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Background: Genetic sequence database retrieval benchmarks play an essential role in evaluating the performance
of sequence searching tools. To date, all phylogenetically diverse benchmarks known to the authors include only
query sequences with single protein domains. Domains are the primary building blocks of protein structure and
function. Independently, each domain can fulfill a single function, but most proteins (>80% in Metazoa) exist as
multi-domain proteins. Multiple domain units combine in various arrangements or architectures to create different
functions and are often under evolutionary pressures to yield new ones. Thus, it is crucial to create gold standards
reflecting the multi-domain complexity of real proteins to more accurately evaluate sequence searching tools.

Description: This work introduces MultiDomainBenchmark (MDB), a database suite of 412 curated multi-domain
queries and 227,512 target sequences, representing at least 5108 species and 1123 phylogenetically divergent protein
families, their relevancy annotation, and domain location. Here, we use the benchmark to evaluate the performance of
two commonly used sequence searching tools, BLAST/PSI-BLAST and HMMER. Additionally, we introduce a novel
classification technique for multi-domain proteins to evaluate how well an algorithm recovers a domain architecture.

Conclusion: MDB is publicly available at http://csc.columbusstate.edu/carroll/MDB/.

Background

Genetic sequence database searching is a foundational
tool in bioinformatics commonly used to make new dis-
coveries, guide annotation, and direct downstream analy-
sis, among many other tasks. Therefore, the performance
of database searching tools is crucial to high quality
results in many biomedical applications. Benchmarking
such tools provides a systematic comparison to aid devel-
opers and researchers to understand the strengths of each
tool. Here, we introduce the first phylogenetically diverse
benchmark of multi-domain protein sequences.

Decades ago, the first benchmarks for genetic sequence
database retrieval were comprised of single domain
sequences. With less supporting evidence then we now
enjoy, benchmark designers used just single domain
sequences to provide a robust standard and to sim-
plify homology evaluation. Databases such as Pfam [1],
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SCOPe [2], and others have been used by developers and
researchers as benchmarks for over two decades [3]. Pfam
is a large, partially curated database of protein families
relying on hidden Markov models to guide homology
designations. Many projects have leveraged the quality
and breadth of Pfam, including RefProtDom [4]. Ref-
ProtDom applied several quality filters to Pfam entries,
namely: long domain length, broad taxonomic diversity,
and the availability of a structure. Although RefProtDom
incorporates multiple domains in the target sequences,
all its queries have a single domain. The SCOPe team
has explicitly produced a subset of data known as the
ASTRAL compendium [5]. For many years, developers
and researchers have benchmarked sequence searching
tools using ASTRAL [6-11]. Like SCOPe, ASTRAL is
limited to high quality, but easily crystallizable and well-
characterized proteins in PDB [12]. However, both SCOPe
and ASTRAL restrict their homology annotations to sin-
gle domain relationships to keep relationships simple and
well-defined.
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Other databases have also been used for benchmark-
ing sequence searching tools. The OMA (“Orthologous
MAtrix”) database [13] provides millions of orthologous
pairs for over 2000 genomes. Terrapon et al. used OMA
to determine homology between two sequences based
on whether each contained at least one domain instance
that is part of an orthologous pair [14]. While OMA
naturally supports annotations on multiple domains and
provides millions of orthologous pairs, it does not anno-
tate any paralogous relationships. Furthermore, OMA
was constructed to identify orthologous pairs; therefore,
it is not structured to support evaluations of domain
arrangements, also known as domain architectures. At
least one other database has been crafted as a multi-
domain benchmark. Song et al. manually curated a bench-
mark of twenty well-studied families in the human and
mouse genomes [15]. Drawing on the literature to justify
homology, they assembled an initial release that included
1577 sequences from SwissProt, and have since provided
an update totaling 1832 sequences. While the Song et
al. database is a useful resource for evaluating perfor-
mance in human and mouse proteins, it also precludes
benchmarking the harder challenge of identifying homol-
ogy among phylogenetically divergent sequences. Finally,
Saripella, Sonnhammer, and Forslund constructed three
multi-domain databases to evaluate profile-based tools
[16]. However, they limited their analysis to strictly non-
iterative searching and only used single-domain queries.

