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Abstract

Measuring the semantic similarity between words is important for natural language process-
ing tasks. The traditional models of semantic similarity perform well in most cases, but when
dealing with words that involve geographical context, spatial semantics of implied spatial
information are rarely preserved. Geographic information retrieval (GIR) methods have
focused on this issue; however, they sometimes fail to solve the problem because the spa-
tial and textual similarities of words are considered and calculated separately. In this paper,
from the perspective of spatial context, we consider the two parts as a whole—spatial con-
text semantics, and we propose a method that measures spatial semantic similarity using a
sliding geospatial context window for geo-tagged words. The proposed method was first val-
idated with a set of simulated data and then applied to a real-world dataset from Flickr. As a
result, a spatial semantic similarity model at different scales is presented. We believe this
model is a necessary supplement for traditional textual-language semantic analyses of
words obtained by word-embedding technologies. This study has the potential to improve
the quality of recommendation systems by considering relevant spatial context semantics,
and benefits linguistic semantic research by emphasising the spatial cognition among
words.

Introduction

With the recent advancements in artificial intelligence (AI) and computational linguistics, nat-
ural language processing (NLP) has attracted considerable attention, and the requirements for
representing human-computer interactions and senses have increased [1]. In recent years,
NLP research has focused on machine translation, information retrieval, text summarization,
question answering and network-based or graph-based text analysis [2-5]. To assess the suc-
cess of addressing these problems, the semantic similarity between components of natural
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language should be measured, especially for words [6, 7]. Currently, with the adoption of word
embeddings, models driven by neural networks and trained on large textual corpora can repre-
sent words as multidimensional vectors, such as Word2Vec [8], ESA [9] and fastText [10].
Consequently, the semantic similarity between two words can be measured by calculating the
distance between their vectors. These models are based on statistical inferences of large cor-
pora under the assumption that words with similar distributional properties in the same con-
text have similar semantic meanings [11]. However, when the semantic similarities are
measured by these models based on the co-occurrences of words in the corpora, the ‘true’
understanding of the words is unobtainable [7]; namely, the purely text-based approaches fail
when processing information with complex reasoning [12]. These models are sufficient to han-
dle most common scenarios for a general corpus. For example, some synonyms can be
obtained and measured by these models: happy-smile(), man-woman (). However, when deal-
ing with unstructured content that contains deep background meaning, such as addressing the
semantic similarity in geo-related information retrieval (IR) tasks, the semantic-based similar-
ity measurements based on plain text yield poor performances [13-17], such as similarities
between beer-smile, club-beer and more spatially and impliedly related pair of words, which
are contributed for optimizing and expanding the query results of geographic recommenda-
tion system and geographic search system. Moreover, due to the increase in geo-related infor-
mation searches on the Internet, precise similarity measurements of geo-related information
[18-22] are needed. In traditional geographic information retrieval (GIR) tasks, this problem
has been defined and generalized as a measurement of the similarity between triplets,
<theme><relationship><location>, formalized from documents [23, 24]. On the basis of
thematic similarity measurements in the textual context using standard traditional IR tech-
niques (such as TF-IDF, Word-Net, and other embedding methods), GIR-related studies typi-
cally apply a consensus approach, that is, they add spatial location similarity as a constraint
rule to address spatial losses in the ranking problem [24-27].

Typically, spatial location similarity is measured by comparing spatial footprints extracted
from textual content with information from digital gazetteers such as the Thesaurus of Geo-
graphic Names (TGN) [28] and the Alexandria Digital Library (ADL) [29]. Numerous existing
GIR systems, such as the Geo-referenced Information Processing System (GIPSY) [16], Spa-
tially Aware Information Retrieval on the Internet (SPIRIT) [30] and Frankenplace [31], are
based on one basic principle: addressing the similarity of geo-related information by consider-
ing textual semantic similarity and spatial similarity separately. For instance, the query of ‘bars
in New York’ requires both a theme (bars) and a spatial match (New York) between the query
and the most relevant documents in the database. Currently, these systems are applicable to
most GIR tasks, and their overall principle seems feasible. However, when addressing fuzzy
and ambiguous textual thematic geo-related documents, these methods have some limitations
and can cause underestimation and overestimation problems. Two examples are given below
to further illustrate these issues.

