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Abstract

Background and objective

To develop a semi-automated, machine-learning based workflow to evaluate the ellipsoid

zone (EZ) assessed by spectral domain optical coherence tomography (SD-OCT) in eyes

with macular edema secondary to central retinal or hemi-retinal vein occlusion in SCORE2

treated with anti-vascular endothelial growth factor agents.

Methods

SD-OCT macular volume scans of a randomly selected subset of 75 SCORE2 study eyes

were converted to the Digital Imaging and Communications in Medicine (DICOM) format,

and the EZ layer was segmented using nonproprietary software. Segmented layer coordi-

nates were exported and used to generate en face EZ thickness maps. Within the central

subfield, the area of EZ defect was measured using manual and semi-automated

approaches via a customized workflow in the open-source data analytics platform, Konstanz

Information Miner (KNIME).

Results

A total of 184 volume scans from 74 study eyes were analyzed. The mean±SD area of EZ

defect was similar between manual (0.19±0.22 mm2) and semi-automated measurements

(0.19±0.21 mm2, p = 0.93; intra-class correlation coefficient = 0.90; average bias = 0.01,

95% confidence interval of limits of agreement -0.18–0.20).

Conclusions

A customized workflow generated via an open-source data analytics platform that applied

machine-learning methods demonstrated reliable measurements of EZ area defect from en
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face thickness maps. The result of our semi-automated approach were comparable to man-

ual measurements.

Introduction

Optical coherence tomography (OCT) scans are routinely used in clinical practice for moni-

toring therapeutic efficacy in patients with macular edema. Central retinal thickness measure-

ments obtained from OCT are a key outcome measure for clinical trials; however, central

retinal thickness is not considered a biomarker or a predictor for visual recovery because of its

weak correlation with visual acuity (VA).[1] The ellipsoid zone (EZ), previously named the

photoreceptor inner segment-outer segment junction, is visualized as a hyperreflective layer in

the outer retina on spectral domain optical coherence tomography (SD-OCT) images.[2]

SD-OCT enables in vivo high-resolution, cross-sectional imaging of the retina, permitting

qualitative and quantitative assessment of EZ integrity, which has been correlated with VA in

multiple retinal diseases,[3, 4] including retinal vein occlusion (RVO).[5–7]

Many studies examining the EZ layer are qualitative, describing abnormalities of the layer

based on signal intensity.[8, 9] Current methods for quantitative assessment of the EZ involve

segmentation of the retinal layers using manual or semi-automated techniques.[10, 11] This

generates EZ layer thickness measurements with an Early Treatment Diabetic Retinopathy

Study (ETDRS) grid. An alternative and more intuitive method would be to assess the area of

EZ defect or loss using en face thickness maps created from the segmented layers.[5] The en
face maps are two dimensional and present areas of EZ absence, i.e. very low thickness areas

are dark regions against a brighter background of normal EZ thickness. Manual segmentation

of the EZ is laborious and time intensive.[12] Therefore, we sought to utilize accessible,

machine-learning methods to facilitate the identification of these regions. We trained a classi-

fier model using the Trainable Weka Segmentation plugin[13] of Fiji [14, 15], an open-source

image processing software package specifically designed for scientific image analysis, to detect

the areas of EZ defect. Using this trained classifier, we then applied it within a novel, custom-

ized workflow using the open-source software platform Konstanz Information Miner

(KNIME)[16] to evaluate the EZ assessed by SD-OCT generated en face thickness maps in eyes

with macular edema secondary to central retinal vein occlusion (CRVO) or hemi-retinal vein

occlusion (HRVO).

Methods

Participants

Study data were obtained from the Study of COmparative Treatments for REtinal Vein Occlu-

sion 2 (SCORE2), a multicenter, prospective, randomized non-inferiority trial of eyes with

macular edema secondary to CRVO or HRVO comparing intravitreal anti-vascular endothe-

lial growth factor agents (anti-VEGF) bevacizumab vs. aflibercept (Clinicaltrials.gov identifier

NCT01969708).[17] The study was approved by institutional review boards (IRB) associated

with each center (University of Wisconsin Madison IRB Number 2014-0256-CR006) and

adhered to the tenets of the Declaration of Helsinki. All participants provided written

informed consent. The SCORE2 design and methods have been previously described in detail.

