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Abstract  
Nitric oxide (NO)/cyclic guanosine 3′,5′-monophosphate (cGMP) signaling has been shown to act as a 
mediator involved in pain transmission and processing. In this review, we summarize and discuss the 
mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, 
bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP 
signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent 
production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the 
activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/
cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well 
as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. 
In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating 
and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic 
pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway 
in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream 
effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These 
findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of 
chronic pain, and this signaling pathway with dual effects is an interesting and promising target for 
chronic pain therapy.
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morphine tolerance; neuropathic pain; nitric oxide; protein kinase G; spinal cord

Introduction 
Chronic pain is pain that persists or recurs for more than 3 months, and the 
global prevalence of chronic pain is more than 30% (Cohen et al., 2021). 
In contrast to the acute warning effect of physical pain, chronic pain is 
considered to be a pathological condition that seriously affects quality of life 
(Zhou et al., 2021a). Currently, nonsteroidal anti-inflammatory drugs, opioids, 
anticonvulsants, antidepressants, and traditional Chinese therapies such as 
acupuncture are used to relieve chronic pain (Dale et al., 2016; Zhou et al., 
2021b). However, due to the limited effectiveness and/or intolerable side effects 
of these methods, they often fail to completely relieve chronic pain. Therefore, 
further investigation of the cellular and molecular mechanisms involved in 
chronic pain is needed, to provide new therapeutic targets to treat it.

The nitric oxide (NO)/cyclic guanosine 3′,5′-monophosphate (cGMP) pathway 
regulates axonal growth and neural migration, which are important effectors 
in neural regeneration. The main process of the NO/cGMP signaling pathway 
in cells is that NO activates soluble guanylate cyclase (GC), which leads to 
subsequent production of cGMP. cGMP then activates cGMP-dependent 
protein kinase (PKG), resulting in the activation of multiple targets such as 
the opening of ATP-sensitive K+ channels (K+

ATP) (Schmidtko et al., 2009). It is 
well established that the NO/cGMP signaling pathway has both nociceptive 
and antinociceptive effects in various models of chronic pain. However, the 
mechanisms underlying the NO/cGMP signaling pathway in the spinal cord 
and dorsal root ganglion (DRG) are still under investigation. The current review 
summarizes the existing evidence on the mechanisms of NO/cGMP signaling 
in different pain models, in an effort to provide new therapeutic targets.

Search Strategy
The PubMed database was searched to identify relevant studies published 
from January 1997 to December 2021 (Figure 1). The terms used in 
combination were nitric oxide, cyclic GMP, pain, neuropathic pain, bone 
cancer pain, inflammatory pain, and morphine tolerance. Manual searches 
were also performed to retrieve important articles. After removing duplicates 
from the retrieved studies, preliminary screening was performed by reading 
the title and abstract of each article. Full texts were then read to eliminate 
studies that did not investigate relationships between NO/cGMP signaling 

and chronic pain. Only studies published in English and conducted in rodents 
and non-human primates were included. A total of 64 articles were ultimately 
included in this review.

Overview of the NO/cGMP Signaling Pathway
NO is a gas synthesized from arginine by nitric oxide synthase (NOS) (Zhou et 
al., 2016). The NOS family consists of three isoforms; neuronal NOS (nNOS), 
endothelial NOS (eNOS), and inducible NOS (iNOS) (Fang et al., 2022; Sun 
et al., 2022). nNOS and eNOS are constitutively expressed in cells, and their 
function depends on the Ca2+-calmodulin complex. Physiologically, these 
two isoforms are inactive until intracellular Ca2+ increases. The Ca2+-binding 
protein calmodulin binds to Ca2+ to form a complex, which binds and activates 
NOS. In contrast, iNOS is transcriptionally regulated and Ca2+-independent. 
Nociceptive stimuli and inflammatory cytokines stimulate the upregulation of 
iNOS in microglia, astrocytes, macrophages, and other immune response cells, 
producing a large amount of NO for several hours to several days that can 
inhibit or kill pathogens. The three NOS isoforms have different distributions 
in the spinal cord and DRG. nNOS is mainly distributed in the superficial I–III 
laminae of the spinal dorsal horn and DRG neurons, iNOS is located on glial 
cells in the spinal cord and DRG, and eNOS is mostly located in the capillary 
endothelial cells of the spinal cord (Reuss et al., 2001; Yılmaz et al., 2020).

GC can be divided into two categories, particulate guanylyl cyclase (pGC) 
on the membrane surface, and soluble guanylyl cyclase (sGC) in the cytosol 
(Friebe et al., 2020). pGC is a large transmembrane molecule with a receptor 
domain outside the cell and a catalytic site inside the cell. It has seven 
forms in mammals, GC-A to GC-G. Previous studies have demonstrated that 
natriuretic peptides bind and activate pGC to regulate submembrane cGMP 
microdomains. Both atrial (type A) and brain (type B) natriuretic peptides 
bind to GC-A (natriuretic peptide receptor-A, NPR-A, or NPR1) to modulate 
the pressure/volume and energy balance of arterial blood. However, c-type 
natriuretic peptide activates GC-B (NPR-B or NPR2) to maintain vascular 
integrity (Kuhn, 2016). Vles et al. (2000) reported that atrial natriuretic 
peptide can activate pGC, leading to cGMP accumulation in GABAergic 
structures in laminae I–III of rat cervical spinal cord. However, sGC is a 
cytosolic heterodimeric enzyme comprised of four different subunits, α1, α2, 
β1, and β2. The two known catalytic isoforms are sGC1 (submit composition 
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GCα1/GCβ1) and sGC2 (submit composition GCα2/GCβ1) (Koesling et al., 
2016). To date, the role of the β2 subunit in the NO/cGMP signaling pathway 
has not been clearly defined. The sGC1 isoform is mainly located in inhibitory 
interneurons in the spinal cord, whereas the sGC2 isoform is mainly expressed 
in satellite glial cells in DRG. It has been demonstrated that sGC1 activation 
contributes to neuropathic pain, and that sGC2 plays an inhibitory role in 
inflammatory pain processing (Petersen et al., 2019). 