The underestimation of the spatial context semantic similarity between words always
occurs when dealing with content that lacks clear textual topic keywords. For example, when
searching for ‘bars in New York’, a document about the ‘Spring Lounge’ (the name of a bar on
Spring Street) would be missed because the keywords ‘spring’ and Tounge’ have limited textual
semantic similarity with ‘bar’. In addition, the textual content in this document includes
detailed and specific descriptions of the bar, such as surrounding information (‘band’, ‘music’,
and ‘beer’) and descriptors of the bar atmosphere (‘happy’, ‘relaxing’, and ‘hot’), but these
words are not similar to ‘bar’ in textual semantics. Words that are similar to ‘bar’ in textual
semantics, such as ‘pub’, saloon’, ‘tavern’, and ‘restaurant’, are often absent in such
documents.
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The overestimation of the spatial context semantic similarity between words always occurs
when dealing with content that contains similar keywords but lacks practical relevance. For
example, when searching for ‘bars in New York’, a document about the general living habits of
‘gym’, etc., may
appear in the search results. This document has a high similarity ranking because of certain
words in the document that have textual semantics similar to ‘bar’; however, the document
itself is not about ‘bars in New York’. As noted by Janowicz and Berry [32, 33], most spatially

aware query systems provide the “textual-related results that we ask for but not the spatially

New Yorkers, in which the author occasionally mentions ‘bar’, ‘nightclub’,

related results that we want”.

The cause of such issues rooted in the method that considering textual context semantic
similarity and spatial similarity separately. However, this type of separation is inconsistent
with human spatial thinking, expression, and inquiry. As noted by Simon Scheider, vast
amounts of subtle information of place remain to be discovered [34] the so-called implications
of location-based social events [35]. Clark emphasized the crucial and indivisible influence of
the P-Space (perceptual space) developed based on human perception on the L-Space (linguis-
tic space), which consists of spatial terms and language expressions [36]. Succinctly, this prob-
lem can be conceptualized as follows:

Spatial context semantic similarity # spatial similarity 4 textual context semantic similarity

Spatial similarity is an important theoretical issue of Geographic Information System that
measures the similarities of the spatial topologies or geometric relationships of spatial entities
and phenomena [37, 38]. Textual context semantic similarity measures the similar degree of
semantic meanings of words based on statistical inferences under the assumption that words
with similar distributional properties in the same context in textual corpora [39, 40]. The term
‘spatial context semantics’ can be understood from the perspectives of spatial ontology and
cognition. All aspects of human activity are rooted in geographic space, including individual
behaviours and languages [41-46]. Language expressions also stem from individuals’ under-
standing of the world and their cognition of the environment. Such understanding and cogni-
tion are significantly influenced by the local spatial environment; in other words, there are
close relationships between what we say and where we say it [47-53]. Therefore, expressions in
the same spatial context are more likely to be similar and closely related. In addition, assess-
ments of semantic similarity depend on the specific context in which information is generated
[54, 55]. Thus, when we measure the semantic similarity between spatially related information
sets, the measurement should include the spatial context, just as when measuring textual
semantic similarity in a textual context. Therefore, we can define the term Spatial context
semantic similarity: measuring the similarity of words under the context that formed by the
spatial distribution frequency and pattern resulted by the use of words in different scenes and
locations. The relationship between these three concepts is shown as Fig 1. In addition to spa-
tial entity names, they can include descriptions of human feelings, environmental atmo-
spheres, and so on. For example, people tend to use words such as ‘happy’, ‘enjoying’, ‘music’
and ‘band’ in bars, but at cemeteries and funerals, they commonly use terms such as ‘condo-
lences’, ‘mourning’ and ‘memory’. The relationships between <bar>-<joy> and
<cemetery>-< mourning > show close similarity to people’s spatial thinking, but this kind of
similarity is seldom reflected in the textual context.

Some previous studies optimized GIR query results by collecting implicit geographic evi-
dence related to geospatial information from textual materials, for example, those studies pro-
vided by Wikipedia [56-59]. This approach is only one step away from underestimation
results; these studies have measured spatial context semantic similarity from the textual con-
text perspective while not consider the spatial context semantics of words as a whole.
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Fig 1. The relationship between spatial context semantic similarity, spatial similarity and textual context semantic similarity.

https://doi.org/10.1371/journal.pone.0236347.g001

In this study, we use continuous spatial regions as spatial contextual windows to measure
the semantic similarities of words in a spatial context using a globally geo-tagged, user-gener-
ated corpus. The spatial semantic similarity (s-SIM) of words is measured by calculating the
co-occurrence probability of words appearing in the same window. A larger s-SIM between
two words indicates a more similar spatial semantic relationship between them. In addition,
the multiscale effects of spatial semantic similarity of word pairs are analysed and discussed. In
addition, we explore implied geographic relevance between words by comparing two co-
occurrence matrixes calculated by our method and Word2vec without deeper transformations
and normalizations. This method is devoted to introducing spatial context semantics into the
textual semantic similarity between words, it also has the potential to improve the quality of
contextuality and geographic relevance of recommendation systems that takes into account
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semantics [60, 61]. Besides, it’s also contributed for optimizing the result of network-based lan-
guage processing tasks especially for geo-related corpora [62-65].