[18] In summary, 362 participants were randomized to receive either intravitreal bevacizumab

or aflibercept. The study visits were conducted per protocol with treatment provided per pro-

tocol from baseline through month 12, and then at the discretion of the investigator thereafter.
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Inclusion criteria were center-involved macular edema defined as central subfield thickness of

�300 μm (or�320 μm if measured with Heidelberg Spectralis Machine).

Seventy-five participants were randomly selected from the SCORE2 baseline dataset, which

represented approximately 20% of the total number of trial subjects. Participants were strati-

fied based on baseline VA into three groups, including good (73–59 letters: 20/40-20/63), mod-

erate (58–49 letters: 20/80-20/100), and poor (48–19 letters: 20/125-20/400). Twenty-five

subjects were randomly selected from each stratum.

SD-OCT image acquisition

All SD-OCT images were acquired by certified technicians using the SCORE2 reading center

(Fundus Photograph Reading Center, University of Wisconsin) approved protocol with either

Carl Zeiss Meditec Cirrus (Carl Zeiss Meditec, Dublin, CA) or Heidelberg Spectralis (Spectra-

lis Heidelberg Engineering, Heidelberg, Germany) OCT machine.[18] The Zeiss macular vol-

ume scans were 6 mm and comprised of 512 A-scans and 128 B-scans, and the Heidelberg

scans were 20 x 20 degrees and comprised of 512 A-scans and 97 B-scans. SD-OCT images

were evaluated at baseline, month 1, month 6, and month 12 for all participants.

Segmentation of EZ layer

The SD-OCT macular volume scans were received in proprietary formats at the central read-

ing center and converted to Digital Imaging and Communications in Medicine (DICOM) for-

mat.[19] The EZ layer was segmented in the central subfield (CSF) using custom segmentation

software developed using MATLAB (The Mathworks Inc, Natick, Massachusetts, USA.).[20]

The CSF consisted of 17 (Spectralis) or 23 (Cirrus) B-scans. The EZ layer is typically visible as

a hyperreflective line between the external limiting membrane and the retinal pigment epithe-

lium (RPE). The inner border of the second outer hyperreflective band (EZ layer) and the

inner border of the third outer hyperreflective band (RPE) were selected as the EZ layer

boundaries (Fig 1A).[2]

Generation of En face thickness maps

EZ layer xy coordinates were exported as Extensible Markup Language (XML) format, and

those files were used to generate en face thickness maps for selected layers via linear interpola-

tion within a customized workflow in the open-source data analytics platform KNIME, version

3.7.2 (Fig 1B). Areas of EZ defect appear as dark areas on the thickness maps compared to

bright areas with normal EZ.

Ellipsoid zone area analysis

A machine-learning tool, the Trainable Weka Segmentation (TWS) plugin, was used to gener-

ate a classifier to segment regions of EZ defect within generated thickness maps automatically

(Fig 1C and 1D). This tool is a Fiji plugin that combines a collection of machine-learning algo-

rithms with a set of selected image features to produce pixel-based segmentations.[13] Default

segmentation settings in TWS were applied, though the maximum sigma was set to 32. The

training features included were Gaussian blur, Hessian, Membrane projections (directional fil-

tering), Sobel filter, Difference of gaussians, and Variance. The classifier applied was Fast Ran-

dom Forest, a multi-threaded version of random forest by Fran Supek.[21] An estimated

subset (~10%) representing the heterogeneity of the thickness maps of the entire dataset were

selected to train the classifier to detect areas of EZ defect. Once trained, where the appropriate

regions were reliably and reproducibly segmented, the classifier was then applied to the larger
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dataset for automatic segmentation and area measurements via the customized KNIME work-

flow (Fig 2). All scans were obtained from the SCORE2 dataset and were therefore from eyes

affected by either CRVO or HRVO. The KNIME workflow was applied using a standard

Fig 1. Semi-automated analysis of ellipsoid zone (EZ) defect using en face approach. A. B-scan with segmentation

lines (green) from the top of the EZ layer to the top of the retinal pigment epithelium highlighting EZ defect (vertical

red lines). B. Distances between segmented lines were linearly interpolated to form en face thickness map showing

intact (white/grey pixels ^) and defective (black/dark pixels �) EZ. C. Application of Trainable Weka Segmentation

