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Introduction

The use of annulation reactions to construct complex structures
remains a powerful strategy in chemical synthesis.' For almost
a century, 2-pyrones (A, Scheme 1a) have served as valuable
heterocycles for annulations due to their versatile reactivity,
which can be broadly categorized into two main paradigms: (1)
pericyclic annulative processes and (2) regioselective opening
via nucleophilic addition to unveil reactive intermediates
poised for subsequent annulation. With respect to the first
paradigm, pericyclic reactions, such as [4+2]-cycloadditions®
and 4w electrocyclizations,® have been well documented to
provide rapid access to bicycles such as B and C, which have
been exploited in myriad ways.** In contrast, there have been
limited examples within the second paradigm. While nucleo-
philic 1,6-ring opening of 2-pyrones has proven to be a particu-
larly effective strategy for orchestrating novel cyclization events
via reactive intermediate D® (our previous work®*?), leveraging
the dienolate functionality (E) accessible through 1,2-ring
opening in annulation reactions remains underexplored.”

We envisioned a strategy to N-fused bicycles in which
a tethered reactive moiety (TRM) on 2-pyrone would engage an
in situ generated dienolate (such as 1b) in an annulation
reaction (Scheme 1b). The precursor N-heterocycle-pyrone
adducts (e.g., 1) were anticipated to arise modularly by
coupling N-heterocycle boronate esters and pyrones (e.g., 3-OTf
pyrone)® via Suzuki coupling. The C2-borylated N-heterocycles
were expected to arise directly from the precursor heterocycles
by leveraging existing methods (e.g., C-H functionalization),’
thus enhancing the practicality of this approach. We
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scaffold that can be site-selectively functionalized. The utility of this novel annulation strategy was
showcased in a concise formal synthesis of three fascaplysin congeners.

hypothesized that opening 1 with a suitable nucleophile would
first unveil dienolate 1a, which upon equilibration to 1b, would
set the stage for annulation via direct capture of the aldehyde
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Scheme 1 Annulation strategies enabled by versatile reactivity of 2-
pyrone derivatives.
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Scheme 2 Proposal to access pyrido[1,2-alindole core.

group by the TRM to provide N-fused heterocycle 2. Notably,
varying the TRM would provide a general platform for diverse
heterocycle synthesis.

To demonstrate the viability of this strategy, we initially
focused on converting indole-pyrone adduct 3 to the pyrido[1,2-
alindole scaffold (3b, Scheme 2a)—a key structural motif
present in a number of biologically active natural products
including fascaplysin (4, Scheme 2b),' goniomitine (5),"* and
tronocarpine (6)."> While there exists numerous methods to
access this biologically relevant scaffold,"*™” many of these
tactics rely on reaction precursors with highly specific substi-
tution patterns and, therefore, are unfortunately not general or
modular. Specifically, we recognized that while heterocyclic—
dienolate adducts (such as C3-substituted intermediate 3a) have
proven to be effective precursors for benzannulation processes,
strategies to install dienol/dienolate functionality at C2 of 1H-
indoles lacking C3-substitution have remained elusive due to
regioselectivity challenges.**'** Overall, we envisioned that
our approach to coupling pyrone—a masked dienolate—to the
C2-position of 1H-indole would provide a unique opportunity to
address this longstanding regioselectivity challenge.

Results and discussion

We commenced our investigations with indole-pyrone 7a
(Table 1) and sodium methoxide as the nucleophile. Initially, we
observed the formation of the desired pyrido[1,2-a]indole (8a)
along with carbazole 9 and hemiaminal 10 as side products
(entry 1). Changing the solvent from acetonitrile to 1,4-dioxane
enhanced the formation of 9, which was generally more
pronounced in relatively non-polar solvents.>® However, the use
of polar solvents such as dimethylformamide resulted in
complete decomposition of 7a (entry 3). The formation of
hemiaminal 10 corroborates the proposed reaction mechanism
illustrated in Scheme 1b and led us to investigate the use of
polar protic solvents, such as methanol, to favor the conversion
of 10 to 8a. We found, at this stage, that conducting the annu-
lation in methanol furnished 8a in 45% yield (entry 4). Further
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Table 1 Reaction development and optimization