The remainder of this article is organized as follows. In Section 2, we present a method for
measuring the spatial semantic similarity of words using a sliding spatial context window;
then, the correctness and effectiveness of this method are verified by simulation experiments.
In Section 3, we apply our method on a real-world experiment using a geo-tagged corpus
extracted from Flickr as a data source [66]. Next, we establish a spatial semantic similarity
model ranging from a small spatial scale (1 km) to a large spatial scale (100 km). Moreover, we
construct a textual semantic similarity model for complementary comparison. In Section 4, we
present the results of the simulation experiments and the real-world experiment. A spatial
explanation and demonstration of some examples of words in the spatial semantic similarity
model are provided in Section 5, and we compare the textual and spatial semantic similarity
models. Finally, conclusions and future work are given in Section 6.

Method

A geospatial context window-based method is proposed in this paper to measure the spatial
semantic similarity (s-SIM) of words. There are two parts in this section: (1) a detailed descrip-
tion of the method and (2) a verification of the validity and correctness of this measurement
approach based on simulation experiments.

Sampling of a geo-tagged corpus and calculation of the spatial semantic
similarity of words

Our method measures the spatial semantic similarity (s-SIM) of words using a geo-tagged cor-
pus. First, we determine the range of the coordinates of all words and limit this range to a rect-
angular area. Then, a fixed-size spatial window with side length x is set as the geospatial
context for sampling from the corpus. After each round of sampling, the window slides a cer-
tain step size s in the horizontal direction. When the sampling along the current horizontal
line is complete, the window moves one step size s in the vertical direction and sampling con-
tinues in the new horizontal direction. This process is shown in Fig 2. When all the samples
have been collected, the set of samples is used to calculate the semantic similarity of words. For
this geo-tagged corpus C, various spatial contexts d exist, represented as C:{d;,d,. . .d,;}. For
each spatial context di, different numbers of words are represented by d;:{wy,w,. . .w,}. The
spatial semantic similarity s—SIM,, , between every pair of words (w; and w; here) is calcu-
lated by the following formula:

SIM, = L
s— wiwy Zdwl + Zde — Zdwlnw2

where dWlﬂ », Tepresents the number of spatial contexts in which w, and w, appear together

and ) _d, and }_d,, represent the number of spatial contexts in which w, and w; appear,
respectively.

In this way, a model containing the spatial semantic similarities between each pair of words
in the geo-tagged corpus C can be obtained.

In addition, by adjusting the size of the geospatial window, we can sample words at different
scales. Therefore, for the same geo-tagged corpus, s-SIM models can be acquired at different
scales.
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Fig 2. The process of sampling from a geo-tagged corpus using a fixed-size sliding geospatial context window.

https://doi.org/10.1371/journal.pone.0236347.9002

Verification with simulation data

In this section, we set up groups of simulation data with known spatial similarity relation, and then
use our method to calculate the spatial semantic similarities of them to see if the results are consis-
tent with the known relationship, in order to verify the effectiveness and correctness of the method.
Three simulation experiments were performed to simulate a real-world situation. In each experi-
ment, there were eight groups of controlled trials. Every groups of trials were based on the calcu-
lated results of the spatial similarity between the simulated word ‘A’ and ‘B’. Because in our
followed real-world experiment, YFCC100M dataset was used and the mean number of words in
that dataset is 30,000, the three simulation experiments are based on the same order of magnitude.

In the first experiment, the number of ‘A’ and ‘B’ was set to the same (30,000) to simulate
some cases in which the number of two words is the same and is close to the average. In the
second experiment, the number of ‘A’ and ‘B’ was also set to the same (60,000) to simulate
some cases in which the number of two words is the same but more than the average. In the
third experiment, the number of ‘A’ and ‘B’ was set to the different (3,0000 and 60,000) to sim-
ulate more common cases in which the number of two words are different. In each experi-
ment, the average distance (d) between ‘A’ and ‘B’ differed in each group. Parameters of these
three experiments were set as shown in Table 1. In addition, the size of the sample window in
each simulation experiment was changed continuously.