NO binds to a group of prosthetic hemes on activated sGC, then initiates 
cGMP synthesis. The level of intracellular cGMP is strictly determined by its 
rate of GC synthesis and the rate of 3′5′-cyclic nucleotide phosphodiesterase 
(PDE) degradation. Among the PDE families, only PDE5, PDE6, and PDE9 
hydrolyze cGMP as specific substrates of inactive 5′-derivatives, and PDE2 can 
hydrolyze both cAMP and cGMP (de Vente et al., 2006). cGMP can also be 
produced by NPR-B in DRG neurons. cGMP transmits signals to downstream 
effector molecules, including PKG, PDEs, and cyclic nucleotide-gated channels 
(Ghalayini, 2004). 

The main effector of cGMP is PKG. PKG has two subtypes, PKG-I and PKG-II. 
PKG-I is widely distributed in the nervous system, whereas PKG-II is mainly 
located in serosa, kidney, cerebellum, and mucosal layers (Ding et al., 2017). 
PKG-I is a homodimeric enzyme with two isoforms, PKG-Iα and PKG-Iβ. 
Both PKG-Iα and PKG-Iβ are detected in spinal cord and DRG. In DRG PKG-
Iα is mainly expressed in the cytoplasm of small, medium peptidergic, and 
non peptidergic C-fibers, whereas PKG-Iβ is widely distributed in the nuclei 
of DRG neurons (Uchida et al., 2018). Both isoforms are also expressed in 
glutamine synthetase-positive satellite glial cells in DRG. PKG-I evidently 
mediates presynaptic nociceptive long-term potentiation (LTP) (Luo et al., 
2012). Moreover, it can trigger K+

ATP opening, resulting in changes in both 
intracellular and extracellular K+ concentration, leading to depolarization 
or hyperpolarization inside and outside the membrane (Brito et al., 2006). 
Cysteine-rich protein 2 (CRP2) is another molecule downstream of PKG-I, and 
it has an inhibitory effect on inflammatory pain. It has been indicated that NO/
cGMP is coordinated such that there is generalized multi-level enhancement 
rather than a strictly limited step-specific response to noxious stimulation 
(Schmidtko et al., 2008a; Figure 2).

NO/cGMP Signaling Pathway and Neuropathic 
Pain
Neuropathic pain is a chronic condition that is a consequence of nervous 
system lesions or dysfunction (Zhang et al., 2022). The characteristics 
of neuropathic pain include enhanced responses to noxious stimuli 
(hyperalgesia), abnormal responses to non-noxious stimuli (allodynia), and 
spontaneous pain (Finnerup et al., 2021). Despite multiple studies that have 
enhanced our knowledge of neuropathic pain by establishing various models 
of conditions such as peripheral nerve injury, diabetic neuropathy, spinal cord 
injury, and chemotherapy-induced neuropathic pain, the detailed mechanisms 
of neuropathic pain remain unclear. A growing body of evidence indicates that 
activation of the NO/cGMP signaling pathway in the spinal cord contributes to 
the occurrence and development of neuropathic pain (Figure 3).Figure 1 ｜ Timeline of research on the NO/cGMP signaling pathway in chronic pain.

BCP: Bone cancer pain; CIPN: chemotherapy-induced peripheral neuropathy; DN: 
diabetic neuropathy; NO: nitric oxide; cGMP: cyclic guanosine 3’,5’-monophosphate; PNI: 
peripheral nerve injury; SCI: spinal cord injury.

Figure 2 ｜ Schematic overview of the NO/cGMP signaling pathway.
L-arginine is decomposed by NOS, generating NO. NO activates soluble guanylate cyclase, 
leading to subsequent cGMP production. Natriuretic peptides binding to pGC is another 
source of cGMP. cGMP then further activates PKG, PDEs, and CNG. The main effector of 
cGMP is PKG. PKG has multiple targets, including CRP2 and K+

ATP. PKG also participates 
in presynaptic nociceptive LTP. cGMP: Cyclic guanosine 3’,5’-monophosphate; CNG: 
cyclic nucleotide-gated channel; CRP2: cysteine-rich protein 2; K+

ATP: ATP-sensitive K+ 
channel; LTP: long-term potentiation; NO: nitric oxide; NOS: nitric oxide synthase; PDE: 
phosphodiesterase; pGC: particulate guanylyl cyclase; PKG: cGMP-dependent protein 
kinase; sGC: soluble guanylyl cyclase.

