express posi-

tive and harmonious emotions. Such a relationship is reflected by their strong textual semantic

similarity value (0.58). When considering the spatial relationships among the places that these

two words describe in our experiment, the spatial semantic similarity between these two words

is also high (0.57). Based on an individual’s cognition and understanding of general vocabu-

lary, these two words, which vividly express feelings, may have nothing to do with ‘beer’–as

reflected by the textual semantic similarity: the similarity between ‘smile’ and ‘beer’ is only

0.27, and the similarity between ‘love’ and ‘beer’ is only 0.23. However, when spatial factors

are considered, the relationship between these two words and ‘beer’ is much closer; the spatial

semantic similarity between ‘beer’ and ‘smile’ is greater (0.53), while that between ‘beer’ and

Fig 9. Example word pairs at three typical spatial scales.

https://doi.org/10.1371/journal.pone.0236347.g009
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‘love’ is also greater (0.57). The co-occurrence distributions of these three words are shown in

Fig 10.

The entire map is divided into many spatial windows (10×10km), and the different window

colours represent how many words appear in the same window. In Fig 10, the windows in

dark and blue are widely distributed, which reflects high consistency in the spatial distribution

of the three words. The reason for this phenomenon can be explained as follows: if ‘beer’ is

available at a given location, the geospatial context tends to be relaxed and happy, and words

that describe positive emotions, such as ‘love’ and ‘smile’, are frequently used nearby. How-

ever, the spatial relationships among these three words are difficult to extract using only tradi-

tional textual semantic similarity models.

In addition, several words related to ‘beer’ were chosen to demonstrate the difference

between the two types of semantic similarity more clearly. As shown in Table 5, some words

Fig 10. Visualization of the spatial frequency distribution of the co-occurrences of the three example words: ‘beer’, ‘love’ and ‘smile’, the

map derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.g010

Table 5. Two types of semantic similarities and the ranks between ‘beer’ and other words.

s-SIM s-SIM rank Word t-SIM rank t-SIM
0.524 1 bar 90 0.307

0.518 2 restaurant 28 0.417

0.509 4 hotel 77 0.317

0.498 10 party 683 0.211

0.476 50 love 1709 0.163

0.469 74 rose 352 0.239

0.468 76 dusk 1504 0.172

0.468 77 hot 396 0.234

https://doi.org/10.1371/journal.pone.0236347.t005
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that have close spatial semantic similarities with ‘beer’, such as ‘bar’ and ‘restaurant’, have

high rankings and are highlighted. From the spatial context perspective, the close relationships

between these words and ‘beer’ are intuitive and rational because ‘bar’, ‘restaurant’ and

‘party’ are places where you can get ‘beer’. However, these words are not nearly as closely

related to ‘beer’ in textual semantics (they have much lower t-SIM ranks). Moreover, some

other words that appear in the table, e.g., ‘love’, ‘rose’, ‘dusk’, and ‘hot’, do not have apparent

geographical coordinates in traditional corpora, and they describe a surrounding in which the

occurrence of ‘beer’ is unexpected. The similarities between ‘beer’ and these words were

detected by our method but not by the textual semantic similarity measure, in which only the

co-occurrences of words in documents are considered, such as the top-ranked words in this

case, i.e., ‘brewery’, ‘ale’, and ‘wine’ (not listed in the table). A very interesting example is the

word ‘dusk’, which is found to be highly related to the word ‘beer’ by our method. According

to a report by the famous European beer company SABMiller [68], on a typical working day,

the average time at which Europeans have their first beer is 18:08, and the average time at

which they consume their last beer is 22:10. In addition, ‘dusk’ is the period from after sunset

to just before nightfall, at the very end of astronomical twilight, which overlaps with the time

that people usually have a beer.

Overestimation of spatial semantic relations

The other issue is the overestimation of the spatial semantic relation. In Fig 8, ‘sailing’, ‘surf-
ing’, and ‘autocross’ are three types of outdoor activities so that they have higher textual

semantic similarity; the similarity value between ‘sailing’ and ‘surfing’ is 0.55, the similarity

value between ‘sailing’ and ‘autocross’ is 0.43, and the similarity value between ‘surfing’ and

‘autocross’ is 0.52, as shown in Fig 9. In the spatial semantic similarity model, the similarity

between ‘sailing’ and ‘surfing’ is 0.37, as shown by the distribution in Fig 11(A). However, the

similarities between ‘sailing’–’autocross’ (0.06) and ‘surfing’–‘autocross’ (0.04) are both weak,

which suggests that the similarity decreased when spatial semantic information was considered

for these three words. The reason for this difference is clearly shown in Fig 11(B) and 11(C).

Autocross usually occurs inland, but sailing and surfing are usually performed in coastal areas.

In this case, when the spatial information associated with words is included in the calculation

of semantic similarity, the similarity will decrease compared to the value when considering

only the textual semantic similarity.