Central to assessment of sequence searching tools is
the evaluation metric. For the past two decades, the nor-
malized area under a receiver operating characteristic
curve (up to n false positive records) (ROC,) [17] has
been the primary measure of retrieval of sequence search-
ing tools. To evaluate multiple datasets, some researchers
have “pooled” retrievals, sorting all of the records based
on their statistical score [9, 16, 18]. This is problematic,
in that the records from a single retrieval can dominate
the overall area under the curve [19, 20]. We evaluated
retrieval with the Threshold Average Precision-k (TAP-k)
metric [20]. In the TAP-k, “k” imposes a threshold to fix
the median number of irrelevant (“false positive”) records
per query. This threshold is applied to all the queries.
The TAP-k is based on the average precision (a standard
measure in text retrieval):

J(Eo)

1
— ) p(m) (1)

Here, T, is the total number of relevant records for a
query g, j(Ep) is the rank of the last relevant record with
a statistical score of Ey or lower and p(x) is the precision
of the record at rank x. Notice that there could be irrel-
evant records with a score lower than Ey (which reduces
the utility of the retrieval) but do not affect in the average
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precision. The TAP-k remedies this situation by penaliz-
ing irrelevant records occurring before the threshold Ey
and normalizing to account for the extra precision term:

Jj(Eo)

p(Eo) + Y p(m) @)

m=1

1
T, +1

Due to the normalization, TAP-k scores are in the range
of 0.0 to 1.0. A TAP-k score is 0.0 if no relevant records
are retrieved before the cutoff. Conversely, a TAP-k score
is 1.0 when all the relevant records and no others are
retrieved before the cutoff.

In this study, we introduce MultiDomainBenchmark
(MDB), the first phylogenetically-broad database retrieval
benchmark with multi-domain queries. We anticipate that
the primary use of this benchmark will be to evalu-
ate the retrieval performance of searching tools. Namely,
the MDB will allow for assessments using multi-domain
sequences. Along those lines, and to illustrate the util-
ity of MDB, we benchmarked two sequence searching
tools, BLAST/PSI-BLAST [21, 22] and HMMER [23], and
list their TAP-k and timing performance results here.
To determine relevancy, we use a novel approach that
accounts for the domain architecture within a protein.

To illustrate the importance of accounting for mul-
tiple domains when using a searching tool, we con-
structed single-domain queries and database from our
multi-domain database by creating a new sequence for
each domain and its flanking amino acids up to the
next domain (or edge of the sequence). While we
could use dozens of examples that illustrate the same
point, we arbitrarily choose up|Q1L5Y1|Q1L5Y1_9FILI
(GenBank: AAY89355.1, 836 AA) as the query and
up|Q761J5|Q761)5_9FUNG (GenBank: BAD02841.1, 352
AA) as the target. The query has three domains: PF00623,
PF04983 and PF04998. The target has four domains:
PF00623, PF04983, PFO5000 and PF04998. Using each
of the three (single-domain) sequences from the origi-
nal multi-domain query, we searched using PSI-BLAST
against the 337,199 single-domain sequences. Each of
the searches listed a hit for the correct single-domain
sequence from up|Q761J5|Q76IJ5_FUNG, however, each
of the e-values were above the default cut-off of 0.001
(i.e., 0.33, 0.003 and 10, respectively). Conversely, we
when search with PSI-BLAST, using the original multiple-
domain sequence as a query, it lists the match to
up|Q76IJ5|Q761J5_9FUNG with an e-value of 2e — 18.