Figure 3 ｜ Schematic illustration of potential mechanisms involved in the NO/cGMP 
signaling pathway in neuropathic pain. 
Peripheral nerve injury induces the opening of NMDAR receptors and Ca2+ influx. Ca2+ 
combines with PSD95 and further activates nNOS, which promotes NO production and 
stimulates cascade activation of the NO/cGMP/PKG/K+

ATP signaling pathway. Superoxide 
reacts with NO in the spinal cord, producing peroxynitrite, which also promotes the 
development of neuropathic pain. Upregulation of iNOS is involved in the activation 
of astrocytes and microglia during neuropathic pain, but activation of the NO/cGMP/
PKG/K+

ATP signaling pathway in the spinal cord may also relieve neuropathic pain.AQP1: 
Aquaporin 1; BH4: tetrahydrobiopterin; CB2R: cannabinoid receptor type 2; cGMP: 
cyclic guanosine 3′,5′-monophosphate; DAP12: DNAX-activating protein of 12 kDa; 
GC: guanylate cyclase; GCH1: GTP cyclohydrolase 1; GLUT3: glucose transporter 3; 
GRK: G protein-coupled receptor kinase; GRK2: G protein-coupled receptor kinase 2; 
iNOS: inducible NOS; K+

ATP: ATP sensitive K+ channel; NF-κB: nuclear factor-κB; NMDAR: 
N-methyl-D-aspartate receptors; nNOS: neuronal NOS; NO: nitric oxide; PKCγ: protein 
kinase Cγ; PKG: protein kinase G; PSD95: postsynaptic density protein 95; TREM: 
triggering receptor expressed on myeloid cells 2; TRPV4: transient receptor potential 
vanilloid 4.

NO/cGMP Signaling Pathway and Peripheral 
Nerve Injury
Various studies indicate that the NO/cGMP signaling pathway is activated 
after peripheral nerve injury. Inoue et al. (1998) first reported that intrathecal 
injection of a NO-releasing agent promoted the development of thermal 
hyperalgesia after chronic constriction injury. nNOS and iNOS are expressed 
in both the spinal cord and DRG, producing NO then activating the NO/
cGMP/PKG signaling pathway after nerve injury. It has also been reported 
that superoxide released from spine can then react with NO to produce 
peroxynitrite, which appears to mediate neuropathic pain (Tanabe et al., 
2009). Therefore NO—which is probably produced via nNOS and iNOS in the 
spinal cord—promotes the maintenance of neuropathic pain through both the 
NO/cGMP/PKG pathway and the NO/peroxynitrite pathway. nNOS and iNOS 
are also closely associated with multiple receptors and signaling pathways. 
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nNOS contributes to δ-opioid receptor downregulation and cannabinoid-2 
receptor (CB2R) upregulation in the spinal cord and DRG after chronic 
constrictive injury (CCI) treatment (Hervera et al., 2010). NMDA, PSD95, and 
nNOS are also activated in the development of neuropathic pain. PSD95 is the 
connection between nNOS and NMDA receptors. Disruption of the interaction 
between nNOS and PSD95 can reverse NMDA-induced thermal hyperalgesia 
and CCI-induced mechanical allodynia (Florio et al., 2009). However, 
endogenous NO derived from nNOS decreases the activity of spinal NMDA 
receptors through S-nitrosylation, attenuating spinal nociceptive transmission 
and mechanical allodynia in rats that have undergone spinal nerve ligation 
(SNL) (Chen et al., 2017), indicating negative feedback regulation between 
nNOS and NMDA receptors. Activation of NMDA receptors in neurons has 
been shown to induce phosphorylation of JNK in astrocytes through the 
nNOS-GC pathway in the spinal trigeminal nucleus caudalis, indicating that 
the nNOS/NO/GC pathway is involved in intercellular communication between 
neurons and astrocytes in the spinal cord (Lin et al., 2019). Moreover, 
the expression of NMDA receptors and PKCγ also increases, enhancing 
neuropathic pain, suggesting that both the activation of NO/cGMP/PKG and 
the NMDA/PKCγ signaling pathway are involved in neuropathic pain (Zheng 
et al., 2015). Activation of the GTP cyclohydrolase 1/tetrahydrobiopterin 
system increases the constitutive expression of iNOS, inducing NO production 
in the spinal cord of restraint-stressed rats (Huang et al., 2021). iNOS is 
capable of binding glucose transporter 3, a hexose transporter isoform that 
is over-expressed in activated astrocytes in the spinal cords of spared nerve 
injury mice, indicating that iNOS promotes astrocyte activation after spared 
nerve injury (Giordano et al., 2011). The level of sGC in the spinal cord is 
greatly increased after sciatic nerve crush. Spinal sGC reportedly regulates 
neuropathic pain, which is mediated by the NO/cGMP signaling pathway and 
5 HT1ARs (Xu et al., 2016). miR-142-5p plays a protective role by targeting the 
3′ untranslated region of sGC mRNA, inhibiting sGC protein translation, which 
further decreases cGMP levels in neuronal cells, alleviating the neuropathic 
pain caused by Alzheimer’s disease (Xu et al., 2019).

During spinal nociceptive processing, cGMP is generated by the NO/GC 
system activated in the spinal dorsal horn. However, activation of NPR-B on 
DRG neurons can also promote cGMP production (Abdelalim et al., 2013). 
Activation of the cGMP/PKG signaling pathway increases and maintains the 
hyperexcitability of DRG neurons, with a further decrease in action potential 
threshold and an increase in repetitive discharge during depolarization. 
Blocking the cGMP/PKG signaling pathway can markedly reduce the 
hyperexcitability of DRG neurons, as well as behavior hyperalgesia (Huang 
et al., 2012b). The level of aquaporin 1 (AQP1), a cGMP-gated channel, is 
markedly increased in the spinal cord and DRG neurons in rats with chronic 
compression of the dorsal root ganglia, accompanied by a decrease in the paw 
withdrawal threshold. Elevated transient receptor potential vanilloid 4 (TRPV4) 
concentrations in the spinal cord and DRG can be blocked by AQP1 and 
cGMP inhibitors, suggesting TRPV4 is a downstream mediator of AQP1 (Wei 
et al., 2020). TRPV4 mediates Ca2+ influx, stimulating NO production, further 
activating the NO/cGMP/PKG signaling pathway and enhancing hyperalgesia 
in chronic compression of the dorsal root ganglia (Ding et al., 2010). Oxidant-
induced PKG-Iα activation in DRG contributes to the development of CCI-
induced neuropathic pain (Lorenz et al., 2014).