Scale effect of spatial semantic similarity

Furthermore, the spatial semantic similarity between two words has a scale effect. In other

words, when the scale of observations change, the spatial semantic similarity changes accord-

ingly, and implicit information about the spatial relationships among words can be revealed

from the corresponding trend. In the calculation of spatial semantic similarity for word pairs,

when selecting sliding windows of different sizes (from 1 km to 100 km in this case), the peak

rate of increase of the spatial semantic similarity for different word pairs occurs at different

scales. We classify the window size into three groups: neighbourhood, city and national scales.

As described in Table 2, three different change patterns can be observed for different word

pairs. The word pairs associated with each pattern are illustrated in Fig 9. Notably, in the

group with high similarity at the neighbourhood scale, the word pairs are related to daily life;

they include ‘love’–’smile’, ‘bar’–’beer’, and ‘flower’–’house’. These word pairs are often used

in the same location. In the group with high similarity at the city scale, the common word

pairs are ‘surfing’–’autocross’, ‘piazza’–’chateau’, and ‘street’–’metropolis’, as they are usually

found in the same city. For the group in which differential similarity peaks at the national
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scale, word pairs such as ‘canyon’–’midland’, ‘sea’–’highway’, and ‘speedway’–’coastline’
appear because these word pairs can usually be found in the same country. This indicates that

the scale effect of spatial semantic similarity is not random but can reflect the ‘characteristic
scale’ of similarity, i.e., the scale at which two words are mostly closely related in terms of spa-

tial semantics.

Other discovery from spatial semantic similarity

Spatial semantic similarity can also reflect other implied spatial phenomenon and knowledge

of human language. Such as spatial distribution of business activities and cultural influence.

For example, ‘Chevrolet’ and ‘Audi’ are both car brands; therefore, they have a high probability

of being mentioned together. Their textual semantic similarity is 0.66 –higher than their spatial

semantic similarity value of 0.38. It can be explained from a spatial perspective. ‘Chevrolet’ is

an American brand and therefore has a high probability of appearing in the United States, as

shown in Fig 12, while ‘Audi’ is a German brand that has a high occurrence probability in Ger-

many and other nearby European countries.

Similarly, spatial semantic similarity can reflect the scope of cultural influence to some

extent. When discussing famous metropolises in Asia, ‘Beijing’ and ‘Tokyo’ are both capitals

and often appear together in text. The corresponding textual semantic similarity is 0.59, which

is higher than their spatial semantic similarity (0.15). As shown in Fig 13, most instances of

‘Beijing’ and ‘Tokyo’ occur in the country in which they are located. In addition, ‘Tokyo’ is dis-

tributed in Europe and the United States, and ‘Beijing’ is distributed in Asian and Eastern

European countries.

However, this research has some limitations. The spatial semantic analysis focused on

global-scale issues and ignored the detailed and implicit regional differences of spatial seman-

tic information. Local semantics should also be considered in future work. Moreover, this

study utilized only one data source of user-generated tags as the corpus. The statistical bias

Fig 11. (a) Spatial distributions of ‘surfing’ and ‘sailing’. (b) Spatial distributions of ‘surfing’ and ‘autocross’. (c) Spatial distributions of

‘sailing’ and ‘autocross’, the map derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.g011

Fig 12. Spatial distributions of ‘Chevrolet’ and ‘Audi’, the map derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.g012
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that exists based on the profile of typical users will inevitably yield biased results. Efforts to

quantify and correct this bias are needed in the future.

Conclusion

In this paper, based on the measurement of traditional textual semantic similarity between

words, we design a sliding geospatial context window to detect and measure the spatial seman-

tic similarity of words. With this method, we process the location and topic relationships asso-

ciated with geo-related information as a whole. We verified the method through a series of

experiments with simulated and real-world data. Improving upon previous spatial correlation

measurements for spatial entities (schools, restaurants, markets, etc.) and activities (crimes,

epidemics, etc.), our model includes many words widely related to daily life (happy, family,

smile, etc.), and meaningful geographic implicit knowledge is included at different spatial

scales. By analysing the correlations among the similarities based on the spatial semantic and

textual semantic models of words, we found that we can greatly compensate for the lack of

implied geospatial information considered in the textual semantic similarity measured by

word-embedding methods by applying our spatial semantic similarity model. However, in this

paper, the comparison between Word2vec and our method is based on their co-occurrence

matrixes without deeper analysis and process. One of our important directions for future work

would be either using genetic software for creating embeddings, or trying different transfor-

mations and dimension reduction strategies on both the spatial and textual co-occurrence

matrices. This study verified that beyond the textual semantics of words that can be identified

with word-embedding models, the spatial semantics of words provide a new dimension to

assess the similarity between words.

This approach introduces spatial semantics when considering semantic similarity between

words, and it has the potential to improve the quality of contextual and geographic relevance

of recommendation systems that take semantics into account. Furthermore, this approach

contributes to real spatially aware query systems [24, 69, 70], and it complements semantic

research on linguistics from the perspective of spatial cognition.
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Fig 13. Spatial distributions of ‘Beijing’ and ‘Tokyo’, the map derived from open source Holoviz (https://holoviz.org/).
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