(TWS) classifier to entire thickness map identifies regions of intact (green) and absent (red) EZ. D. The area of absent

EZ (red) within the central subfield (green circle) was measured on the en face thickness map via the KNIME

workflow.

https://doi.org/10.1371/journal.pone.0232494.g001

Fig 2. KNIME workflow. There are 5 distinct sections (metanodes) of the customized KNIME workflow including:

(A) selection of input parameters, which includes a source folder containing .xml layer files, an .xls file including xy

coordinates for central subfield (CSF) positions, the selection of two layers for thickness map generation, a classifier .

model file generated via the Trainable Weka Segmentation (TWS) plugin of Fiji, the path to local Fiji installation, the

selection of the segmentation method (either ‘automatic’ or ‘manual’), and the output folder for all results files; (B)

generation of the en face thickness maps and masks of CSF regions; (C) either ‘automatic’, using the TWS classifier, or

‘manual’ segmentations; (D) segmentation area measurements, which are calculated only within the CSF region; and

finally (E) an interactive segmentation view for a visual check of all segmentations made via the workflow.

https://doi.org/10.1371/journal.pone.0232494.g002
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desktop computer (Processor: Intel1 Core™ i5-45900 CPU @ 3.30 GHz; Memory: 8.00 GB;

System Type: 64-bit Operating System).

For manual measurements, the EZ boundary was manually traced within the KNIME

workflow, and only the areas of EZ defect within the CSF were quantified. CSF xy coordinates

were exported from the custom MATLAB software and used to overlay the CSF regions

unique to each image (Fig 2B). All thickness maps and area measurements were generated via

the same methods for both automatic and manual approaches. The only difference between

the semi-automated and manual workflows was the segmentation method applied (Fig 2C).

The KNIME workflow allowed visual inspection of all segmented regions with image overlays

of the area of EZ defect on the en face thickness map (Fig 2E). All images were analyzed and

reviewed by two masked graders and study authors (T.E. and C.P.). Graders reviewed images

independently and were masked to segmentation results. Inter-rater reliability and agreement

were assessed for manual EZ defect measurements.

The minimum area of EZ defect was defined as 0.004 mm2 and the maximum area of EZ

defect was 0.78 mm2 (based on the area of the CSF). The minimum area was selected based on

the lowest limit of area measurability used within reading center grading protocols (e.g. drusen

circle C0 established by the Age-Related Eye Disease Study (AREDS) Research Group).[22]

Statistical analysis

We investigated the reliability and agreement of the manual and semi-automated approaches

for determining the area of EZ defect within the CSF. Reliability was determined by calculating

the intra-class correlation coefficient (ICC).[23] Agreement was determined by calculating the

average bias between the manual and semi-automated measurements using the Bland-Altman

method.[24] If the average bias does not exceed the 95% confidence interval (CI) of the limits

of agreement (LOA), then the methods do not disagree and can be used interchangeably.[25]

ICC and average bias were calculated to assess inter-rater reliability and agreement for manual

EZ defect measurements. Area measurements were not normally distributed. Therefore, the

non-parametric Wilcoxon Signed-Ranks Test was used to compare the area measurements

between semi-automated and manual methods. A two-tailed p-value less than 0.05 was consid-

ered significant for all hypothesis testing. Statistical analysis was performed using R v3.6.1 (R

Foundation for Statistical Computing, Vienna, Austria).

Results

Of the 75 randomly selected study eyes, one did not have follow-up images after baseline,

resulting in 74 study eyes available for analysis. Assessment of the EZ layer was performed at

baseline, month 1, month 6, and month 12; however, EZ assessment was not possible on base-

line scans due to a >90% rate of ungradable images resulting from signal blockage by hemor-

rhage or fluid (Fig 3). Therefore, only SD-OCT images at months 1, 6, and 12 were analyzed.