NO/cGMP Signaling Pathway and Diabetic 
Neuropathy
Multiple studies indicate that the NO/cGMP signaling pathway plays an 
important role in the onset and maintenance of diabetic neuropathy (DN). 
Hyperglycemia induces the upregulation of nNOS and iNOS but inhibits 
eNOS activity in the spinal dorsal horns of diabetic rodents (Du et al., 2001; 
Li et al., 2020). The S-methylisothiourea sulfate and β-lactamase inhibitor 
clavulanic acid relieves DN by inhibiting the expression of spinal iNOS 
(Ahlawat et al., 2018; Kolahdouz et al., 2021). iNOS activation secondary to 
NF-κB elevates the level of NO in the spinal dorsal horn, then triggers the 
cGMP/PKG signaling pathway. Both iNOS and NF-κB are downstream of miR-
155. In one study, spinal miR-155 was upregulated in a rat model of DN, but 
this could be inhibited by L-arginine and ibuprofen (El-Lithy et al., 2016). 
Simultaneous injection of nNOS or iNOS inhibitors and CB1R or CB2R agonists 
has synergistic effects in the alleviation of diabetic hyperalgesia (Bujalska-
Zadrożny et al., 2015). The CB2R agonist JWH-015 dose dependently inhibits 
hypersensitivity induced by diabetes by inhibiting nNOS (Castany et al., 2016). 
In other studies, activation of the NO/cGMP signaling pathway alleviated DN. 
Inhalation of hydrogen sulfide gas attenuates DN by activating the NO/cGMP/
PKG signaling pathway, and increases the expression of nNOS and PKG-I in the 
spinal cord (Li et al., 2020). NCX1404, a novel NO donating pregabalin, also 
exerts anti-allodynia effects in STZ-induced DN (Varani et al., 2016). Taken 
together, these observations indicate that activation of central and peripheral 
NO/cGMP signaling has dual effects in DN rats.

NO/cGMP Signaling Pathway and Spinal Cord 
Injury 
It has been estimated that 250,000 to 500,000 people suffer spinal cord 
injuries worldwide each year (Quadri et al., 2020). Spinal cord injury disrupts 
communication with the brain, irreversibly damaging motor and sensory 
functions (Solstrand Dahlberg et al., 2018). Injured spinal cord tissue is 
extensively deacetylated. Deacetylated proteins also participate in the 
occurrence and development of spinal cord injury via the cGMP/PKG signaling 

pathway (Liu et al., 2020). It has been reported that K+
ATP current decreases 

in DRG after spinal nerve ligation. NO activates K+
ATP channels in large DRG 

neurons via direct S-nitrosylation of cysteine residues in the SUR1 subunit, 
one of the four subunits of K+ATP channels. The capacity of NO to activate 
K+ATP channels via this mechanism remains intact after spinal nerve ligation, 
thus selective pharmacological enhancement of K+

ATP current may be another 
way to relieve neuropathic pain (Kawano et al., 2009). This may also be 
one of the mechanisms associated with Wu et al.’s (2004) observation that 
intrathecal administration of NO-releasing drugs alleviates pain induced by 
spinal cord injury. Moreover, inhibition of PDE5 can increase the level of 
cGMP, then activate downstream PKG, leading to a reduction in intracellular 
Ca2+ levels. The oral PDE5 inhibitor lodenafil carbonate reverses mechanical 
and thermal hyperalgesia in the SNL model via activation of cGMP/PKG 
signaling. Immunofluorescence analysis also indicates that lodenafil reduces 
GFAP-stained area densities in ipsilateral dorsal horns, suggesting that 
increased cGMP concentration may be involved in the activation of astrocytes 
in the SNL model (Vieira et al., 2021). Taken together, these results indicate 
that the activation of NO/cGMP/PKG signaling has algesic and analgesic effects 
in multiple models of spinal cord injury.

NO/cGMP Signaling Pathway and 
Chemotherapy-Induced Peripheral Neuropathy 
Chemotherapy-induced peripheral neuropathy is a common side effect of 
anticancer treatment with vinca alkaloids, platinum drugs, and taxanes (Hu 
et al., 2019; Zhou et al., 2020). It has been reported that unpleasant pain or 
paresthesia remains or even intensifies in approximately 30–40% of patients 
after the termination of chemotherapy, which severely affects quality of life 
(Staff et al., 2017). Multiple studies have demonstrated the dual role of the 
NO/cGMP signaling pathway in chemotherapy-induced peripheral neuropathy. 
L-arginine can increase the mechanical pain threshold in vincristine-induced 
mice and improve the contents of NO metabolites and cGMP the in the spinal 
cord (Kamei et al., 2005). Upregulation of nNOS expression is detected in DRG 
after intraperitoneal injection of vincristine, as is NF-κB activation. As a partial 
agonist of 5-HT1A and dopamine D2 receptors, aripiprazole can reverse 
vincristine-induced neuropathic pain by reducing NO levels and inhibiting 
NF-κB in DRG neurons (Khalilzadeh et al., 2020). NO and peroxynitrite in 
the spinal cord are involved in oxaliplatin-induced oxidative stress injury of 
spinal dorsal horn neurons (Azevedo et al., 2013). Spinal NR2B-containing 
NMDA receptors are evidently involved in oxaliplatin-induced mechanical 
allodynia (Mihara et al., 2011). NR2B mRNA and protein are increased in the 
spinal dorsal horn in the late phase after intraperitoneal oxaliplatin injection. 
nNOS, a downstream target of NMDA receptor, is also activated in oxaliplatin-
induced neuropathy due to the inhibitory effect of nNOS inhibitor 7-NI on 
oxaliplatin-induced hyperalgesia. As a histochemical marker of NOS, the 
intensity of NADPH diaphorase staining also markedly increases in the spinal 
dorsal horn, and this can be reversed by intrathecal injection of the selective 
NR2B antagonist Ro25-6981. Furthermore, overexpression of spinal neuronal 
G protein-coupled receptor kinase 2 can downregulate iNOS levels in 
cisplatin-induced peripheral neuropathy (Ma et al., 2021). Triggering receptor 
expressed on myeloid cells 2/DNAX-activating protein of 12 kDa signaling in 
spinal cord microglia is enhanced by cisplatin, and this is accompanied by 
iNOS upregulation (Hu et al., 2018).