O
O NaOMe (1.2 equiv) A\

\_7 solvent (0.05 M),
7a 23 °C, 25 min

A\

NMR yield? (%)
8a:9 :10

10:13:16
:15:21

Solvent

1 CH3CN
2 1,4-dioxane 0

3 DMF decomp.

4 MeOH 45: 0 :0

5 THF/MeOH (1:1) 36: 7 : 10
6 DCE/MeOH (1:1) 45: 0 :0

7 CHyCl/MeOH (1:1) 61: 0 : 0

8> CH,Cl,/MeOH (1:1) 59: 0 : 0

9¢ CH,Cl,/MeOH (1:1) 657: 0 : 0

o o © N

HO 10

¢ Determined by "H NMR analysis using 1,2,3-trimethoxybenzene as an
internal standard b open flask set-up under non- anhydrous solvent
conditions. ¢ Reaction conducted on 1.3 g scale. ¢ Isolated yield.

investigation using co-solvents (entries 5-7) led to the identifi-
cation of a dichloromethane/methanol solvent mixture as
optimal, furnishing 8a in 61% yield (entry 7),>* presumably due
to the increased solubility of 7a. Gratifyingly, the yield remained
unaffected when the annulation was conducted both under
open-flask conditions (entry 8) and on 1.3 g scale (entry 9). The
structure of 8a was unambiguously confirmed by single-crystal
X-ray analysis.

With optimized conditions in hand, we investigated the
scope of this operationally simple pyrido[1,2-a]indole synthesis
(Scheme 3). Indole-pyrone substrates with varied substitution
patterns were readily synthesized through Suzuki coupling of
indole boronate esters® with either 3-bromo-** or 3-triflyloxy-2-
pyrones.® Indole substitution at both C3 and C7 had minimal
influence on the ring-opening/annulation process, and the
corresponding pyrido[1,2-ajindoles were isolated in comparable
yields (8b-f, Scheme 3a). Interestingly, tetracyclic scaffolds such
as lactam 8d and lactone 8e were accessed from indole-pyrones
derived from tryptamine and tryptophol, respectively. Notably,
8d represents the core framework of tronocarpine (6). Next, we
sought to investigate the tolerance of the overall transformation
toward alterations of the electronics of the indole moiety. We
observed that the presence of an electron-donating group,
irrespective of the position, furnished the corresponding pyrido
[1,2-a]lindoles in high yields (8g-8i), whereas the product
bearing an electron-withdrawing substituent (8]) was isolated in
poor yield.*

As shown in Scheme 3b, the established reaction conditions
were also applicable to the efficient preparation of pyrido[1,2-a]
indoles 8k-n bearing various substituents on the pyrone moiety.
Unlike the electronic influence exerted by the substituents on
the indole, C5-substitution on the pyrone moiety had little to no
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effect on the final reaction outcome with the sole exception
being product 8k, which was isolated in diminished yield.
Additionally, we investigated the effect of other alkoxide
nucleophiles (Scheme 3c). With increasing basicity and sterics
of the alkoxide, more forcing conditions were generally
required, and the yield of the final products (8a, 80-p) were also
diminished.*

To further demonstrate the generality and versatility of our
strategy, we next explored the synthesis of structurally diverse
heterocyclic systems by subjecting various N-heterocyclic—
pyrone adducts to the established reaction conditions (Scheme
4).% Gratifyingly, upon coupling various TRMs, such as pyrrole,
7-aza-indole, pyrazole, and aniline moieties, to the C3 position
of 2-pyrones, heterocycles such as indolizine 11, pyrido[3,2-b]
indolizine 12, 3-aza-indolizine 13, and 1-naphthylamine 14 were
isolated in moderate to high yields.

