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In brief

VR-SASE, an open-source virtual reality

tool for visualizing and analyzing

dendritic spines, integrates with DANDI

Archives to ensure compliance with the

NIH data sharing mandate. Our platform

surpassed the accuracy of gold-standard

algorithms, automating calculations of

dendritic spine density, length, volume,

and surface area. A VR-SASE analysis

recreated the results from a study of

dendritic spines in the injured spinal cord.

VR-SASE enhances neuroanatomical

research, facilitating new discoveries in

neuroscience.
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THEBIGGERPICTURE To know how the nervous systemworks, it is fundamental to understand the anatomy
of neurons. In particular, studying dendritic spines is essential to understand how neurons interact. Dendritic
spines are small protrusions along neurons that assist with signal transmission between brain cells. Virtual
reality (or VR) imaging tools have allowed detailed study of dendritic spines by enabling 3D visualization of
these structures. ‘‘VR-SASE’’ is an open-source VR structural analysis software ecosystem designed for
the intuitive analysis of dendritic spines. Enabling accurate and automatic analysis pipelines to study den-
dritic spines is important to further our understanding of conditions such as spinal cord injuries, which affect
dendritic spines’ morphological properties.
SUMMARY
Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are
vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have
allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for
analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual re-
ality (VR) structural analysis software ecosystem (coined ‘‘VR-SASE’’) that offers a powerful, intuitive
approach for analyzing dendritic spines. Our validation process confirmed the method’s superior accuracy,
outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE work-
flow automatically calculates keymorphological metrics, such as dendritic spine length, volume, and surface
area, and reliably replicates established datasets from published dendritic spine studies. By integrating the
Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through
DANDI Archives, satisfying the NIH data sharing mandate.
INTRODUCTION

In the centuries following Ramon y Cajal’s discovery of dendritic

spines, a plethora ofmethodologies emerged to study them. Den-

dritic spines are microscopic structures that serve as morpholog-

ical sites of synaptic contact between neurons in the brain and

spinal cord. Importantly, dendritic spinemorphology directly influ-

ences how electrical inputs through synapses are received, trans-

duced, and ultimately processed by the postsynaptic neuron.1 As

such, dendritic spine structure plays a critical role in supporting

synaptic and circuit functions, making them a vital visual proxy

for understanding the workings of the nervous system.2 In pathol-

ogy, abnormal dendritic spine structures (termed ‘‘dendritic spine

dysgenesis’’) are observed in multiple neurological and psychiat-
Patte
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ric disorders including autism, schizophrenia, Huntington’s dis-

ease, chronic pain, and Alzheimer’s disease.3,4

Despite decades of intensive research and development

efforts and recent innovations,5–9 no single solution has demon-

strated superiority. By offering a standardized endpoint for den-

dritic spine studies, DANDI Archives offer a unique opportunity to

unify these diverse methodologies. Addressing a critical need to

comply with the NIH data sharing mandate, VR-SASE (virtual re-

ality structural analysis software ecosystem) can harmonize

these disparate practices in Blender, an open-source three-

dimensional (3D) modeling platform. In this study, we utilized

VR, Neurodata Without Borders (NWB), Blender, and DataJoint

technology to develop a DANDI-compatible dendritic spine

morphology analysis platform.10
rns 5, 101041, September 13, 2024 Published by Elsevier Inc. 1
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Figure 1. Current and proposed ecosystems
Current ecosystem: the VR-SASE workflow is shown on line 1 with bold text. We used ImageJ for pre-processing, setting image thresholds, and model creation.

Post-processing began with segmentation in the Open Brush VR illustration application, where discs were placed to ‘‘slice off’’ dendritic spines. The remainder of

segmentation was completed in Blender and automated and analyzed with the VR-SASE add-on. BlenderNeuron, iLastik, and NeuroMorphoViz, shown on line 2,

(legend continued on next page)
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Given the significance of dendritic spine morphology in un-

derstanding neural circuit function and pathology, it is crucial

to unify these diverse methodologies. Here, we developed a

VR-SASE, a dendritic spine morphology analysis platform

compatible with DANDI Archives and, therefore, the only den-

dritic spine analysis tool that creates FAIR-compliant data.

FAIR data are findable, accessible, interoperable, and reus-

able and a requirement for researchers who receive funding

from the NIH. Data archived/shared on DANDI Archives satisfy

the criteria for FAIR compliance.11 VR-SASE features an

accessible user interface (UI), standardized data, automated

data segmentation/extraction, advanced analytics, and

low cost.

Our workflow from raw imaging data to DANDI Archives is

shown in Figure 1, line 1, with bolded text in context with

prominent dendritic spine and neuromorphology analysis tools.

We used ImageJ for pre-processing, e.g., thresholding and

model creation. iLastik,12 CellRemorph,13 NeuroMorphViz,14

and BlenderNeuron,15 on line 2, may provide superior pre-pro-

cessing workflows, and we encourage their use; however they

do not support DANDI Archives. Likewise, the prominent den-

dritic spine analysis platforms (line 3) are not DANDI compatible.

Neurophysiology platforms incorporating VR are also shown on

line 4; however, they support neither dendritic spine analyses

nor DANDI Archives.

Our post-processing began in the Open Brush VR environ-

ment, where we placed discs on 3D neural models to ‘‘slice

off’’ the dendritic spines. The VR-SASE add-on for Blender, an

open-source 3D modeling program, automates the remainder

of segmentation, performs analyses, and facilitates data

management and integration, ultimately creating NWB

files, collectively termed the dandiset, when deposited on

DANDI Archives.16 We propose a Blender-centric architecture

to leverage the strengths of each platform (Figure 1, proposed

ecosystem). Elements common to all studies are shown with

bold text.

We assessed the utility of VR-SASE using three ap-

proaches: first, we compared VR-SASE results with those

obtained using conventional analyses to study dendritic

spines in spinal cord injury (SCI) and replicated the original

key findings. Second, we benchmarked VR-SASE against

the DIADEM (digital reconstruction of axonal and

dendritic morphology) challenge.17 VR-SASE outperformed

the DIADEM model in terms of accuracy and may provide bet-

ter utility than existing methods for analyzing dendritic spines.