NO/cGMP Signaling Pathway and Bone Cancer 
Pain
Advanced prostate, breast, and lung cancers metastasize to the bone causing 
excruciating pain and severely affecting quality of life (Ge et al., 2019). 
Studies have shown that the NO/cGMP signaling pathway is involved in 
tumor proliferation, differentiation, and invasion (Yarla et al., 2019; Zhou et 
al., 2019; Lv et al., 2020). In this regard, we focused on the key role of NO/
cGMP in bone cancer pain (Figure 4). In a mouse model of osteosarcoma-
induced hyperalgesia, levels of spinal nNOS and iNOS mRNA markedly 
increase on day 10 after osteosarcoma inoculation. nNOS decreases to 
normal on day 14 however, whereas iNOS remains at high levels on day 14. 
Immunohistochemical analysis suggests that nNOS and iNOS are mainly 
distributed in the superficial dorsal horn and around the central canal of the 
L3–L5 spinal cord. Intrathecal injection of the NOS inhibitor NG-monomethyl-
L-arginine attenuates pain behaviors on day 14, indicating that the 
upregulated nNOS and iNOS contribute to the development of osteosarcoma-
induced hyperalgesia (Yang et al., 2016). It has also been demonstrated that 
iNOS as a pro-inflammatory factor released by M1 microglia is significantly 
increased in the spinal cord in a bone cancer pain model (Huo et al., 2018). 
In another study sulforaphane, an isothiocyanate bioactive metabolite 
in cruciferous vegetables reportedly had anti-inflammatory, anti-oxidant, 
and anti-cancer effects. Intrathecal injection of sulforaphane reduces the 
upregulation of iNOS in the spinal cord, and reverses hyperalgesia induced by 
tumor cell implantation (TCI) (Fu et al., 2021). Moreover, inhibition of NADPH 
oxidase 4 (NOX4) decreases the production of ROS and the expression of NOS 
in spinal dorsal horn, indicating that NOS also contributes to oxidative stress 
in the spinal dorsal horn induced by bone cancer pain (Long et al., 2020). 

Mas oncogene-related gene C receptors (MrgCs), Gi protein, NR2B, and nNOS 
are reportedly upregulated in the spinal cords of mice with bone cancer-
associated pain. After intrathecal injection of the MrgC agonist bovine adrenal 
medulla 8–22, activated MrgC causes the activation of Gi protein and then 
reduces the expression of spinal NR2B and nNOS, leading to attenuated pain 
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behavior (Sun et al., 2016). Additionally, phosphor-Tyr1472 NR2B, PSD-95, and 
nNOS are upregulated in the spinal cord after TCI. Intrathecal administration 
of Myr-NR2B9c can disrupt the connections between NR2B and PSD-95, 
relieving mechanical and thermal hyperalgesia. Spinal nNOS expression is 
also decreased after Myr-NR2B9c treatment. Therefore, interaction between 
NR2B and PSD-95 increases spinal nNOS activity, which is also involved in the 
process of bone cancer pain (Liu et al., 2014b). Moreover, the chemokine 
C-C motif receptor 2 antagonist RS102895 reportedly inhibits the expression 
of NR2B and nNOS in the spinal cord, and exerts analgesic effects during 
the development of bone cancer pain (Ren et al., 2015). Downstream of NO 
the cGMP/PKG pathway is upregulated in the spinal cord and DRG in a rat 
bone cancer model. Liu et al. (2014) reported that cGMP and PKG activity 
in the spinal cord and DRG were significantly increased after TCI. The cGMP 
activity in DRG begins to increase on day 4 after TCI, peaks from days 7 to 14, 
and decreases slightly on day 21. In contrast, PKG activity in DRG increases 
from day 3 and remains high for 21 days, and increases from days 10 to 14 
in the spinal cord. Intrathecal injection of RP-8-pCPT-CGMPS, an inhibitor 
of the cGMP/PKG pathway, significantly alleviates thermal hyperalgesia and 
mechanical allodynia after TCI as well as reducing the activity of PKG. The 
cGMP/PKG pathway can also increase the hyperexcitability of DRG neurons 
induced by TCI, as evidenced by reduced action potential threshold current 
and increased repetitive discharges (Liu et al., 2014a).

NO/cGMP Signaling Pathway and Inflammatory 
Pain  
Inflammatory pain is usually caused by an inflammatory response to tissue 
damage (Conaghan et al., 2019; Sun et al., 2022). Chemical inflammatory 
mediators released by damaged tissue such as histamine, prostaglandin 
E2 (PGE2), leukotriene, and cytokines act on nociceptive nerve endings, 
reducing neuronal excitation thresholds and sensitive afferent discharge rates, 
leading to the development of hyperalgesia and/or allodynia (Muley et al., 
2016). The NO/cGMP signaling pathway reportedly plays a crucial role in the 
development of inflammatory pain (Figure 5).