Each of the pyrone-heterocycle substrates described to this
point contain a free N-H group, thus enabling cyclization
directly from nitrogen to form a new N-C bond, with the sole
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Scheme 4 Access to other novel heterocyclic cores. Conditions:
NaOMe, CH,Cl,/MeOH, 23 or 55 °C, 10 min. ?Yield over two steps
starting from SEM-protected 7-azaindole—pyrone substrate.
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exception being 1-naphthylamine 14.** On the basis of the
latter result and our initial hypothesis (Scheme 1b), we envi-
sioned that employing N-protected substrates would direct the
cyclization to the reactive carbon center, thus facilitating C-C
bond formation*® and carbazole synthesis (Scheme 5). Inter-
estingly, we found the annulation to be tolerant of various
indole N-substituents, providing carbazoles 15a-c¢ and 9 in
high yields. Notably, unlike the pyrido[1,2-a]indole scope, the
nature of the substituents—both on the indole and pyrone
moieties—had little influence on the final reaction outcome,
delivering the corresponding carbazoles (15d-g) in good
yields.>*

R1
\ B
l\{ \ / then HCI

R R2 23 or 55 °C, 10 min

NaOMe R?

CH,Cly, MeOH C(QV
R
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Scheme 5 Scope of modular carbazole synthesis. *SEM cleavage can
also proceed in the same pot upon prolonged heating to furnish the
free N—H carbazole 9.
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We next sought to explore the subsequent reactivity of the
C7-ester functionalized pyrido[1,2-a]indole products (Scheme
6). Friedel-Crafts acylation,” copper-catalyzed carbenoid C-H
insertion,”® Lewis acid-mediated epoxide opening/attendant
lactonization,” and chlorination® all proceeded to provide
the corresponding C10-functionalized pyrido[1,2-a]indoles 16—
19. The structure of 18 and 19 were unambiguously confirmed
by single-crystal X-ray analysis. Hydrogenation proceeded
smoothly to furnish tetrahydro pyrido[1,2-a]indole 20. Treating
8a under Hartwig borylation conditions®*® yielded boronate
ester 21, resulting from borylation at the C7 position. Photo-
mediated Heck coupling®** of 8a with iodobenzene gave
biaryl compound 22, thus providing a platform to functionalize
the C6 position as well, albeit at low conversion.*

With the generality of this strategy successfully established,
we next turned our attention toward applying our pyrone
remodeling strategy to access the fascaplysin family of natural
products. As illustrated in Scheme 7, we began by hydrolyzing
ester 8a to afford the intermediate carboxylic acid, which
smoothly underwent Curtius rearrangement® to furnish amine
23 in high yield.

Taking inspiration from methodology developed by Acker-
mann and co-workers,* a palladium-catalyzed amination/C-H
arylation domino coupling® was employed to couple 23 and 1,2-
dibromobenzene to furnish the pentacyclic core of the fasca-
plysin natural products (24), which possessed analytical data
(*H and *C NMR, HRMS, melting point, IR) in full agreement
with those previously reported. The synthesis of 24 constitutes

© 2021 The Author(s). Published by the Royal Society of Chemistry
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formal syntheses of fascaplysin (1) and homofascaplysins B and
C (25 and 26), which can all be accessed independently in
a single step from 24.%°

Conclusions

In summary, we have developed a general, novel pyrone
remodeling strategy, which capitalizes on the 1,2-ring opening
of 2-pyrones, to construct diverse heterocyclic scaffolds. This
transformation, which was initially validated through pyrido
[1,2-a]indole synthesis, features a diverse substrate scope, with
varied substitution patterns on both the indole and pyrone
moieties. The scope was additionally extended to access
carbazole cores and other N-fused heterocycles, thus, show-
casing the generality of this strategy. The unusual reactivity of
the pyrido[1,2-a]indole core was explored in several synthetic
transformations, which enabled selective functionalization of
three distinct carbon positions. Finally, the utility of this
strategy was further demonstrated in a concise formal synthesis
of three fascaplysin congeners. Studies to further expand the
non-intuitive potential of 2-pyrone and its derivatives in the
total synthesis of complex natural products are the focus of our
current efforts.
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