Of the selected study visits, SD-OCT images were missing from 7 study visits and the retinal

layers were not visible for segmentation in 31 eyes due to signal blockage from hemorrhage or

fluid (21 at month 1, 6 at month 6, and 4 at month 12), resulting in a total of 184 gradable vol-

ume scans for analysis (53 at month 1, 65 at month 6, and 66 at month 12).

Using semi-automated measurements, EZ defect was seen in 36 of 53 thickness maps

(67.9%) at month 1, 27 of 65 (41.5%) at month 6, and 29 of 66 (43.9%) at month 12. Combin-

ing all time points for a total of 184 images, 92 (50.0%) had an EZ defect area. The mean±SD

area of EZ defect as measured by the semi-automated approach was 0.23±0.25 mm2 at month

1 (range 0.005–0.76 mm2), 0.21±0.21 mm2 at month 6 (range 0.007–0.76 mm2), and 0.10±0.15
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mm2 at month 12 (range 0.005–0.66 mm2) (Table 1). The mean±SD area of EZ defect for all

time points combined was 0.19±0.21 mm2 (range 0.005–0.76 mm2), respectively.

The manual approach revealed a mean±SD EZ area defect measurement of 0.24±0.24 mm2

at month 1 (range 0.005–0.78 mm2), 0.19±0.22 mm2 at month 6 (range 0.006–0.78 mm2), and

0.12±0.18 mm2 at month 12 (range 0.005–0.78 mm2). The mean±SD area measurement for all

time points combined was 0.19±0.23 mm2 (range 0.005–0.78 mm2). The area of EZ defect

combining all time points was indistinguishable between the semi-automated and manual

measurements (p = 0.93) (Fig 4A).

The ICC between semi-automated and manual measurements for the area of EZ defect

across all time points was 0.90, indicating excellent reliability (Fig 4B). The average bias

between measurements was 0.01 mm2 (95% CI -0.18–0.20) (Fig 4C). Inter-rater reliability

(ICC = 0.81) and agreement (average bias 0.07, 95% CI -0.17–0.31) for manual measurements

between graders was good.

Fig 3. (A) Representative center point SD-OCT scan deemed ungradable at baseline for ellipsoid zone (EZ)

assessment. EZ was considered ungradable when the retinal pigment epithelium was not visible due to signal blockage

by hemorrhage and edema. (B) Month 1 follow-up SD-OCT scan after single intravitreal anti-VEGF injection. EZ

considered gradable.

https://doi.org/10.1371/journal.pone.0232494.g003

Table 1. Comparison of ellipsoid zone defect area measurements.

Manual Automated

Time Points Minimum Maximum Mean ± SD Minimum Maximum Mean ± SD p-value ICC Average Bias (95% CI LOA)

All (mm2) 0.005 0.78 0.19 ± 0.23 0.005 0.76 0.19 ± 0.21 0.76 0.90 0.01 (-0.18–0.20)

M01 (mm2) 0.005 0.78 0.24 ± 0.24 0.005 0.76 0.23 ± 0.25 0.89 0.89 0.00 (-0.24–0.24

M06 (mm2) 0.006 0.78 0.19 ± 0.22 0.007 0.76 0.21 ± 0.21 0.27 0.94 0.01 (-0.14–0.16)

M12 (mm2) 0.005 0.78 0.12 ± 0.18 0.005 0.66 0.10 ± 0.15 0.16 0.88 0.03 (-0.12–0.18)

Abbreviations: M01 Month 1, M06 Month 6, M12 Month 12; ICC, intra-class correlation coefficient, CI confidence interval, LOA limits of agreement

https://doi.org/10.1371/journal.pone.0232494.t001
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Area measurements did not differ between semi-automated and manual approaches at

month 1 (p = 0.89), month 6 (p = 0.27), and month 12 (p = 0.16) (Table 1). The ICC at month

1 (0.89), month 6 (0.94), and month 12 (0.88) were good to excellent. The average bias between

measurements was 0.00 (95% CI LOA: -0.24–0.24) at month 1, 0.01 (95% CI LOA: -0.14–0,16)

at month 6, and 0.03 (95% CI LOA: -0.15–0.18) at month 12.