Although expert segmentation is more efficient, our usability

study demonstrated accessibility for new users. By bridging

the gap between DANDI Archives and Blender, VR-SASE

enabled us to create a FAIR-compliant dataset of dendritic

spine morphometries. This promotes FAIR compliance for all

3D dendritic spine morphology analysis platforms/methodolo-

gies, fostering collaboration across disciplines and commu-

nity-led development.
are promising alternatives to ImageJ pre-processing. Numerous dendritic spin

however, none are compatible with DANDI Archives. Line 4 shows neural anal

dendritic spine analyses. Proposed ecosystem: Blender and the SONOTA data s

analysis platforms made their segmented models available to/compatible with

Archives, promoting FAIR data throughout neurophysiology.
RESULTS

Neurolucida, ImageJ, and VR-SASE comparison
highlights advances in visualization, accuracy, and
precision
Figure 2 provides a visual comparison of conventional dendritic

spine analysis platforms, Neurolucida and ImageJ, and VR-

SASE. A representative neuron traced in Neurolucida is depicted

in Figure 2A, and an enlargement shows individual spines marked

with thin red lines in Figure 2B. Figure 2C shows the same spines

visualized in VR-SASE. Figure 2D shows the leftmost spine from

Figure 2B in ImageJ, maximally enlarged and processed to

enhance visibility. Red lines, placed by four experts, capture the

length of the spine, demonstrating the inherent variability of

manual measurements. In contrast, the same spine is shown

from the VR-SASE workflow (Figure 2E), with greatly enhanced

resolution. The spine tip is clearly marked by an orange sphere

(indicated by an arrow), minimizing ambiguity in length measure-

ments. Overall, VR-SASE offers superior visualization with

increased accuracy and precision.

To demonstrate the usability of VR-SASE, we taught users

how to interact with the Open Brush UI. After successful comple-

tion of our VR training protocol (see experimental procedures),

videos were filmed showing trainees segmenting a representa-

tive dendrite section, as can be seen in Figures 2F and 2G. The

dendrite shown in Figure 2F was segmented in Open Brush by

an expert, and a trainee segmented the dendrite shown in Fig-

ure 2G. Differences in detected segments between expert

versus trainee are marked with orange asterisks, and the spine

indicated in Figure 2G is below our size threshold and would

be removed from the dataset by our DataJoint filtering criteria,

enhancing accuracy and reducing variability between re-

searchers. The duration of the recorded segmentation shows

the effect of training on VR-SASE’s segmentation time. While

trainees can rapidly acquire VR segmentation skills, VR-SASE

post-processing is more efficient with experience. ‘‘Grabbing’’

the ‘‘slicer’’ disc with a VR controller was the greatest challenge

for trainees. The increased VR-SASE segmentation time arises

from imperfectly sliced dendritic spines, requiring manual

corrections.

SCI increased abnormal dendritic spine density in the
proximal region
To validate VR-SASE, we analyzed a subset of spinal cord

neuronal data18 presented by Dr. Kauer et al. at the 2023 Society

for Neuroscience poster presentation (‘‘Pak1 inhibition with

romidepsin attenuates H-reflex excitability after SCI’’) and at

the 2022 Paralyzed Veterans of America in Dallas, Texas, which

is currently in press at Journal of Neurophysiology.19

In this study, blinded investigators performed a Sholl analysis

with Neurolucida to examine changes in the distribution of den-

dritic spines in three regions around the neuron’s soma: proximal

(0–30 mm), medial (30–60 mm), and distal (60–90 mm). Dendritic
e analysis platforms, shown on line 3, have custom 3D modeling platforms;

ysis platforms that utilize VR; however, these platforms are not designed for

tandard have the potential to unite these diverse workflows. If dendritic spine

Blender, then the VR-SASE Blender add-on would bridge the gap to DANDI
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Figure 2. Neurolucida, ImageJ, and VR-SASE comparison highlights advances in visualization, accuracy, and precision

(A) A neuron traced in Neurolucida.

(B) An enlargement showing spines as an overlay marked with thin red lines denoting spines.

(C) The spines in (B) in VR-SASE with much greater clarity and detail.

(D) The leftmost spine maximally enlarged. Four expert analysts placed red lines denoting length, indicating the high degree of variability inherent in manual

measurements.

(E) An enlargement of the leftmost spine shown in (B) and (D). The spine tip (arrow) is marked with a sphere to aid in visualization, highlighting how VR-SASE

decreases ambiguity in length measurements. Scale bar, 1 mm.

(legend continued on next page)
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spines were traced on sequential images spanning each

dendrite using Neurolucida’s ‘‘stack scrolling’’ interface. This

method requires switching between images to mark the end-

points of the spine.

Using Neurolucida, the SCI group had a higher proximal total

spine density (unpaired t test: sham [M = 0.1513] and injured

[M = 0.3734]; p = 0.0058, t = 3.041, df = 23, SEM = 0.07303;

Figure 3A), thin spine density (unpaired t test: sham [M =

0.1321] and injured [M = 0.2617]; p = 0.0322, t = 2.280, df =

23, SEM = 0.05681; Figure 3B), and mushroom spine density

(Mann-Whitney test: sham [M = 0, n = 9] and injured [0.06399,

n = 16]; p = 0.0356, U = 35.50 ; Figure 3C).

DataJoint’s powerful querying/filtering tools enhance VR-SASE

by excluding dendritic spines that do notmeet publishedmorpho-

logical parameters. Upper and lower bounds for dendritic spine

volume were established as 0.01 mm for small thin spines to

0.8 mm20,21 for large mushroom spines. 3 mm is established as

the maximum length for dendritic spines on motor neurons, so

we used this criterion.22,23 Peters and Kaiserman-Abramof estab-

lished a 0.5 mm minimum length for cortical spines24; however,

Harris found dendritic spines as short as 0.2 mm in the hippocam-

pal region.20,21 There is currently no consensus regarding themin-

imum length of dendritic spines on motor neurons, so we used

Harris’s 0.2 mm due to the abundance of very small protrusions.

The resulting data subset16 contained dendritic spines whose

volumewas between 0.01 and 0.8 mm3 and whose length ranged

between 0.2 and 3 mm. DataJoint refined our pool of 858 poten-

tial dendritic spines to 636 dendritic spines. 94 potential spines

were excluded for failing to meet minimum size criteria, and 24

were excluded for exceeding it (supplemental information).

Moving freely in a VR space, VR-SASE enabled users to visu-

alize and segment neuroanatomy from any perspective. Using

our pipeline, we analyzed images from the Kauer et al. dataset.19

Our spine density findings (Figures 3D–3F) are largely in line with

their results. We focused our analysis on the proximal region

and, likewise, found an increase in total spine density (Mann-

Whitney test: sham [M = 0.09019, n = 9] and injured [M =

0.3318, n = 20]; p = 0.0017, U = 26; Figure 3D). We also observed

the same trend for thin spine density (Mann-Whitney test: sham

[M = 0.09019, n = 9] and injured [0.09019, n = 9]; p = 0.0043, U =

31; Figure 3E). We found mushroom spine density that ap-

proached significance (Mann-Whitney test: sham [M = 0, n = 9]

and injured [M = 0, n = 20]; p = 0.0536, U = 54; Figure 3F). These

findings are in linewith previous results showing that SCI induces

an abnormal increase in dendritic spine density.2,25–27

SCI induces abnormal dendritic spine morphology
Changes in the size and shape of dendritic spines can alter how

signals are transmitted and how efficiently synapses function,

impacting the physiology of neurons.2 Following precedent set

by our group,19,25 we measured spine length manually using Im-

ageJ, tabulating values in Excel. These findings showed that SCI

led to an increase in the total length of dendritic spines,

compared to the sham, driven largely by an increase in thin

spine length (unpaired t test: sham [M = 0.4020] and injured
(F) A segmented dendrite created by a trainee from our usability study. Scale ba

(G) The same dendrite as in (F) from our VR-SASE expert.