Table 1. Parameters in the three simulation experiments.

Experiment Number of a Number of b x (km)

No. 1 30,000 30,000 10, 15, 20, 30, 40, 50, 60, 80
No. 2 60,000 60,000 10, 15, 20, 30, 40, 50, 60, 80
No. 3 60,000 30,000 10, 15, 20, 30, 40, 50, 60, 80

https://doi.org/10.1371/journal.pone.0236347.t001
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data cleaning

The simulation data were generated according to the following criteria: two sets of points
representing the distributions of two words were defined—Set A and Set B. Points were ran-
domly generated in a rectangular field to form Set A. Around each point a, point b was gener-
ated. There were two constraints when generating b: 1) the orientation of b relative to a was
random and 2) for these two point sets, d represented the average distance between Set A and
Set B. For each a-b pair, the distance between them followed a Gaussian distribution in which
the mean (u) equalled d and the variance () equalled £. In general, there were three parameters
in this simulation experiment: 1) the number of points in Set A and B, 2) the average distance
(d) between each a-b pair, and 3) the size (x)of the geospatial window in the rectangular field.

Application
Data pre-processing

Our method was applied to the Yahoo Flickr Creative Commons 100 M (YFCC100M) dataset
[67], which contains 100 million photos that were taken and uploaded by users between April
2004 and August 2014. In total, 33,823,261 of these photos contain tags consisting of one or
several descriptive words about the photo. The data is obtained through the official API of
Flickr. In addition, every tagged photo included GPS coordinates that indicate the location
where the photo was taken. This dataset has three main advantages: first, it provides wide geo-
graphic coverage and an includes an extremely large number of words-nearly 200 million
words with coordinates at the global scale. Second, because the user-generated tags record real
personal observations and thoughts associated with a certain place, the meanings of the words
in tags can reflect the real environment as well as the user’s mental cognition about the envi-
ronment. Also, these tags were generated by many different users. Consequently, the diversity
of the content can be guaranteed. Third, the words of tags span a wide semantic range. Specifi-
cally, in addition to words that represent spatial entities with explicit locations, such as the
names of POI points and place names (e.g., from gazetteers), many words have indistinct spa-
tial representations in this corpus, such as ‘smile’ and ‘beer’, which are generally not included
in general geo-related content. The data pre-processing workflow is described in detail below;
it involves several steps, including data cleaning, formatting, projection, gridding, and calcula-
tions, as shown in Fig 3.

non-Latin letter filtration

v

non-English word filtration

i sampling using

tags data

] — geospatial context

repeated word filtration

. window

auto-generated word filtration

Fig 3. Data pre-processing steps.
https://doi.org/10.1371/journal.pone.0236347.9003
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The words (tags) in this corpus were generated by people in different countries; thus, multi-
ple language tags exist, including English, Japanese, Korean, and Chinese. Because this study
only focuses on English, we filter and remove all the words composed of non-Latin letters,
such as Japanese and Chinese words. In addition, duplicate words were removed. Then, words
in tags that were automatically generated by cameras and software, such as ‘app’, ‘canon’,
‘EOS’, ‘Nikon’, and ‘FourSquare’ (a social app), and some unclear abbreviations, such as fi’,
ii’, and f’, were removed. Next, 6,148 words with greater than 5,000 coordinates were
selected and saved in a look-up table with their respective coordinates. In this table, the num-
ber of coordinates associated with each differed; specifically, ‘of had the largest number of
coordinates, with a total of 1,383,059, and ‘Park’ had the second largest number of coordi-
nates, totalling 1,378,429. The word ‘growing’ appeared 5001 times-the lowest number of
occurrences in this set.

After cleaning the above series of data, the dataset ultimately contained words correspond-
ing t0 20,59,61,561 coordinates. Fig 4 shows that the words are mainly distributed in the
United States, Europe, Japan, New Zealand, and India, as well as along the coastline of Africa
and the east coast of Australia. Inland Africa and India, Russia, and Asian countries had few
words. The coordinate counts for most of these words (approximately 95%) ranged from 5,000
to 200,000. The remaining words (approximately 5%) had counts ranging from 200,000 to
1,400,000. All 20,59,61,561 coordinates were mapped to a rectangular field using the Behr-
mann projection.

Spatial semantic similarity s-SIM calculation

For these 6148 words, they were matched in pairs to form 18,895,878 word pairs, we used 100
geospatial context windows (ranging from 1 km to 100 km with an interval of 1 km) to sample
and calculate the spatial semantic similarities of words at different spatial scales. Then, a s-SIM
model containing spatial semantic similarity curves for all the pairs of words was established.