After segmentation of the EZ layer outside of the KNIME workflow, the time required to

generate en face thickness maps from 184 XML files with EZ layer segmentation coordinates

was 6 minutes 26 seconds with an average of 2.1 seconds per file. Using the semi-automated

approach, the time required to identify and measure the EZ defect area within the CSF was 15

minutes 12 seconds with an average of 4.9 seconds per thickness map. Using the manual

approach, the time required to identify and manually trace the EZ defect boundaries, and auto-

matically quantify the area within the CSF was 2 hours 36 minutes with an average of 51 sec-

onds per thickness map. The semi-automated approach reduced the time required to identify

and quantify the EZ defect area within the CSF of 184 thickness maps by 2 hours with an aver-

age of 46.1 seconds per thickness map.

Discussion

In this study, we developed a customized workflow that began with a semi-automated segmen-

tation method for defining the EZ layer using nonproprietary software. These layer coordi-

nates were used to then automatically generate en face thickness maps in eyes with macular

Fig 4. Analysis of reliability and agreement between manual and automated area measurements of ellipsoid zone

(EZ) defect. A. Mean±SD area of EZ defect was similar between manual (0.19±0.23 mm2) and automated (0.19±0.21

mm2) measurements (p = 0.93). B. Intra-Class Correlation was 0.90 comparing area measurements of EZ defect. C.

Bland-Altman Plot displaying differences against the averages between manual and automated area measurements of

EZ defect. The average bias was 0.01 with a 95% confidence interval of the limits of agreement from -0.18–0.20.

Abbreviation: ns not significant, SD standard deviation.

https://doi.org/10.1371/journal.pone.0232494.g004
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edema secondary to CRVO or HRVO in a randomly selected subgroup of SCORE2 subjects

for both manual and semi-automatic segmentation of areas of EZ defect using the open-source

software platform, KNIME. This semi-automated approach took advantage of machine-learn-

ing methods via the open-source Fiji[14] plugin Trainable Weka Segmentation (TWS)[13]

and demonstrated excellent reliability and agreement when compared to manual measure-

ments. These data suggest that our semi-automatic and open-source approach can be effi-

ciently and reliably applied to similar workflows quantitatively assessing SD-OCT derived

retinal morphology.

Quantitative assessment of the EZ commonly use manual measurements via the en face [26,

27] method, which consists of creating conforming segmentation lines along the upper and

lower boundaries of the EZ band. The B-scan intensities through the segmented boundaries

are projected to form an en face image with enhanced contrast between intact and absent EZ.

[28] The EZ boundary is then traced to create a geographic representation. Manual measure-

ment of the EZ is time intensive,[12] particularly in clinical trials with high volume data.

Therefore, we sought to utilize accessible machine-learning tools to facilitate the identification

of these regions.

The ability to measure the EZ is dependent on the visibility of the EZ layer. In the acute

stages of RVO, evaluation of the EZ is impaired by the presence of hemorrhage and edema

that reduces the outer retinal signal intensity.[27] At baseline, >90% of images were ungrad-

able due to the presence of confounding hemorrhage and edema. Initial qualitative grading of

the EZ was performed by expert graders at the SCORE2 central reading center (Fundus Photo-

graph Reading Center, University of Wisconsin). The EZ was qualitatively deemed ungradable

when the RPE was not visible due to signal blockage by hemorrhage and edema (Fig 3A).

After intravitreal anti-VEGF treatment, 72% of available study eyes were gradable at month 1

for the evaluation of EZ integrity (Fig 3B). Similar approaches to evaluating EZ integrity

exclude patients with severe edema, which has been defined as a CSF thickness greater than

600 μm.[5] Although we did not use this threshold, we did exclude EZ defect area measure-

ments less than or equal to 0.004 mm2. Area measurements less than this value were consid-

ered absent. We reviewed all data points outside the 95% CI of the LOA comparing the

manual versus semi-automated measurements. Discrepancies between area measurements in

all cases were due to poor image contrast as a result of impaired signal intensity from multiple

factors, including media opacity, hemorrhage, and edema. These data suggest the semi-auto-

mated measurements did not disagree with those obtained by the manual approach, and semi-

automated measures performed as well as manual outlines by expert graders (Fig 5).