(H) While users can quickly acquire basic Open Brush skills, segmenting with VR
[M = 0.5647]; p < 0.0001, t = 4.893, df = 21, SEM = 0.3325; Fig-

ure 3G). This is in agreement with our published work25 and is a

general trend in neurons after SCI.27,28 We did not find that the

length of dendritic spines increased following SCI (Mann-

Whitney test: sham [M = 0.4283, n = 9] and injured [M =

0.4206, n = 20]; p = 0.5315, U = 76; Figure 3H).

We next sought to leverage the additional measures provided

by VR-SASE to quantify how contusion injury induces abnormal

morphological changes in dendritic spines. We did not find any

significant differences between groups for thin spine surface

area (Figure 3I). However, we found that thin spine volumes

were smaller in the injured animals (Mann-Whitney test: sham

[M = 0.06853, n = 94] and injured [M = 0.04969, n = 526]; p =

0.0131, U = 20,759; Figure 3J). We also found a significant differ-

ence between the volume-to-surface area ratio between injured

and uninjured animals. The injured group had a significantly

lower ratio (Mann-Whitney test: sham [M = 0.08784, n = 94]

and injured [M = 0.07661, n = 526]; p = 0.0012, U = 19,562; Fig-

ure 3K). We removed all spines less than 0.1 mm3 and found that

this effect was eliminated (data not shown). By restricting our

analysis to spines with volume less than 0.1 mm3, we confirmed

that this effect was due to the tiny spines (Mann-Whitney test:

sham [M = 0.07719, n = 61] and injured [M = 0.06928, n = 409];

p = 0.0160, U = 10,096; Figure 3L).

The time required to generate these analyses was substan-

tially decreased when compared to the same analyses carried

out in Neurolucida and ImageJ. Positioning the disc slicers on

VR neurons took an average of 17 min per neuron (supplemental

information), representing a substantial decrease in researcher

effort. By augmenting length and density measures with surface

area and volume, VR-SASE enhances our understanding of how

structural changes in dendritic spines contribute to pathological

states. By providing these measures efficiently, VR-SASE accel-

erates and expands our research capabilities.

VR-SASE validated with the DIADEM gold standard
The DIADEM challenge was a widely lauded effort consisting of

elite research groups pitting automated neural reconstruction al-

gorithms against each other, generating neural models long

considered to be the gold standard.29 To assess the accuracy

of our VR segmentation, we reconstructed a drosophila olfactory

neuron, OP-09, from the DIADEM final round.18 We then

compared our reconstructed neuron (Figure 4B) with the gold-

standard reconstruction (Figure 4C) by super-imposing them on

the maximum projection of OP-09 (Figure 4A). Figure 4D shows

our reconstruction of OP-09 on top of the maximum projection.

Deviations from the true morphology are visible as green around

the edges. The gold-standard reconstruction (Figure 4E) has

58%more green visible, indicating that our tracing is more accu-

rate (supplemental information). Our segmentation of OP-09 is

shown in Figure 4F. Figure 4G is an enlargement showing the

placement of the teal slicer discs. VR-SASE used the teal discs

to slice the complex neuron into its component pieces. Each sec-

tion was assigned a random color, highlighting segmentation ac-

curacy, as well as Blender’s utility in visualizing information.
r, 10 mm.

-SASE workflows takes longer when users are less experienced.
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Figure 3. SCI increases proximal dendritic spine density and abnormal morphology

(A–C) VR-SASE recreated the Neurolucida-traced findings of Kauer et al.19 Their analysis showed that compared to sham, the SCI group had a significantly higher

proximal total spine density (A), thin spine density (B), and mushroom spine density (C).

(D–F) We likewise found in the SCI group significantly higher proximal total spine density (D) and thin spine density (E), while mushroom spine density approached

significance, as shown in (F).

(legend continued on next page)
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We examined themodel in Blender using its native 3D-Printing

add-on and found the volume to be 1,216.1861 mm3 and the sur-

face area to be 3,061.1194 mm2. The time to position the teal

discs slicers was just under 15 min. The benchmark for manual

reconstructions of simple neurons is approximately 20 min,

although complex neurons, such as OP-09, take longer.17

By reconstructing OP-09, a gold-standard neuron with VR-

SASE, we demonstrated that the accuracy of VR-SASE sur-

passed the gold standard by 58% (supplemental information).

Additionally, VR-SASE provided additional meta-information

about the neuron in its ability to generate insights with volume

and surface area data.

Advanced analytics with VR-SASE
To advance the goal of uniting strengths of diverse dendritic

spine analysis methodologies, we recreated those pioneered

by Pchitskaya et al.7 and Kashiwagi et al.30 Pchitskaya et al. em-

ployed a method to aid in dendritic spine classification by

creating a cord length distribution histogram (CLDH).7 This tech-

nique measures the internal cords of dendritic spines, creating a

histogram that can be used to distinguish between dendritic

spine clusters. Figure 5A shows a dendritic spine. In Figure 5B,

the surface of the spine has been removed to show its internal

cords. Pchitskaya et al. generated their cords randomly, which

could lead to under-sampled regions. To ensure complete

coverage, we created cords at every vertex in the model. We

excluded nearest-neighbor vertices and sampled one in every

ten of their possible connections, generating a rich collection

of cords. Figure 5C depicts the CLDH for the dendritic spine.

This underscores how data standardization enabled VR-SASE

to employ analysis techniques.

Next, we sought to expand VR-SASE’s capabilities by calcu-

lating the convex volume index (CVI) for a dendritic spine. Fig-

ure 5D shows the dendritic spine from Figure 5A with its head

surrounded by a convex hull (gold mesh), recreating the method

used by Kashiwagi et al.30 Figure 5E shows this method used to

quantify the concavity of the entire dendritic spine. Applying this

measure of dendritic spine concavity to DataJoint queries, as we

did with dendritic spine length and volume, can foster innovative

dendritic spine clustering techniques.

DISCUSSION

Dendritic spinemorphology dynamically changes in pathological

conditions. Researchers need effective tools to study these

changes; however, it is imperative for all dendritic spine analysis

platforms to create FAIR data. To meet these needs, studies

conducted using VR-SASE can be preserved and shared via

the free online repository DANDI Archives.16 We found that VR-

SASE enhanced visualization, providing accessible controls,

semi-automated segmentation, and sophisticated DataJoint an-

alyses. The VR-SASE Blender add-on automated key morpho-
(G and H) Kauer et al. found that SCI mice had significantly longer thin dendrit

significant difference between groups (H).

(I and J) Using the additional metrics provided by VR-SASE, we assessed thin spin

surface area; however, injured mice had dendritic spines with less volume.