Benchmark construction and content

In MultiDomainBenchmark, each multi-domain sequence
is cataloged by its domain architecture (DA). We define
a DA as an ordered set of domains (i.e., as a vector
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whose coordinates are domain names, possibly with rep-
etition). Furthermore, we use DAs to perform classi-
fication. As a theoretical example, let sequenceA have
DA (dj, dy, d3) and sequenceB have DA (dj, ds,
dy). Here, although the sequences contain the same
domains, the domains appear in a different order. Con-
sequently, each sequence has a different DA and there-
fore, we classify the match of sequenceA and sequenceB
in a retrieval list as irrelevant (a “false positive”). As
another example, pfam21|Q3GCI4|Q3GCI4_9FIRM (Ref-
Seq WP_011640391) contains the HAMP domain and
the MCPsignal domain. These domains, in this order,
constitute da00101 (i.e., domain architecture 101) (see
Fig. 1). Additionally, up| Q4KE98|Q4KE98_PSEF5 (RefSeq
WP_011060626.1) contains these same two domains (in
the same order) and starts with the CHASE3 domain.
These three domains, in this order, constitute domain
architecture da01025 (see Fig. 1). We define relevancy as
follows: if the search query is a sequence with da00101
(e.g., Q3GCI4_9FIRM) and it matches a sequence with
da01025 (e.g., Q4KE98_PSEF5), then the searching tool
captured the domain architecture, so we classify the
match as relevant (a “true positive”). Conversely, if the
query has da01025 and the searching tool returns a
match that has da00101, then the searching tool has not
fully captured the domain architecture and the match
therefore is classified as irrelevant. Our definition of rel-
evancy accords with definitions elsewhere, such as in
Apic, Gough and Teichmann [24], who note the conser-
vation of the N- to C-terminal ordering of two domains
(see also [16, 25]). Other researchers also exploit the
concept of ordered set of domains to categorize and
analyze protein sequences. Kummerfeld and Teichmann
[26] studied the order of domains using directed graphs
and found several statistically significant features across
many genomes. Additionally, some similarity searching
algorithms perform alignments using the ordered sets of
domains (“domain arrangements”) to significantly reduce
the number of comparisons [14].

We created MDB to evaluate genetic database retrieval
under realistic conditions, namely, ones using multi-
domain queries. Stemming from our familiarity with the
curation of the RefProtDom benchmark, we applied sev-
eral additional filtering steps to RefProtDom and some
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novel classification concepts to produce MDB. As a start-
ing point, RefProtDom v1.2 has 234,505 sequences. First,
we ignored each sequence that had one or more amino
acids with multiple domain annotations. Current eval-
uation measures assume that each amino acid belongs
to at most one protein domain. We removed the 6993
sequences with overlapping domains to simplify analy-
ses. We formed the target (or subject) database from the
resulting 227,512 (single- and multi-domain) sequences
(see Fig. 2a). Next, we excluded the 160,911 sequences
that only have one domain, leaving 66,601 multi-domain
sequences. For each of the multi-domain sequences, we
identified which DA it has (based on its ordered set of
domains). Due to variance in the number of repeated
domains, we “collapsed” multiple adjacent labels of the same
domain into a single instance in the DA [3, 16, 27, 28].
For example, a protein with domains dj, dy, dy, dy, ds,
dy would have a DA of dj, dy, d3, dy. We sorted the
sequences based on the number of domains (counting col-
lapsed domains as a single domain). We assigned a new
(ascending) number to the first occurrence of each DA. In
all, there are 2525 unique DAs among the multi-domain
sequences (with 32.0% having collapsed domains).

We applied additional filters to the set of DAs before
selecting query sequences. First, because we were devel-
oping a benchmark, we only considered DAs that had
more than one protein sequence with that DA (a DA
member) (again simplifying retrieval analyses). Second,
we filtered out DAs that did not have at least one sequence
shorter or equal to 1800 amino acids (to reduce execution
time). This resulted in 1179 DAs (see Fig. 2b). Further-
more, to provide a phylogenetically-broad benchmark, we
only considered DAs with sequences in more than one
kingdom of life (i.e., Eukarya, Bacteria, Archaea). From
each of the remaining 412 DAs, we randomly chose a
representative query sequence with length <1800 amino
acids. We then ordered the queries (by their DA index)
and designated the 206 odd ranked queries for the Train-
ing set and the 206 even ranked queries for the Test set.

The sequences and DAs in the MDB can be charac-
terized by 1) length of each query sequence, 2) number
of sequences in each DA and 3) number of domains per
sequences. First, the query sequences range from 170 to
1800 residues long (with an average of 759.7 residues).

da00101

C >

MCPsignal

4201025

C

MCPsignal

>

structures and therefore we classify it as irrelevant (a “false positive”)

Fig. 1 Domain Architecture (DA) examples. Both DAs have protein domains HAMP and MCPsignal, whereas only da01025 has CHASE3. When a
sequence from da00101 is used as the query and retrieves a sequence from da01025, we classify the match as relevant (a “true positive”).
Conversely, if a sequence from da01025 is the query and retrieves a sequence from da00101, the match does not fully recover the domain




Carroll et al. BMC Bioinformatics (2019) 20:77 Page 4 of 9

A RefProtDom v1.2 sequences
234,505

N
o

-
)]