Fig 4. Visualization of the spatial distribution of the 20,59,61,561 coordinates of 6,148 words from the YFCC100M dataset, the map
derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.9004
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According to our algorithm, as the geospatial context window becomes larger, the similarity
of different words increases gradually, but different growth rates occur at different scales (x).
Therefore, the growth rate of each similarity curve were calculated. And the spatial scale (x)
corresponding to the maximum growth rate can be defined as the typical scale of each word
pair. According to the differences of typical scales of all the word pairs, these words can be
divided into different categories and we defined three typical scales: neighbourhood, city, and
national scales. The statistics of the classification result are shown in Table 2.

Textual semantic similarity t-SIM calculation

To acquire the textual semantic similarity of these words, we calculated the cosine similarity of
the vectors of words using a pretrained word vector model. This model was trained by Face-
book using a corpus from Wikipedia and the skip-gram model [67]. Finally, we obtained a tex-
tual semantic similarity (¢-SIM) model that contained 18,895,878 pairs of words.

A complementary comparison

To explore the relationship between the s-SIM model and the -SIM model, s-SIM values calcu-
lated using 10 km* 10 km geospatial context window were selected. To facilitate the compari-
son, min-max normalisation was first employed in the two models; then, a joint distribution
was established for these two different modes.

Resulits
Results of the experiment using simulated data

To verify the correctness and effectiveness of the proposed method, three simulation experi-
ments are performed. Each simulation experiment contains eight groups of comparisons with
different average distances, as shown in Fig 5(A). The parameters and results of the three
experiments are shown in Fig 5.

In Fig 5, there is an obvious common feature of each experiment: at a certain spatial scale
(geospatial window), the groups of words that have closer spatial similarity have larger spatial
semantic similarity values. The experiment results illustrate that our method has detected the
differences of the distance between two given point sets successfully, despite the number of the
two words sets is different.

Results of the experiment using real-word data from the YFCC100M dataset

Using the data from YFCC100M, both the s-SIM model and ¢-SIM model are calculated. We
select three sets of spatial semantic similarity values at three typical spatial scales and calculate
the corresponding statistics to compare the results with those for the textual semantic similar-
ity. The statistical quantities include the size of the geospatial context window, maximum,
minimum, mean, variance, and coefficient of variation of the two types of similarity values.
The probability distribution is shown in Fig 6, and the statistics are shown in Table 3.

Table 2. Statistics for the three characteristic scales.

Scale Size of the geospatial context window (km) Number of pairs of words
Neighbourhood scale 1-20 17,696,440
City scale 20-50 473,678
National scale 50-100 787,285

https://doi.org/10.1371/journal.pone.0236347.t1002
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Fig 5. The illustration of eight groups of words and the results of three simulation experiments (the vertical axis represents the value of spatial semantic
similarity; s-sim), and the horizontal axis represents the size of the geospatial context window, which continuously varies.

https://doi.org/10.1371/journal.pone.0236347.9005

Fig 6(A) shows the kernel density estimate of the spatial semantic similarity values at three
different typical spatial scales. The values are mainly distributed between 0 and 0.4. As the size
of the spatial scale increases, the peak of the distribution of similarity moves to the right, and
the mean, variance and coefficient of variation increase. Fig 6(B) shows the kernel density esti-
mation of textual semantic similarity. The values are mainly distributed between 0 and 0.4,

and the distribution contains a few negative values.
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Fig 6. (a) Kernel density estimation of spatial semantic similarity. (b) Kernel density estimation of textual semantic similarity.

https://doi.org/10.1371/journal.pone.0236347.9006

Table 3. Statistics of the +-SIM and s-SIM models.

Results

t-SIM model

s-SIM model at the neighbourhood scale
s-SIM model at the city scale

s-SIM model at the national scale

https://doi.org/10.1371/journal.pone.0236347.t003

To explore the relationship between spatial semantic similarity and textual semantic simi-
larity, we choose the s-SIM model at the neighbourhood scale (10km) and formed a joint dis-
tribution model with the t-SIM model, as shown in Fig 7.

The result shows that the Pearson correlation coefficient of these two sets of values is 0.095
and is statistically significant. While this finding indicated that the correlation of these two
models was statistically significant, the collinearity between spatial semantics and natural
semantics was low, further, for the same corpus, there are great differences between the textual
semantic similarity and spatial semantic similarity.