(K and L) We assessed the volume-to-surface area ratio of thin spines and found

greater than 0.1 mm3 but was observed in dendritic spines smaller than 0.1 mm3
logical measures, including dendritic spine length, volume, and

surface area. These parameters play crucial roles in understand-

ing electrical interactions,31,32 synaptic strength,33 and calcium

dynamics.34,35 Automated collection of morphological data em-

powers VR-SASE users to interpret their anatomical data in less

time with less subjective error risk.36,37 Integrating NWB and

DataJoint enhances adherence to FAIR principles,11 improves

data interoperability, streamlines data organization, ensures da-

taset completeness, and minimizes human errors.36

We applied VR-SASE to investigate dendritic spine changes

following SCI, demonstrating its accuracy and utility by recreat-

ing Kauer et al.’s findings19 that SCI causes abnormal dendritic

spine density. We extended their findings by showing that SCI

causes abnormally decreased thin spine volumes with signifi-

cantly smaller volume-to-surface area ratios.34,35,38,39 In this

vein, while our 0.2 mmminimum length criteria include fine struc-

tural resolution, these may not fall within identity criteria for den-

dritic spines in other tissue types or analytical approaches.24

Nonetheless, our finding of decreased volume-to-surface area

ratio in tiny spines of injured mice demonstrates VR-SASE’s

ability to produce this important metric.

We further validated the accuracy of our VR-SASE method by

reconstructing a Drosophila olfactory neuron from the DIADEM

challenge, finding our results in closer agreement with the

gold-standard reconstruction. Our reconstruction depicted the

neuroanatomy more accurately, demonstrating the effective-

ness of VR-SASE in creating extremely accurate models.

Blender is an optimal platform to integrate diverse modalities,

as it is already widely used in academic research. A recent

Google Scholar query for ‘‘Blender Model’’ returned more than

200,000 results from diverse fields. The use of VR is making sub-

stantial inroads in neuroanatomical studies40–43 andwill continue

to evolve. Blender is amenable to machine learning approaches,

such as PointNet, which would further expedite analyses.44

Blender’s versatile Boolean modifiers can segment virtually

any 3D shape, making VR-SASE an excellent hub for training

AI on 3D models throughout biology.

Our proposed Blender-centric architecture would unite the

current dendritic spine ecosystem (Figure 1). BlenderNeuron,

NeuroMorphoViz, and iLastik pre-processing workflows may

expedite pre-processing. NeuroMorphoViz currently integrates

with Blender and is developing dendritic spine segmentation

tools (https://github.com/BlueBrain/NeuroMorphoVis). Basu

et al. developed a machine learning algorithm automating seg-

mentation; however, although this system leverages 3dSpAn’s

pioneering automated dendritic spine segmentation algorithm,

it requires manual corrections via their 2D custom UI.9 Using

3dSpAn’s pioneering automated dendritic spine segmentation

algorithm but post-processing 3dSpAn models in Blender/VR-

SASE may prove more effective than either methodology alone.

Similarly, combining VR-SASE DataJoint queries with the auto-

mated dendritic spine population sorting algorithms featured
ic spines than sham (G) using ImageJ19; however, VR-SASE did not show a

e surface area (I) and volume (J). No differences were found between groups for

that the injured group had decreased values (K). This was not true of spines

(L).
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Figure 4. VR-SASE validated with the DIADEM gold standard

(A) OP-09, a neuron from the DIADEM challenge. Scale bar, 10 mm.

(B and C) VR-SASE reconstruction (B) and gold-standard reconstruction (C).

(D and E) We super-imposed the reconstructions, respectively, on the maximum projection (A). We quantified the green regions and found the gold-standard

reconstruction had 58% more green visible, indicating that VR-SASE depicted anatomy more accurately.

(F) Results of segmentation indicated with different colors.

(G) Expanded view showing an enlargement demonstrating how black slicer discs were placed to segment the neuron.
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Figure 5. VR-SASE post hoc analyses demonstrate advanced analytic capabilities

(A) A dendritic spine.

(B) Interior of the spine showing cords created with a post-hoc analysis in VR-SASE.

(C) The CLDH, a distribution of their lengths. Ptichkaya et al. demonstrated that this technique improves classification accuracy.8 Their proposed method

randomly creates cords in the interior of the spine, which introduces inaccuracies by over- and under-sampling regions. We mitigate these errors by creating

cords at each vertex in the 3D model of the spine.

(D and E) Our post-hoc analysis for concave volume index, the difference in volume between a spine head and its convex hull, which is a shell around the spine

without concave surfaces. This method was pioneered by Kashiwagi et al. to assess dendritic spine head morphology.30 Given that the strict classification of

dendritic spines relies on the presence of an indent (concave surface),39 this measure has utility in dendritic spine clusterization and could be augmented still

further with DataJoint advanced analytics.
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by DXPlorer could greatly enhance both. Moreover, DXPlorer

provides metrics for dendritic spine necks, morphology critical

to pain studies.

Our proposed framework replaces Open Brush, the VR

illustration application we used, with Blender 3D, Blender’s

dedicated VR environment (Figure 1). VR-SASE workflows are

compatible with Blender 3D or any other VR application featuring

3D model manipulation (e.g., scale, rotate, move) and import/

export. Moreover, Blender3D may enable pre- and post-pro-

cessing completely within its virtual environment.

We took preliminary steps toward this proposed framework by

conducting two post hoc analyses. First, by creating a CLDH

with improved cord distribution, we expanded on the methodol-

ogy proposed by Pchitskaya et al.7 Second, we calculated

the CVI for a dendritic spine head using the method published

by Kashiwagi,30 which we applied the entire dendritic spine.

Augmented with DataJoint’s analytics, this measure of dendritic

spine concavity could refine collections of dendritic spines in the

same manner our study assessed only spines satisfying estab-

lished length and volume parameters. Furthermore, our CVI

data also demonstrated that VR-SASE can segment dendritic

spine necks, a step toward quantifying this vital compartmental

morphology.32

Beyond the focus on dendritic spines, VR-SASE has the

potential for diverse biomedical research applications. For

example, the platform could analyze axonal morphology,

neuronal circuitry, or even organ reconstructions through the

body. Compatibility with electron microscopy workflows

makes VR-SASE a broadly applicable dendritic spine analysis

platform and facilitates the interchange of 3D formats via FAIR

repositories, such as NeuroML-DB.15 An inherent strength of

VR-SASE lies in its standardized data, enabling integration with

existing tools. We implemented advanced DataJoint functions

in a Jupyter notebook, so our advanced DataJoint analytics

can be recreated from this file. DANDI Hub and Jupyter Lab

facilitate Jupyter Notebook integrations with other programming

languages, including Julia, R, and MATLAB. This interoperability

across diverse programming languages contributes to a richer

understanding of dendritic spine dysgenesis.

In conclusion, VR-SASE marks a substantial advancement

in neuroanatomical research. We created a dendritic spine

morphology dandiset and a pipeline enabling access to

the FAIR-compliant DANDI Archives for diverse 3D

methodologies.