Schmidtko et al. (2008a) reported reduced paw licking time in the second 
phase of the formalin test in GC-KO mice compared with wild-type mice, 
and the paw withdrawal latency time of GC-KO mice was longer than that of 
wild-type mice in a zymosan-induced inflammatory pain model. These data 
showed that sGC contributed to exaggerating sensitivity to inflammatory pain. 
Petersen et al. (2019) demonstrated that sGC2 primarily contributed to the 
development of inflammatory pain, whereas sGC1 was primarily involved in 
neuropathic pain. It has been suggested that the actin-destabilizing protein 
cofilin is a downstream target of the NO/cGMP/PKG signaling pathway. The 
PKG-I activator 8-Br-cGMP induces phosphorylation of cofilin in a time-
dependent manner and markedly increases neurite outgrowth in the spinal 
cord, which contributes to zymosan-induced inflammation and nociceptivity. 
The underlying mechanism is mediated by the Rho-GTPases RhoA, Rac1, and 
Cdc42, and their corresponding downstream targets Rho-kinase and p21-
activated kinase. Both NOS inhibitor and Rho-kinase inhibitor could reduce 
the phosphorylation of cofilin, relieving inflammatory hyperalgesia (Zulauf 
et al., 2009). Actin reportedly exhibits rapid and maximal S-nitrosylation in 
the spinal cord in formalin-induced inflammatory pain (Lu et al., 2011). That 
study suggests that as well as the NO/cGMP signaling pathway, S-nitrosylation 
is involved in spinal pain transmission through disinhibition of inhibitory 
neurons. In contrast, targeted activation of the NO/cGMP signaling pathway in 
the spinal cord plays a protective role in inflammatory pain. Cyclic nucleotide-
gated channel subunit 3 (CNGA3), a target of NO/cGMP signaling, is increased 
in the superficial dorsal horn of the spinal cord and DRG after intraplantar 
injection of zymosan. CNGA3-KO mice exhibited increased inflammatory pain 
behavior, and also exhibited pain hypersensitivity after intrathecal injection of 
cGMP analogs or NO donors (Heine et al., 2011). CRP2, another downstream 
effector of NO/cGMP/PKG-I signaling, also has an analgesic effect during 
inflammatory pain. It is expressed in laminas I and II of the spinal cord and 
DRG, and colocalized with PKG. After zymosan or complete Freund’s adjuvant 
injection into the hind paw, CRP2-deficient mice exhibited increased pain 
behaviors compared with wild-type mice (Schmidtko et al., 2008b). Taken 
together, these observations indicate that activation of NO/cGMP/PKG 
signaling has dual effects during inflammatory pain.

Activation of multiple receptors in the hind paw can further activate the NO/
cGMP signaling pathway, suppressing the development of inflammatory 
pain. Kusuda et al. (2020) investigated the analgesic effect of subcutaneous 
injection of choline on inflammatory pain, and reported that it acted on 
7-nicotinic acetylcholine receptor, further activating the NO/cGMP/K+

ATP 
signaling pathway and attenuating PGE2-induced hyperalgesia. Notably, 
choline exerted this analgesic effect without affecting neutrophil migration or 
inflammatory cytokine production in planter paw tissue. Peripheral activation 
of A1 adenosine receptors can also activate the NO/cGMP/PKG/K+

ATP signaling 
pathway, directly blocking PGE2-induced hyperalgesia (Lima et al., 2010). 
In another study, intraplantar injection of the CB2R agonist N palmitoyl-
ethanolamine increased nNOS, inducing NO release in the hind paw, thus 
activating the NO/cGMP signaling pathway which can markedly reduce the 
inflammatory pain induced by PGE2 (Romero et al., 2012). Another CB2R 
agonist JWH-015 exerts peripheral analgesic effects that activate local NO/
cGMP/PKG/K+

ATP signaling and increase the transcription of nNOS in DRG 
(Negrete et al., 2011). Loperamide acts on μ opioid receptors, activating the 
NO/cGMP/K+

ATP signaling pathway and relieving complete Freund’s adjuvant-
induced pain (Curto-Reyes et al., 2008). Cunha et al. (2012) reported that local 

plantar injection of the κ opioid receptor agonist U50488 could significantly 
relieve PGE2-induced inflammatory hyperalgesia, and that this effect could 
be antagonized by selective nNOS inhibitor and PI3Kγ/AKT antagonists. These 
data indicated that peripheral anti-nociceptive effects of excited κ-opioid 
receptors were dependent on PI3Kγ/AKT activation, and PI3Kγ/AKT may 
further activate the nNOS/NO signaling pathway.

NO/cGMP Signaling Pathway and Morphine 
Tolerance
Among the many pain treatments available, morphine is the most commonly 
used to treat severe and chronic pain. Long-term use of morphine has 
undesirable side effects however, including tolerance and hyperalgesia, 
which hinders the maximization and maintenance of its use for clinical 
analgesia (Roeckel et al., 2016; Liu et al., 2018). Morphine tolerance refers to 
diminution of its analgesic effects after prolonged use, and the need for larger 
doses to achieve the same analgesic effects (Liu et al., 2019).