To facilitate further analysis, the joint distribution was qualitatively divided into four parts
(Fig 8) using the mean value: 0.240 for textual semantic similarity and 0.046 for spatial seman-
tic similarity. Two groups of examples of pairs of words are illustrated. The first group includes
three words: ‘smile’, ‘love’ and ‘beer’, while the second group includes ‘surfing’, ‘sailing’ and
‘autocross’. The t-SIM and s-SIM models of these word pairs are shown in Table 4.

In addition, at the three typical spatial scales, we can find different word paris that yield sig-
nificant spatial knowledge at a certain scale. Several example pairs of words are illustrated in
Fig 9. In Fig 9, the horizontal axis represents the size of the geospatial context window; the ver-
tical axis represents the normalised rate of increase of spatial semantic similarity for the word
pairs; and 24 word pairs are divided into three groups and represented using different colours.
A detailed discussion of the results is given in Section 5.

Discussion

The results of spatial semantic similarity measurements using real-world data are shown in Fig
8. The joint distribution contains information regarding both spatial semantic and textual

Size of the geospatial context window (km) Min Max Mean Var CV
- 0.095 0.985 0.164 0.005 2.268
10x10 0.000 0.959 0.045 0.001 1.221
30x30 0.000 0.967 0.074 0.003 1.318
70x70 0.000 0.971 0.113 0.006 1.434
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Fig 7. The joint distribution of two semantic similarity models.

https://doi.org/10.1371/journal.pone.0236347.9007

semantic similarity for 18,895,878 pairs of words. The numbers of pairs of words in the first
and third quadrants together account for 55% of all the pairs. In these two quadrants, the tex-
tual semantic similarity represents the co-occurrence distribution of these words in the textual
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Fig 8. Data distribution in four quadrants and several examples (the centroid is (0.240, 0.046)).

https://doi.org/10.1371/journal.pone.0236347.g008

context, which is correlated with the co-occurrence distribution in the spatial context. For 55%
of the word pairs, the degree of similarity in both natural semantics and spatial semantics is
consistent. However, 45% of the pairs of words in the second and fourth quadrants display dif-

ferences between the textual and spatial semantic similarities. This finding suggests that the

corresponding types of spatial semantic and textual semantic information are inconsistent
because for these words, the spatial semantic relations are neglected by most current textual
semantic similarity measures. Furthermore, these methods can be divided into two categories
according to their values, as illustrated below with several examples. In addition, the scale

Table 4. The t-SIM and s-SIM results for the example word pairs in Fig 8.

Example word pairs t-SIM
beer-love 0.28
beer-smile 0.27
love-smile 0.58
surfing-autocross 0.52
sailing-autocross 0.43
sailing-surfing 0.55

https://doi.org/10.1371/journal.pone.0236347.t1004

s-SIM

0.57
0.53
0.57
0.04
0.06
0.37
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Fig 9. Example word pairs at three typical spatial scales.
https://doi.org/10.1371/journal.pone.0236347.9g009

effects of spatial semantic similarity and other discoveries from spatial semantic similarity are
presented.

Underestimation of spatial semantic relations

One issue is the underestimation of spatial semantic relations, that is, the similarity values
would be higher if geographic implication were considered. In Fig 8, for example, the word
pair <love>-<smile> is located at the first quadrant from the textual semantic perspective,
suggesting that these two words often appear together in text because they both express posi-
tive and harmonious emotions. Such a relationship is reflected by their strong textual semantic
similarity value (0.58). When considering the spatial relationships among the places that these
two words describe in our experiment, the spatial semantic similarity between these two words
is also high (0.57). Based on an individual’s cognition and understanding of general vocabu-
lary, these two words, which vividly express feelings, may have nothing to do with ‘beer’-as
reflected by the textual semantic similarity: the similarity between ‘smile’ and ‘beer’ is only
0.27, and the similarity between Tove’ and ‘beer’ is only 0.23. However, when spatial factors
are considered, the relationship between these two words and ‘beer’ is much closer; the spatial
semantic similarity between ‘beer’ and ‘smile’ is greater (0.53), while that between ‘beer’ and
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Fig 10. Visualization of the spatial frequency distribution of the co-occurrences of the three example words: ‘beer’, love’ and ‘smile’, the
map derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.9010

‘love’ is also greater (0.57). The co-occurrence distributions of these three words are shown in
Fig 10.