Limitations
Our study focused on dendritic spine density, volume, and sur-

face area; however, branch order diagrams are a highly utilized

tool for studying dendrite morphology.23 This could be ad-

dressed in future work bringing VR-SASE into compliance with

the SONOTA data standard. Depicted by the blue bar in Figure 1,

all data concerning the relationship between NeuroML-DB

dendrite branches and nodes should comply with the SONOTA

data standard.45 Because VR-SASE is a functioning pipeline to

DANDI Archives, this work represents significant progress

toward uniting these diverse methodologies.

The VR-SASE workflow should be supplemented with addi-

tional pre- and post-processingmethods. Our 3Dmodel creation

protocol, meant to provide the simplest solution, requires greater
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refinement. Threshold settings impact the presence and connec-

tion of dendritic spines. ImageJ’s gamma correction enhances

the contrast between dendritic spines and the background,

which could mitigate these issues.46 We encourage readers to

try the BlenderNeuron15 and iLastik12 pre-processing workflows

as alternatives to our ImageJ-based method.

Our ‘‘catch-all’’ classification for thin spines contains 25

disconnected spines. This likely includes mushroom spines

disconnected due to their faint necks. An additional post-pro-

cessing review may resolve the small discrepancy in mushroom

spine density compared to Kauer et al.19 We did not find that SCI

causes an increase in spine length, as Kauer and others have.2,4

The length measurement variability within and between the VR-

SASE and ImageJ and variations arising from stubby spine

morphology are recognized challenges in the field47,48 (see Fig-

ure S3). Moreover, a meta-analysis found an en passant tendril

miscategorized as a thin spine in the sham group. Creating a

dendritic spine morphometry dandiset (DANDI Archives dataset)

was our foremost objective, and we recognize that our pre- and

post-processing workflows would benefit from additional re-

views and refinement.

To optimize meta-data management, VR-SASE could be

extended to be compatible with the Cedar Metadata Work-

bench.34 The pandas Python library could expedite analyses,

as could automating the Sholl analysis. Manual post-processing

is occasionally necessary, prompting our creation of a dedicated

"manual segmentation" tool. While researcher involvement re-

mains crucial, Blender’s hotkeys accelerate quality control.

The open-source nature of VR-SASE promotes collaboration

and community-driven development. Researchers are encour-

aged to contribute to the platform’s improvement by sharing

code, proposing features, and reporting issues through the

GitHub repository. This collective effort fosters innovation,

accelerating the advancement of dendritic spine analysis tech-

niques. By mitigating the analysis bottleneck, VR-SASE plays a

pivotal role in reducing the time required for developing new ther-

apies and treatments. In conclusion, VR-SASE fills a critical gap

in dendritic spine analysis by integrating VR technology into a

standardized, open-source software application, marking a sig-

nificant step forward in cell biology methods.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Andrew M. Tan (andrew.

tan@yale.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Processed dendritic spinemorphology data in NWB format are available

at DANDI Archives: https://doi.org/10.48324/dandi.000723/0.240716.

1414.16

d Images, Blender files, NWB files, and analysis products (Table 1) are

available on Data Dryad: https://doi.org/10.5061/dryad.w3r2280z0.

d Blender VR-SASE add-on code and the Jupyter Computational Note-

book with DataJoint queries are available in Zenodo: https://doi.org/

10.5281/zenodo.10607576.10

d All other data supporting this paper will be shared by the lead contact

upon request.
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mailto:andrew.tan@yale.edu
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Table 1. Resources

Resource Source Identifier

ImageJ https://imagej.net/ij/download.html RRID: SCR_003070

Blender https://www.blender.org/download/ RRID: SCR_008606

Neurolucida 360 MBF Bioscience RRID: SCR_016788

Oculus Rift S Meta Platforms –

Oculus Quest 2 Meta Platforms –

Open Brush https://openbrush.app/ –

Blender - Python module installer https://cgfigures.gumroad.com/l/

pymodinstall

–

PyNWB https://pynwb.readthedocs.io/en/stable/ RRID: SCR_017452

DataJoint https://datajoint.com/ RRID: SCR_014543

Neuroinformatics Morphology Viewer https://neuroinformatics.nl/HBP/

morphology-viewer/#

–
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Image analysis workflow

Neuronal images were collected from mice that received either a contusion

injury or a sham injury.19 To identify a-motor neurons, we employed a

screening process based on data from previous studies.25,39 These neurons,

located in the ventral horn Rexed lamina IX, met the criteria of having a

soma diameter larger than 25 mm and a cell body cross-sectional area greater

than 450 mm2. For further analysis, we included only YFP+ a-motor neurons

with visible cell bodies and dendritic branches at least 45mm in length. 3D re-

constructions ofmotor neuronswere analyzed to examine dendritic spine den-

sity and distribution. Thin, stubby, and mushroom spines on each dendritic

branch were identified and marked by placing a disc to slice or segment

them apart from the dendrite. Putative mushroom spines were assessed

from orthogonal perspectives and classified as mushroom spines if their

head was wider than their neck was long, which is an established classifica-

tion.4,25,28,39 Ambiguous cases were handled by comparing the virtual

cursor with the length of the dendritic spine neck and the width of the dendritic

spine head. As with all light microscopy workflows, the resolution of dendritic

spine necks can cause mushroom spines to be classified as stubby spines.48

The stubby spines 0.2 mm in length originally described by Peters and

Kaiserman-Abramof Abramov24 are representative of the morphology we typi-

cally observed for stubby spines.

Tomeasure subtle alterations in dendritic spine densities, we pooled all non-

mushroom spines into the category ‘‘thin.’’4,25,28,39,49 Limiting our classifica-

tion to ‘‘thin’’ and ‘‘mushroom’’ enabled us to measure subtle variations in

spine distribution. Dim neurons and those with pronounced YFP puncta

were excluded from the study, as they produce digital models with high

noise-to-signal ratios, obscuring potential dendritic spines.50

ImageJ

We used v.1.535f1 of NIH ImageJ (https://imagej.nih.gov/ij/download.html) to

process images and convert them to OBJ format, which can be opened in

Open Brush (https://openbrush.app/). Note that ImageJ functionality recently

changed, and OBJ files must now be exported through the 3D Viewer Plugin.

To ensure high-fidelity conversion, clear separation between dendritic

spines and the background was necessary. To achieve this, ImageJ’s autocor-

rect brightness and contrast function was applied at the center of the image

stack. A border of each image was selected and filled using the rectangular se-

lection tool, creating a bar of known dimensions to reconstruct the scale. The

image type was set to 8 bit and then saved as a PGM file before ‘‘saving as’’ in

OBJ format. The resampling factor was set to 1 to prevent smoothing. Multiple

threshold settings were tested for each image stack, and a region was

compared with the original image stack to ensure the presence of all dendritic

spines in the region.