—_
o

(¢}

Number of Query Sequences >

Multi-domain 0
sequences 0 200 400 600 800 10001200140016001800

66,601 Number of Residues (in buckets of size 25)
B 1000 T T T T T T T T

100

DAs with\1+
sequences with
length < 1,800 AA
2,142

Count

10

1 I 1 1 ]
0 200 400 600 800 10001200140016001800
Number of Sequences per DA (in buckets of size 25)

1000 7 T T T T T T T

All DAs
2,525

Fig. 2 Filtering steps applied to achieve MultiDomainBenchmark.

a We started with RefProtDom v1.2, then filtered out sequences that
had overlapping domain locations. Additionally, we partitioned out
the multi-domain sequences. b Filtering steps applied to the Domain
Architectures (DAs). We started with 2525 DAs, but only considered
DAs that had at least one sequence with length <1800 amino acids
(shown in light blue) and at least two protein sequences (shown in
dark blue). The result was 1179 DAs (the intersection)
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Figure 3a aggregates all query sequence lengths in a his-
togram. Second, by requirement of our filtering pipeline, 1
each DA must have at least two sequences. While the > 4 & 8 10 12 14
largest DA has 1315 sequences, the average number of
sequences (per DA) is 111.0 and the median is 23.5.
Figure 3b is a histogram indicating the distribution of
the number of sequences per DA. Third, while one of

16

Number of Domains

Fig. 3 a Histogram of the length of all query sequences. For example,
there are 20 query sequences that have between 425 and 449 amino
acids. b Histogram of the number of sequences with the same

the queries has sixteen domains, most queries have two Domain Architecture (DA). For example, there are three domain
domains (the minimum number) (for an average of 2.9 architectures that have between 575 and 599 sequences. Note, the
domains per query sequence). Figure 3¢ summarizes the y-axis is logarithmic. ¢ Distribution of the number of protein domains

in the query sequences (after collapsing repeated domain labels).

number of domains for each of the queries. =4  \dILe
Note, the y-axis is logarithmic

As is common with sequence searching benchmarks,
the data are contained in flat-text files (readable by any
text editor). The target sequences (which include the
query sequences) are in a FASTA formatted file. Domain  Utility and discussion
locations and relevancy information are contained in tab-  With the explosion of sequence data and more sophisti-
delimited files. cated tools than ever before, we now have more annotated
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sequences and genomes available. Multiple databases now
include domain annotations (e.g., SCOP, Pfam, CDD [29]).
For example, of the sequences with annotated domains
in the UniProt-SwissProt database [30], 45.1% have mul-
tiple domains with the average number of domains of 4.2
per entry (see Additional file 1 for more details). Although
this has led to more discoveries about and emphasis on
domains and their role in structure, function and evo-
lution [31], evaluation of searching tools has focused on
single domains.

Several derivative works of the Pfam database exist, with
RefProtDom being of special interest. RefProtDom applies
several additional filters to the Pfam database to create a
homology evaluation benchmark. Although RefProtDom
version 2 has been released [32], it did not include domain
location information, forcing us to use version 1.2.

Relevancy is more clearly defined for single domain
matches. Consequently, if a researcher is primarily con-
cerned with just a single domain, then the results of the
evaluation of searching tools using existing single-domain
benchmarks are probably adequate for that use case. If
however, the protein(s) of interest have multiple domains
or are being compared against multi-domain proteins,
then the evaluation results from a multi-domain bench-
mark may prove more valuable. Furthermore, although
many protocols for manipulating domain architectures
collapse adjacent repeated domains into one, the con-
sequences of the collapse are not fully understood.
Researchers exploring the relevancy of retrieved proteins
with repeated domains should therefore inspect the cor-
responding results carefully. Finally, most search tools do
not try to detect domain rearrangements. Accordingly, we
do not try to capture domain rearrangements with this
benchmark.

Although other multi-domain databases and bench-
marks do exist, they are not structured as general-purpose
benchmarks. For example, the gold-standard benchmark
introduced by Song et al. is noticeably different from Mul-
tiDomainBenchmark. First, it only comprises human and
mouse sequences. Second, it is much smaller with only
0.8% of the number of sequences in MDB (and therefore
fewer relationships defined).