The entire map is divided into many spatial windows (10x10km), and the different window
colours represent how many words appear in the same window. In Fig 10, the windows in
dark and blue are widely distributed, which reflects high consistency in the spatial distribution
of the three words. The reason for this phenomenon can be explained as follows: if ‘beer’ is
available at a given location, the geospatial context tends to be relaxed and happy, and words
that describe positive emotions, such as Tove’ and ‘smile’, are frequently used nearby. How-
ever, the spatial relationships among these three words are difficult to extract using only tradi-
tional textual semantic similarity models.

In addition, several words related to ‘beer’ were chosen to demonstrate the difference
between the two types of semantic similarity more clearly. As shown in Table 5, some words

Table 5. Two types of semantic similarities and the ranks between ‘beer’ and other words.

s-SIM s-SIM rank Word t-SIM rank t-SIM
0.524 1 bar 90 0.307
0.518 2 restaurant 28 0.417
0.509 4 hotel 77 0.317
0.498 10 party 683 0.211
0.476 50 love 1709 0.163
0.469 74 rose 352 0.239
0.468 76 dusk 1504 0.172
0.468 77 hot 396 0.234
https://doi.org/10.1371/journal.pone.0236347.t1005
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that have close spatial semantic similarities with ‘beer’, such as ‘bar’ and ‘restaurant’, have
high rankings and are highlighted. From the spatial context perspective, the close relationships
between these words and ‘beer’ are intuitive and rational because ‘bar’, ‘restaurant’ and
‘party’ are places where you can get ‘beer’. However, these words are not nearly as closely
related to ‘beer’ in textual semantics (they have much lower ¢-SIM ranks). Moreover, some
other words that appear in the table, e.g., love’, ‘rose’, ‘dusk’, and ‘hot’, do not have apparent
geographical coordinates in traditional corpora, and they describe a surrounding in which the
occurrence of ‘beer’ is unexpected. The similarities between ‘beer’ and these words were
detected by our method but not by the textual semantic similarity measure, in which only the
co-occurrences of words in documents are considered, such as the top-ranked words in this
case, i.e., ‘brewery’, ‘ale’, and ‘wine’ (not listed in the table). A very interesting example is the
word ‘dusk’, which is found to be highly related to the word ‘beer’ by our method. According
to a report by the famous European beer company SABMiller [68], on a typical working day,
the average time at which Europeans have their first beer is 18:08, and the average time at
which they consume their last beer is 22:10. In addition, ‘dusk’ is the period from after sunset
to just before nightfall, at the very end of astronomical twilight, which overlaps with the time
that people usually have a beer.

Overestimation of spatial semantic relations

The other issue is the overestimation of the spatial semantic relation. In Fig 8, ‘sailing’, ‘surf-
ing’, and ‘autocross’ are three types of outdoor activities so that they have higher textual
semantic similarity; the similarity value between ‘sailing’ and ‘surfing’ is 0.55, the similarity
value between ‘sailing’ and ‘autocross’is 0.43, and the similarity value between ‘surfing’ and
‘autocross’is 0.52, as shown in Fig 9. In the spatial semantic similarity model, the similarity
between ‘sailing’ and ‘surfing’is 0.37, as shown by the distribution in Fig 11(A). However, the
similarities between ‘sailing’-’autocross’ (0.06) and ‘surfing’-‘autocross’ (0.04) are both weak,
which suggests that the similarity decreased when spatial semantic information was considered
for these three words. The reason for this difference is clearly shown in Fig 11(B) and 11(C).
Autocross usually occurs inland, but sailing and surfing are usually performed in coastal areas.
In this case, when the spatial information associated with words is included in the calculation
of semantic similarity, the similarity will decrease compared to the value when considering
only the textual semantic similarity.

Scale effect of spatial semantic similarity

Furthermore, the spatial semantic similarity between two words has a scale effect. In other
words, when the scale of observations change, the spatial semantic similarity changes accord-
ingly, and implicit information about the spatial relationships among words can be revealed
from the corresponding trend. In the calculation of spatial semantic similarity for word pairs,
when selecting sliding windows of different sizes (from 1 km to 100 km in this case), the peak
rate of increase of the spatial semantic similarity for different word pairs occurs at different
scales. We classify the window size into three groups: neighbourhood, city and national scales.
As described in Table 2, three different change patterns can be observed for different word
pairs. The word pairs associated with each pattern are illustrated in Fig 9. Notably, in the
group with high similarity at the neighbourhood scale, the word pairs are related to daily life;
they include ‘love’-’smile’, ‘bar’-’beer’, and ‘flower’-’house’. These word pairs are often used
in the same location. In the group with high similarity at the city scale, the common word
pairs are ‘surfing’-’autocross’, ‘piazza’~’chateaw’, and ‘street’-’metropolis’, as they are usually
found in the same city. For the group in which differential similarity peaks at the national
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Fig 11. (a) Spatial distributions of ‘surfing’and ‘sailing’. (b) Spatial distributions of ‘surfing’ and ‘autocross’. (c) Spatial distributions of
‘sailing’ and ‘autocross’, the map derived from open source Holoviz (https://holoviz.org/).