Segmentation with open brush

Open Brush, a room-scale VR 3D painting platform was originally developed

by Google under the name Tilt Brush but was renamed Open Brush after

they released it as open source. Open Brush is available through multiple plat-
forms, depending on VR hardware requirements. We used two VR headsets to

demonstrate platform independence (see hardware descriptions).We installed

Open Brush on the Oculus Quest 2 VR headset, produced by Meta Platforms,

using theMeta Store interface. This interface is not available on the Oculus Rift

S, so Open Brush software was downloaded through Steam, a digital distribu-

tion service.

TheOBJ files created by ImageJwere placed intoOpenBrush’smedia library,

allowing import into the virtual environment, where a blinded researcher scaled

them to the size of the room. The neural model was then "pinned" to ensure

that the slicer discs remained attached to the model. Slicers are flattened cylin-

ders created in Blender and imported from Open Brush’s media library. They

were resized and positioned to create a clean interface for when they are sub-

tracted from the 3D mesh of the neuronal reconstruction at a later stage.

For tracing procedures, themain light source within the VR environment was

positioned between the user and the neuron. This control over lighting pro-

vided clear visibility, good contrast resolution on the digitized neuronal tissue

model, and consistency between models. Dendritic spines were segmented

on one side of the dendrite, and then the user moved to the other side of the

neuron, adjusting the light to shine directly on the neuron (as above to ensure

clear visualization of the neuronal tissue model).

Segmentation with Blender add-on

We developed a custom add-on for Blender, an open-source 3D modeling

suite, using their application programming interface for the Python program-

ming language (see Figure S1). We used the CGFigures add-on to install the

PyNWB and DataJoint libraries to enable NWB file creation and database inte-

gration, respectively. Writing images to NWB files requires the Pillow library,

which we also installed in this manner.

Open Brush allowed positioning slicer discs on a neuronal model, which can

be exported as FBX files. These were imported into Blender. The models and

discs were then scaled to their original dimensions and aligned with Blender’s

coordinate system. Slicers give their names to the dendritic spines they

segment. This standardizes naming conventions without restricting the scope

of possible analyses.

To ensure data integrity, the original OBJ file of the neuronal model was re-

imported and the model from the FBX file discarded, retaining only the

correctly positioned slicer discs from VR segmentation.

Segmentation with the VR-SASE Blender add-on begins with copying all the

slicers and joining them into a single mesh with Blender’s ‘‘join’’ functionality.

The merged slicers are then applied to the neural model as the object of a

‘‘Boolean difference’’ modifier operation. This removes the portions of the neu-

ral model connecting the dendritic spines to the dendrite. The ‘‘separate

meshes’’ button on the VR-SASE segmentation tools panel creates individual

meshes of each spine.

The separated dendritic spines must have their origin updated through

Blender’s graphical UI (GUI). Then, the slicer discs must be placed in a collec-

tion. To automatically segment the dendritic spines, they were selected along

with the collection containing the slicers.
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The ‘‘segment solid spines’’ button placed each spine into its own collection,

naming both meshes after the slicer. VR-SASE created meshes containing the

base and tip of the spine, taking its name, and prepending endpoints. To

improve visualization and assist with quality control, an empty mesh was

placed at the spine, distinguishing them from manually segmented dendritic

spines.

To obtain surface area metrics, a copy of the original dendrite was created

and made hollow with the ‘‘solidify’’ modifier. Its dendritic spines were

removed as before and selected as before. Next, the ‘‘segment hollow spines’’

button was pressed, adding the surfaces to the collection with their corre-

sponding solid spine, prepending ‘‘surface’’ to their name.

Manual segmentation

We created a tool to address cases when the VR-SASE Blender add-on was

unable to segment dendritic spines. To use manual segmentation, Blender’s

mode was changed to edit mode and the spine tip was selected by clicking

its vertex or face. Pressing the manual segmentation button places the den-

dritic spine mesh into a collection containing its endpoints.

If neither automatic nor manual segmentation completes successfully, then

Blender’s native functions suffice to complete the process. In these cases, the

dendritic spine was duplicated, ‘‘surface_’’ was prepended to its name, and

the faces of its base were removed manually. When endpoints were not posi-

tioned correctly, vertices were placed manually, marking the dendritic spine

base and tip, and then joined into a single mesh whose name starts with ‘‘end-

points_’’. These strings were used to apply different logic to different object

categories when the NWB file was created.

NWB file generation

After all dendritic spines were segmented, data were written to an NWB file us-

ing the ‘‘write NWB file’’ button. The VR-SASE add-on iterates through all the

collections in Blender’s ‘‘scene collection.’’ For each collection, our add-on

calculated the dendritic spine length based on its endpoints, and Blender’s

Bmesh programming module determined values for volume, surface area,

and center of mass. These parameters along with the meta-data from the

study were written to an NWB file using the PyNWB library. From the

PyNWB library, we used OpticalChannel and ImageSegmentation packages

to save the NWB-specified meta-data. The physical parameters generated

by the VR-SASE Blender add-on were added as columns to plane segmenta-

tions, a structure provided by NWB that united data for each dendritic spine.

DataJoint integration

DataJoint is a scientific database framework streamlined for research applica-

tions (https://github.com/datajoint). We employed it for the following pur-

poses: (1) streamlining data integration, management, and analysis, (2)

providing metrics for the Sholl analysis by calculating the distance between

each spine and the starting point of the dendrite, (3) refining dendritic spine

classification by restricting morphological parameters to published criteria,

and (4) ensuring that each dendritic spine has values for length, volume, and

surface area.

The following DataJoint query identifies dendritic spines based on their

values of volume and length: mouse*session*dendrite*(image_segmentation &

’volume R "0.01% & ’volume % "0.8"’ &’length R "0.2"’ & ’length % "3"’)

*distance_to_soma.

The VR-SASE Blender add-on applied DataJoint functionality by establish-

ing a connection with a remote database using values for host, user_id, and

password provided via its GUI. This connection allows VR-SASE to use

DataJoint completeness’s criteria to ensure data segmentation completion

criteria, e.g., each spine possesses values for length, surface area, volume,

and center of mass.

We designed a customized database schema using DataJoint’s schema

definition language, where tables represented experimental entities such as

animals, sessions, dendrite morphology, and dendritic spine parameters.

The dendrite morphological data needed for the Sholl analysis are not part

of the NWB data model. We tabulated these data in a CSV file, which we inte-

grated with the VR-SASE Blender add-on. DataJoint ensured that these data

were appropriately matched with spine morphology and NWB meta-data.

The final table in our pipeline is a computed table, a class of DataJoint table

with extra integrity protection, which calculated the distance between each
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spine and the starting point of its dendrite, supplying the parameter necessary

for the Sholl analysis.

This data subset was exported as a CSV and further analyzed in Excel with

pivot tables.

Finally, DataJoint applied quality control checks to the dendritic spine seg-

mentation. Because DataJoint ensures that data are complete, it identified

dendritic spines that were missing values for length, surface area, or volume.