Morphine primarily acts on μ opioid receptors, not κ and δ opioid receptors, 
to induce morphine tolerance and opioid-induced hyperalgesia (Zhang 
et al., 2019). Xu et al. (2014) reported that repeated intrathecal injection 
of morphine activated the mammalian target of rapamycin (mTOR) in rat 
spinal dorsal horn neurons, which was triggered through μ-opioid receptors 
and mediated by intracellular PI3K/Akt. The elevated spinal mTOR activity 
increased spinal nNOS expression, which is involved in the development of 
morphine tolerance. It has been demonstrated that the NO/cGMP signaling 
pathway contributes to the development of morphine tolerance. Ozdemir 
et al. (2011) reported that intraperitoneal injection of NO independent sGC 
activators (YC-1 and BAY 41-2272) promoted morphine tolerance, whereas a 
NOS inhibitor (L-NAME) attenuated it. Similarly, atorvastatin (a competitive 
inhibitor of 3-hydroxy-methyl-glutaryl coenzyme A reductase) and thalidomide 
(a glutamic acid derivative) could also alleviate morphine tolerance, and 
both were inhibited by nNOS, iNOS, and GC inhibitors (Hassanipour et al., 
2016). Liang et al. (2004) also found that after morphine exposure multiple 
sites of NO/cGMP signaling in the spine were upregulated, and that this was 
involved in morphine tolerance. The iNOS inhibitor aminoguanidine can 
reportedly block the activation of NMDA receptors, which is followed by 
reduced NO production in the brain and plasma, leading to reduced morphine 
tolerance (Abdel-Zaher et al., 2006). Bernstein et al. (1997) reported that 
intracerebroventricular and intrathecal injection of PKA inhibitor KT5720 or 
PKG inhibitor KT5823 reduced morphine tolerance. Morphine-3-glucuronide 
is a major metabolite of morphine that has no analgesic effects but is related 
to morphine tolerance and hyperalgesia. It can evidently evoke ERK activation 
following NO/cGMP/PKG signaling in the spinal cord, inducing nociceptive 
responses (Komatsu et al., 2009).

NO/cGMP signaling contributes to the activation of glial cells in morphine-
tolerated rodents (Liu et al., 2006). Intrathecal injection of the selective nNOS 
inhibitor 7NINA attenuates morphine tolerance by reducing the activation of 
p38 MAPK in microglia. Moreover, morphine activates the μ-opioid receptor-
PKCε signaling pathway, enhancing IL-1β, TNF-α, IL-6, and NO release in 
M1 microglia (Merighi et al., 2013). Astrocytes are activated, accompanied 
by the appearance of stellate soma and hypertrophic processes in chronic 
morphine-infused rats. The activation of astrocytes could be suppressed by 
the tricyclic antidepressant amitriptyline, by downregulating the expression 
of spinal PSD-95/NMDAR NR1/nNOS/PKCγ (Huang et al., 2012a). A collective 
of evidence indicates that nNOS/NO is involved in the activation of microglia 
and astrocytes in the process of morphine tolerance. Hence, the NO/cGMP 
signaling pathway is likely to be a new target for the treatment of chronic 
morphine tolerance (Figure 6).

Discussion
Summary and future perspective
In this review we summarized and discussed mechanisms of the NO/cGMP 
signaling pathway involved in various types of chronic pain. NO/cGMP signaling 
in spinal dorsal horn and DRG evidently contributes to the development of 
chronic pain, and also plays an analgesic role by upregulating downstream 
molecules such as CNGA3 and CRP2. Activation of multiple receptors in 
localized tissue injuries may activate NO/cGMP signaling however, which can 
play an effective analgesic role in inflammatory pain. Many effective analgesic 
methods involving manipulation of NO/cGMP signaling have been described, 
and they provide new ideas for the treatment of chronic pain (Table 1).  
Nevertheless, there are still some problems that need to be addressed via 
further research. Recent studies have mainly focused on the application of 
NO/cGMP signaling inhibitors to confirm its involvement in chronic pain, but 
underlying changes in NO/cGMP signaling in the spinal cord and DRG have 
generally not been thoroughly investigated; which has led to an inadequate 
understanding of the NO/cGMP signaling pathway. Peripheral changes in 
NO/cGMP signaling have protective effects on chronic pain, and there is an 
urgent need to understand the specific mechanisms underlying the NO/cGMP 
signaling pathway in order to better target drug delivery for pain relief. It has 
been reported that activated nNOS may be crucial to inducing the spinal LTP 
of Aδ and C fiber evoked responses after peripheral nerve injury (Bahari et al., 
2014). Studies have also shown that in DRG, activated NO in neurons stimulates 
sGC, promoting cGMP expression in satellite glial cells, which establishes the 
connection between neurons and satellite glial cells during the development 
of chronic pain (Belzer et al., 2019). Therefore, the specific mechanism of NO/
cGMP signaling in the spinal cord requires comprehensive investigation.
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DRG by classifying chronic pain into the four most common types. It will assist 
the investigation of similar neural mechanisms in the development of various 
types of pain. However, there are some limitations to this review. The search 
strategy was largely restricted to screening the PubMed database, thus some 
relevant articles may have been omitted. The search period only extended 
to December 2021, so no subsequent publications were included in the 
review. Lastly, because the spinal dorsal horn is the primary center of pain 
transmission modulation and processing, and primary sensory neurons in the 
DRG are critical for initiating chronic pain, we mainly reviewed the activation 
of NO/cGMP signaling in the spinal cord and DRG during pain. There are few 
studies on the NO/cGMP signaling pathway in the brain region, and they were 
not included in the current review.