https://doi.org/10.1371/journal.pone.0236347.9011

<

sea’~’highway’, and ‘speedway’-’coastline’
appear because these word pairs can usually be found in the same country. This indicates that
the scale effect of spatial semantic similarity is not random but can reflect the ‘characteristic
scale’ of similarity, i.e., the scale at which two words are mostly closely related in terms of spa-
tial semantics.

scale, word pairs such as ‘canyon’-’midland’,

Other discovery from spatial semantic similarity

Spatial semantic similarity can also reflect other implied spatial phenomenon and knowledge
of human language. Such as spatial distribution of business activities and cultural influence.
For example, ‘Chevrolet’ and ‘Audi’ are both car brands; therefore, they have a high probability
of being mentioned together. Their textual semantic similarity is 0.66 —higher than their spatial
semantic similarity value of 0.38. It can be explained from a spatial perspective. ‘Chevrolet’ is
an American brand and therefore has a high probability of appearing in the United States, as
shown in Fig 12, while ‘Audi’ is a German brand that has a high occurrence probability in Ger-
many and other nearby European countries.

Similarly, spatial semantic similarity can reflect the scope of cultural influence to some
extent. When discussing famous metropolises in Asia, ‘Beijing and ‘Tokyo’ are both capitals
and often appear together in text. The corresponding textual semantic similarity is 0.59, which
is higher than their spatial semantic similarity (0.15). As shown in Fig 13, most instances of
‘Beijing and ‘Tokyo’ occur in the country in which they are located. In addition, ‘Tokyo’ is dis-
tributed in Europe and the United States, and ‘Beijing’ is distributed in Asian and Eastern
European countries.

However, this research has some limitations. The spatial semantic analysis focused on
global-scale issues and ignored the detailed and implicit regional differences of spatial seman-
tic information. Local semantics should also be considered in future work. Moreover, this
study utilized only one data source of user-generated tags as the corpus. The statistical bias

0 70000000km FE N

Fig 12. Spatial distributions of ‘Chevrolet’ and ‘Audi’, the map derived from open source Holoviz (https://holoviz.org/).
https://doi.org/10.1371/journal.pone.0236347.9012
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Fig 13. Spatial distributions of ‘Beijing’ and ‘Tokyo’, the map derived from open source Holoviz (https://holoviz.org/).
https://doi.org/10.1371/journal.pone.0236347.9013

that exists based on the profile of typical users will inevitably yield biased results. Efforts to
quantify and correct this bias are needed in the future.

Conclusion

In this paper, based on the measurement of traditional textual semantic similarity between
words, we design a sliding geospatial context window to detect and measure the spatial seman-
tic similarity of words. With this method, we process the location and topic relationships asso-
ciated with geo-related information as a whole. We verified the method through a series of
experiments with simulated and real-world data. Improving upon previous spatial correlation
measurements for spatial entities (schools, restaurants, markets, etc.) and activities (crimes,
epidemics, etc.), our model includes many words widely related to daily life (happy, family,
smile, etc.), and meaningful geographic implicit knowledge is included at different spatial
scales. By analysing the correlations among the similarities based on the spatial semantic and
textual semantic models of words, we found that we can greatly compensate for the lack of
implied geospatial information considered in the textual semantic similarity measured by
word-embedding methods by applying our spatial semantic similarity model. However, in this
paper, the comparison between Word2vec and our method is based on their co-occurrence
matrixes without deeper analysis and process. One of our important directions for future work
would be either using genetic software for creating embeddings, or trying different transfor-
mations and dimension reduction strategies on both the spatial and textual co-occurrence
matrices. This study verified that beyond the textual semantics of words that can be identified
with word-embedding models, the spatial semantics of words provide a new dimension to
assess the similarity between words.

This approach introduces spatial semantics when considering semantic similarity between
words, and it has the potential to improve the quality of contextual and geographic relevance
of recommendation systems that take semantics into account. Furthermore, this approach
contributes to real spatially aware query systems [24, 69, 70], and it complements semantic
research on linguistics from the perspective of spatial cognition.
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