DataJoint integrated diverse data sources, ensured that spine morphology

data were complete, refined our classification of dendritic spines, and enabled

a Sholl analysis by calculating the distance between dendritic spines and the

start of their dendrites. VR-SASE enables researchers to deposit their analysis

results directly into a database, promoting research best practices.36

Sholl analysis

To investigate the distribution of dendritic spines relative to the cell body, we

employed a Sholl analysis, as described previously25,27,39,51,52 (see Figure S2).

We calculated the average dendritic spine density within the proximal region,

0–30 mm from the starting point of the dendrite. We utilized Blender’s native 3D

modeling features to create a vertex, marking the starting point of the dendrite.

To facilitate data binning, concentric circles were placed around this point, in-

cremented by 30 mm. We used Blender’s built-in measurement tool to find the

length of dendrites encompassed within each circle and tabulated in a CSV file

along with the coordinates of the dendrite starting point.

Using a computed table, a table class with extra integrity protection,

DataJoint calculated the distance between the center of mass of each spine

and the starting point of their dendrite using the distance function from the Py-

thon math library.

distance to soma = math:distðspine center of mass; soma contact pointÞ

To integrate the measured dendrite length data with the spine morphology

data and enable further analysis, the Blender VR-SASE add-on linked the

CSV file containing the dendrite starting point coordinates and dendrite length

measurements to the DataJoint Pipeline, where it was associated with the cor-

responding spine morphology data and NWBmeta-data. The parameter ‘‘dis-

tance to soma’’ identified dendritic spines within the circular bins. Density was

calculated as follows:

spine density = number of dendritic spines in bin=dendrite length:

By combining the functionalities of Blender and DataJoint, our pipeline for

data integration and analysis, we established a comprehensive workflow for

quantifying dendritic spine density and conducting Sholl analysis. The integra-

tion of these tools facilitated accurate and efficient assessment of dendritic

spine distribution and provided valuable metrics for our study.

Quantification and statistical analysis

Weanalyzed tissue from the following groups: SCI and vehicle treatment (n= 5)

and sham injured (n = 3). This resulted in 20 dendrites in the SCI group and 9 in

the sham group. This translated to 858 total dendritic spines: 164 dendritic

spines in the sham group and 694 in the SCI group.

We conducted statistical analyses using appropriate tests and evaluated the

results based on a significance level of 0.05. We used two-tailed analyses and

chose either parametric or non-parametric tests based on the nature of the

data. We exported the dataset from the DataJoint pipeline and transferred

these data to Prism to perform unpaired t tests or Mann-Whitney tests as

appropriate. All graphs are plotted as mean ± SEM.

Figure generation

Figure 1 was created in BioRender.

Figure 2: Neurolucida, ImageJ, and VR-SASE demonstrate advances in

visualization, accuracy, and precision when using a virtual reality platform.

We generated images for Figures 2A and 2B by taking screenshots within

the Neurolucida environment (https://www.mbfbioscience.com/products/

neurolucida-360/). We processed them with the automated brightness/

contrast tool in ImageJ to enhance visibility. Figure 2D depicts the maximum

size of a dendritic spine in ImageJ. Compression artifacts are large for such

a small image, so we used a screenshot to capture a visual representation.

Figures 2E and 2F were created using Blender’s rendering engine. A virtual

https://github.com/datajoint
https://www.mbfbioscience.com/products/neurolucida-360/
https://www.mbfbioscience.com/products/neurolucida-360/


ll
OPEN ACCESSArticle
camera and lights were placed and positioned around the model in Blender’s

3D viewport, ensuring appropriate visibility of features. The scale was indi-

cated by creating a scale bar in the same plane as the neural tissue.

For Figure 3, we analyzed a subset of the Kauer19 image data using ImageJ

to create 3Dmodels, which we initially segmented in Open Brush and then ex-

ported to Blender to finish segmentation. Blender created NWB files for each

dendrite, which are in the linked DANDIset. A DataJoint database pipeline

refined the dataset based on morphological parameters and calculated the

distance between each spine and the start of its dendrite. The filtered

DataJoint pipeline was exported as a CSV, which served as the data source

for pivot tables in V1.5_DiscDataCompilation. Graphs and statistics were

created in Prizm.

For Figure 4, we reconstructed a neuron from the DIADEM challenge. We

used ImageJ, Open Brush, and Blender as above and created a 2D image of

our reconstruction with Blender’s rendering tool (OP-09_VR-SASE.png; Fig-

ure 4B). The HBP Neuron Morphology Viewer transformed the DIADEM recon-

struction into 2D format (OP-09_GoldStandard.png; Figure 4C). Both images

were registered on the maximum projection of the original neuron in Photo-

shop (OP-09_Both_aligned.psd). The maximum projection (MAX_OP-

09.png; Figure 4A) was enlarged to the size of the gold standard, and our

reconstruction was scaled down. Each reconstruction super-imposed over

the original tissue was exported from Photoshop, and regions with the

maximum projection visible were traced and measured (OP-09_VR-SASE-

green_ROI.tif and OP-09_GoldStandardgreen_ROI; Figures 4D and 4E).

Figures 4F and 4G are renderings of our segmentation results, randomly

colored by ChatGPT. The Blender files contain scripts to adjust colors, and

their outputs are named OP-09_Rainbow and OP-09_RainbowCloseup.

For Figure 5, the post hoc analyses were created in ChatGPT and executed

in Blender’s scripting environment prior to rendering the images. Within the

Blender file, L712_Dendrite1aMushroomConvexHull.blend, the script "Con-

vexHull" created a convex shell around the dendritic spine and its head.

Meshes in the collection, MushroomSpineConvexHull, were examined

through Blender’s UI, and volumes corresponding to the spine, head, and

convex hulls are includedwithin the script. To assist with visualization, the hulls

were also converted to wireframes.

The CLDH requires multiple steps to recreate. Within the L712_023-01-

31_16.11.24_Dendrite1aMushroomCord.blend, there are 3 scripts: "AddCy-

linders," "ColorCylinders," and "ExportCylinderNames." The first script cre-

ates a CSV containing cord names and lengths. Cords connecting external

points of the dendritic spine mesh were removed manually, and the remaining

cord names using "ExportCylinderNames" were compared to the original list in

Excel, which deleted unique values from the original list, matching the remain-

ing cords with their length (MushroomCords.csv). The cord lengths were

graphed in Prizm (MushroomCords.pzfx) (Figure 5C). Figures 5A, 5B, 5D,

and 5E were created using Blender’s rendering engine as described above.

Diadem validation

To generate the image for validating the accuracy of VR-SASE, we obtained

raw images and the gold-standard SWC file for OP-09 from the olfactory pro-

jection fiber dataset from the DIADEM challenge: https://diadem.janelia.org/

olfactory_projection_fibers_readme.html.

We used the Neuroinformatics Morphology Viewer to convert the SWC file

into a PNG file: https://neuroinformatics.nl/HBP/morphology-viewer/#. We

then created a maximum projection of OP-09 using ImageJ’s Z project func-

tion to create a flattened representation of the stack of raw images, which

we saved in PNG format.