This study has several limitations. We compared the manual to semi-automated area mea-

surements of EZ defect using the mean area measurement and not by colocalizing the EZ

defect areas generated from the two methods. This comparison does not capture the differ-

ences in position, orientation, and shape between the EZ boundary measurements. This mea-

surement is impaired by the fact that similar EZ areas may have dissimilar EZ boundaries.

Despite this limitation, the mean area measurement is similar to the difference in widths that

have been used in reliability studies of EZ defect from individual B-scans in other disease pro-

cesses, namely retinitis pigmentosa.[29] Additionally, because our study is limited to a smaller

region of the CSF, we expect this difference to be minimal (Fig 5). The selection of scans for

analysis of the EZ was performed by expert graders and was based on the SCORE2 SD-OCT

grading protocol. However, all scans deemed of sufficient quality for EZ assessment (i.e. the

RPE was visible) were evaluated by both the semi-automated and manual approaches. Future

studies may examine the application of machine-learning for image selection. This analysis did

not examine the correlation between the area of EZ defect with VA and other clinical data.

Validation of our approach and association of EZ defect area measurements with clinical data

PLOS ONE Machine-learning based ellipsoid zone analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0232494 April 30, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0232494


will be performed on the entire SCORE2 cohort upon study completion. Studies have exam-

ined the association of EZ integrity at baseline as a predictor of future visual acuity.[30–32]

However, these studies included eyes with branch retinal vein occlusion, which presents with

significantly less hemorrhage and fluid compared to central and hemi-retinal vein occlusion,

especially within the CSF.[1] These studies also utilized high resolution SD-OCT scans,

whereas the SCORE2 trial did not to improve the generalizability to the study methods and

results. Although post-image processing to remove shadowing cast by hemorrhage and fluid

has been performed,[27, 33] these studies have also utilized high resolution SD-OCT scans

from a single SD-OCT device. Our method combined multiple SD-OCT machines. Finally, we

examined EZ disruption in macular edema secondary to CRVO or HRVO. Future studies

applying our methods to diabetic macular edema and other diseases may be beneficial.

There are many strengths of our approach. Our workflow combines multiple steps in the

generation of EZ absence area measurements, such as EZ segmentation, export of files contain-

ing segmentation coordinates, generation of en face thickness maps that highlight the contrast

between intact and absent EZ, and automatic delineation and quantification of EZ defects. The

analysis utilized a classifier that acts as a computer-generated grader that can, once fully

trained, measure regions of EZ defect, adding precision and high-throughput speed beyond

that of manual tracing. Manual identification of EZ defect is time-consuming and error prone.

In a study comparing methods of EZ boundary identification in retinitis pigmentosa, the aver-

age time required to delineate and trace the EZ boundary, not including segmentation of the

EZ layer, was 4.1 minutes for the en face method.[12] Our semi-automated process is rapid,

permitting the analysis of SD-OCT scan in seconds in a reliable and reproducible manner. Dif-

ferences between manual EZ defect tracing times between the previously reported study and

ours were likely due to area measurements only within the CSF.

Conclusions

We developed a customized workflow using open-source software that applied manual and

semi-automated methods for quantifying the area of EZ defect assessed by SD-OCT derived en
face thickness maps in eyes with macular edema secondary to CRVO or HRVO. Semi-auto-

mated EZ defect area measurements were obtained through machine-learning and

Fig 5. Colocalization of ellipsoid zone (EZ) defect area identification between manual (yellow) and automated

(red) approach.

https://doi.org/10.1371/journal.pone.0232494.g005
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demonstrated excellent agreement and reliability when compared to manual measurements,

suggesting that our workflow may be applied to other quantitative assessments of SD-OCT

derived retinal morphology. Our semi-automated approach will be validated in the entire

SCORE2 cohort upon study completion.
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