Conclusion and prospects
This review provides possible directions with respect to targeting the NO/
cGMP signaling pathway for chronic pain treatment. The dual role of NO/
cGMP signaling is an interesting and promising therapeutic target to 
investigate. Building on previous results, the specific mechanisms involved 
in the signaling pathway in the spinal cord need to be characterized in more 
detail. Further investigation of the brain regions related to chronic pain, 
pain encoding, and pain modulation such as the anterior cingulate cortex 
(Bliss et al., 2016), dorsolateral prefrontal cortex (de Santana et al., 2013), 
and amygdala (Neugebauer et al., 2020) is also critical. A previous study has 
shown that NO release is involved in NMDAR-mediated inhibition of LTP in the 
hippocampus (Izumi et al., 2008). Moreover, although the therapeutic effects 
of drugs that act on the NO/cGMP signaling pathway reported in animal 
studies are inspiring, clinical trials have yielded few results. Several drugs 
targeting the NO/cGMP signaling pathway have been used in the clinic. For 
example, linaclotide activates the type I transmembrane receptor guanylate 
cyclase-C (GC-C), with intrinsic GC activity expressed on mucosal epithelial 
cells. This results in the release of cGMP, which then acts on and inhibits 
nociceptors, reducing abdominal pain (Castro et al., 2013). Sildenafil, a PDE5 
inhibitor, significantly alleviates acute menstrual pain in patients with primary 
dysmenorrhea (Dmitrovic et al., 2013). Thus, currently underway preclinical 

Figure 6 ｜ Schematic illustration of potential mechanisms involved in the NO/cGMP 
signaling pathway in morphine tolerance and opioid-induced hyperalgesia. 
Morphine acts on μ-opioid receptors and activates NMDAR, leading to activation of the 
PI3K/Akt/mTOR signaling pathway then overexpression of nNOS. μ-opioid receptors 
can also increase the overexpression of iNOS. nNOS and iNOS induce NO production, 
then excite the NO/cGMP signaling pathway, further activating a variety of protein 
kinases. PKG/ERK is involved in M3G-induced OIH, and PKG/JNK are involved in morphine 
tolerance. PKCγ promotes the activation of astrocytes, and PKCε induces M1 microglia 
and produces numerous inflammatory factors such as IL-1β, TNF-α, IL-6, and NO. Both 
astrocytes and microglia contribute to morphine tolerance. Akt/PKB: Protein kinase 
B; cGMP: cyclic guanosine 3′,5′-monophosphate; ERK: extracellular signal-regulated 
kinase; GC: guanylate cyclase; iNOS: inducible NOS; JNK: c-Jun N-terminal kinase; M3G: 
morphine-3-glucuronide; mTOR: mammalian target of rapamycin; NMDAR: N-methyl-
D-aspartate receptor; nNOS: neuronal NOS; NO: nitric oxide; OIH: opioid-induced 
hyperalgesia; PI3Kγ: phosphatidylinositol 3-kinase γ; PKCγ: protein kinase Cγ; PKCε: 
protein kinase Cε; PKG: protein kinase G; PSD95: postsynaptic density protein 95.

Figure 4 ｜ Schematic illustration of potential mechanisms involved in the NO/cGMP 
signaling pathway in bone cancer pain.
Activated NMDAR receptor promotes the activation of PSD95 and nNOS, and then 
induces activation of the NO/cGMP/PKG-I signal pathway, which is involved in the 
development of bone cancer pain. MrgC induces the activation of Gi protein, which in 
turn reduces spinal NMDAR-NR2B and nNOS and alleviates pain behavior. CCR2 also 
improves the activation of NMDAR and nNOS in the spinal cord. AC: Adenylate cyclase; 
CCR2: chemokine C-C motif receptor 2; cGMP: cyclic guanosine 3′,5′-monophosphate; 
GC: guanylate cyclase; Gi protein: inhibitory guanine nucleotide regulatory proteins; 
MrgC: Mas oncogene-related gene C receptors; NMDAR: N-methyl-D-aspartate receptors; 
nNOS: neuronal NOS; NO: nitric oxide; PKG: protein kinase G; PSD95: postsynaptic 
density protein 95; TCI: tumor cell implantation.

Figure 5 ｜ Schematic illustration of potential mechanisms involved in the NO/cGMP 
signaling pathway in inflammatory pain. 
Inflammatory stimulation induces activation of the NO/cGMP/PKG-I signaling pathway 
in the spinal cord. Different downstream targets have different biological roles in the 
development of inflammatory pain. PKG-I induces excitation of ROCK and PAK then 
promotes phosphorylation of cofilin, exaggerating inflammatory pain. The S-nitrosylation 
of actin also contributes to inflammatory pain. In contrast, upregulation of CNGA3 
and CRP2 in the spinal cord has analgesic effects in a model of inflammatory pain. 
Interestingly, agonists act on receptors such as CB2R, κ-opioid receptors, A1RS, and 
α7nAchRs, activating peripheral or local NO/cGMP/PKG signaling, which have a protective 
effect on inflammatory pain. A1Rs: A1 adenosine receptors; Akt/PKB: protein kinase 
B; CB2R: cannabinoid receptor type 2; cGMP: cyclic guanosine 3′,5′-monophosphate; 
CNGA3: channel subunit 3; CRP2: cysteine-rich protein 2; GC: guanylate cyclase; nNOS: 
neuronal NOS; NO: nitric oxide; PI3Kγ: phosphatidylinositol 3-kinase γ; PKG-I: protein 
kinase G type I; ROCK: Rho-associated coiled-coil forming protein kinase; α7nAChRs: 
nicotinic acetylcholine receptors type α7. 

Study limitations and strengths
Unlike previous publications, this review comprehensively summarizes and 
discusses the role of the NO/cGMP signaling pathway in the spinal cord and 
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studies are expected to translate into clinical trials investigating the protective 
role of targeting NO/cGMP signaling in chronic pain. In summary, although 
there are more challenges ahead, the development of treatments for chronic 
pain based on the NO/cGMP signaling pathway is a promising concept.
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