We transferred both the gold-standard reconstruction and maximum pro-

jection images to Photoshop, creating a layer for each. We then scaled up

the maximum projection so that it aligned with the gold-standard reconstruc-

tion. Our reconstruction, rendered in Blender as described above, was

added as an additional layer in Photoshop, scaled down to the size of the

gold standard, and aligned with the maximum projection. Both super-

imposed reconstructions were flattened and exported as flattened TIFF

files with 3,000 3 1,500 pixels for analysis in ImageJ, where they were scaled

to 168.78 3 84.39 mm. Regions where the maximum projection was

visible represent modeling inaccuracies and were quantified by tracing re-

gions of interest with ImageJ’s polygon selection tool, enabling precise

quantification.
Post hoc analyses

CLDH

CLDH facilitates partitioning morphologically similar dendritic spines into clus-

ters, further refining analyses of dendritic spine morphology.8 A CLDH is a

probability distribution of the lengths of internal cords connecting vertices of

a dendritic spine mesh. To perform a post hoc CLDH analysis, we used the

Text Editor (see Figure S2), Blender’s native Python scripting environment,

to create a set of internal cords for a representative dendritic spine. For

each vertex, we created cords for 1 in every 10 of their possible connections,

excluding vertices within 0.2 mm. This created a rich but manageable set of

cords. Our post hoc analysis also created a CSV file containing the name

and length of each cord. Cords extending over concave surfaces represent un-

realistic geometries and were removed manually. The lengths of the remaining

cords are the basis for our CLDH.

CVI

CVI is based on the difference in volume between a dendritic spine and

its convex hull. The convex hull is the smallest possible ‘‘shell’’ enclosing

all vertices of the dendritic spine head mesh without having any concave

surfaces.30 To perform a post hoc CVI calculation, we used a Python script

executed in the Text Editor to create a convex hull surrounding the den-

dritic spine head. We obtained the volume of the convex hull from the 3D

Printing add-on and compared it to the volume of the dendritic spine.

CVI = ðhull volume -- spine volumeÞ=spine volume

We next extended the methodology proposed by Kashiwagi et al. to calcu-

late the ratio for the entire dendritic spin.

User training procedure

Prior to VR-SASE training, we used a commercially available VR application,

Beat Saber, to establish a manual dexterity baseline and habituate trainees

to the VR environment. To develop facility with the UI, trainees with experience

analyzing dendritic spines played Country Rounds on its easy setting, in prac-

tice mode, until successful completion. After this introductory VR experience,

we taught trainees to load and interact with models in VR. We conducted free-

form practice and demonstration until trainees demonstrated/felt comfortable

with the required skills (see user documentation in the supplemental informa-

tion). In supervised, and recorded, training sessions, trainees placed discs on a

model neuron, receiving feedback from the trainer. Segmented neurons were

exported from Open Brush, and the resulting FBX files were imported into

Blender. To demonstrate the effects of skill level on post-processing time,

we recorded VR-SASE’s automated and manual workflows for all dendrite

sections.

Hardware

Segmentation was conducted on multiple platforms, including the following:

d Alienware Desktop PC with Intel Core i7-10700k CPU @ 3.80 GHz with

16.0 GB installed RAM running Windows 11 Home Operating System

22H2 with the Oculus Rift S VR headset, from Meta Platforms.

d Alienware Laptop PC with 12th Gen Intel Core i9-12900HK, 2,500 MHz,

14 cores, logical processors 32.0 GB installed RAM runningWindows 11

Home Operating System tethered to an Oculus Quest 2 VR headset,

from Meta Platforms.

Blender segmentation was carried out on these machines, as well as com-

puters with the following specifications:

d Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz with 32.0 GB installed

RAM running Windows 11 Home Operating System 22H2.

d 16-inch MacBook Pro Apple M2 Max with 12-core CPU, 38-core GPU,

16-core Neural Engine 96 GB unified memory MacOS 13 Ventura.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.101041.
Patterns 5, 101041, September 13, 2024 13

https://diadem.janelia.org/olfactory_projection_fibers_readme.html
https://diadem.janelia.org/olfactory_projection_fibers_readme.html
https://neuroinformatics.nl/HBP/morphology-viewer/#
https://doi.org/10.1016/j.patter.2024.101041
https://doi.org/10.1016/j.patter.2024.101041


ll
OPEN ACCESS Article
ACKNOWLEDGMENTS

The work is funded by grants from the Paralyzed Veterans of America (PVA),

VA Rehabilitation Research & Development Service (RR&D), and The Nancy

Taylor Foundation for Chronic Diseases. The Center for Neuroscience and

Regeneration Research is a collaboration between the PVA and Yale

University.

AUTHOR CONTRIBUTIONS

A.M.T. conceived, funded, and supervised this research. M.L.R. designed,

developed, and utilized VR-SASE and analyzed its dataset. S.D.K. designed

and conducted the SCI experiment. C.A.B. provided expert guidance on den-

dritic spine classification and analysis platforms. S.P., S.F., and M.A.E. devel-

oped the prototype and documented themethods A technical review was pro-

vided by J.F.K. L.B and S.G.W. provided editing and review.

DECLARATION OF INTERESTS

The authors declare no competing interests.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED

TECHNOLOGIES IN THE WRITING PROCESS

We employed ChatGPT-3 during programming for prototyping and trouble-

shooting, during early stages of manuscript drafting, and to create the color

scheme used to display segmentation results from the DIADEMChallenge. Af-

ter using ChatGPT-3, the authors reviewed and edited the content as needed

and take full responsibility for the content of the publication.

Received: February 13, 2024

Revised: May 13, 2024

Accepted: July 16, 2024

Published: August 12, 2024

REFERENCES

1. Tan, A.M., andWaxman, S.G. (2015). Dendritic spine dysgenesis in neuro-

pathic pain. Neurosci. Lett. 601, 54–60. https://doi.org/10.1016/j.neulet.

2014.11.024.

2. Tan, A.M., Choi, J.S., Waxman, S.G., and Hains, B.C. (2009). Dendritic

spine remodeling after spinal cord injury alters neuronal signal processing.

J. Neurophysiol. 102, 2396–2409. https://doi.org/10.1152/jn.00095.2009.

3. Kim, Y., Noh, Y.W., Kim, K., and Kim, E. (2021). Hyperactive ACC-MDT

Pathway Suppresses Prepulse Inhibition in Mice. Schizophr. Bull. 47,

31–43. https://doi.org/10.1093/schbul/sbaa090.

4. Benson, C.A., Fenrich, K.K., Olson, K.L., Patwa, S., Bangalore, L.,

Waxman, S.G., and Tan, A.M. (2020). Dendritic Spine Dynamics after

Peripheral Nerve Injury: An Intravital Structural Study. J. Neurosci. 40,

4297–4308. https://doi.org/10.1523/jneurosci.2858-19.2020.
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