On one hand, MultiDomainBenchmark places heavy
restrictions on domain architecture, namely, it insists
that retrieved proteins should match all query domains,
matching the query order though not the multiplicity
(because it collapses multiple domains into one). On
the other hand, many domain benchmarks count a sin-
gle domain match as correct, while yet others could
count multiple domain matches with omissions as cor-
rect. The difference reflects the intent of MultiDomain-
Benchmark: to evaluate tools for retrieving proteins
whose functions overlap very tightly with the query
protein.
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Consider for example, the inhibitor of apoptosis (IAP)
family, whose members c-IAP1 and c-IAP2 contain the
domain architectures BIR-BIR-BIR-UBA-CARD-RING,
and whose member XIAP contains the slightly differ-
ent architecture BIR-BIR-BIR-UBA-RING, omitting the
CARD domain. For the query c-IAP2, most domain
benchmarks would count both c¢-IAP1 and XIAP as
correct hits, whereas MultiDomainBenchmark insists
on a more precise structural overlap, so with query
c-IAP2 it would count c-IAP1 as a correct hit, but
not XIAP.

Case study: sequence searching tool evaluations

Because of their widespread use, we chose two sequence
searching tools to illustrate the usefulness of MultiDo-
mainBenchmark: BLAST/PSI-BLAST and HMMER. We
evaluated each tool with both non-iterative and itera-
tive protocols. For non-iterative evaluations, we searched
against the collection of 227,512 sequences (with non-
overlapping domains) in the MDB target database using
each of the 206 MDB Test queries. Figure 4 provides
command-line examples for one of the queries for both
BLAST and non-iterative HMMER. For iterative evalu-
ations, we first performed up to five rounds of search-
ing on a clustered version of NCBI's NR database [33].
We clustered the NR database at 90% redundancy using
nrdb90.pl [34] to reduce its size for execution time
considerations per industry standard [10, 35]. A final
search was performed on the MDB target database,
with the profile built from the iterative rounds. We
executed each of the sequence searching tools with
most of the default arguments, except to specify the
query, database and number of iterations and output
files. Figure 4 provides command-line examples for one
of the Test queries for both PSI-BLAST and iterative
HMMER.

Due to ambiguities inherent with classifying the homol-
ogy of multi-domain searches, we focused instead on cap-
turing domain architectures. In addition to the criterion
for a match to be classified as relevant (a “true positive”)
described in the “Benchmark construction and content”
section (i.e., query and target sequences having the same
domains in the same order), we added an additional
constraint. The relevancy scoring also required that at least
50% coverage [36] (i.e., the alignment identified by the
tool must correspond to 50% or more of the amino acids
within the annotated boundaries of the domains). All other
matches were classified as irrelevant (“false positives”).
This additional constraint ensures that the tool has guided
the researcher to the correct portion of the protein to
identify the domain architecture. If a tool does not accu-
rately identify the correct alignment, then it has merely
made a lucky guess. We evaluated retrieval with the
Threshold Average Precision-k (TAP-k) metric [20].
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BLAST:
psiblast -db finalDatabase -query pfam21_Q1UW50_Q1UW50_9MYCO.fa -num_threads 1 -evalue 1000 -out hits.txt -num_descriptions 9999

-num_alignments 9999

Non-Iterative HMMER:
hmmbuild pfam21_Q1UW50_Q1UW50_9MYCO.hmm pfam21_Q1UW50_Q1UW50_9MYCO.fa
hmmsearch -E 1000 --cpu 1 -o hits.txt pfam21_Q1UW50_Q1UW50_9MYCO.hmm finalDatabase.fa

PSI-BLAST:

psiblast -db nr90 -query pfam21_Q1UW50_Q1UW50_9MYCO.fa -num_iterations 5 -num_threads 1 -out_pssm pfam21_Q1UW50_Q1UW50_9MYCO.pssm
psiblast -db finalDatabase -in_pssm pfam21_Q1UW50_Q1UW50_9MYCO.pssm -num_iterations 1 -evalue 1000 -num_threads 1 -out hits.txt
-num_descriptions 9999 -num_alignments 9999

Iterative HMMER:
jackhmmer --noali -N 5 --cpu 1 --chkhmm pfam21_Q1UW50_Q1UW50_9MYCO pfam21_Q1UW50_Q1UW50_9MYCO.fa nr90.fa
hmmsearch -E 1000 --cpu 1 -o hits.txt pfam21_Q1UW50_Q1UW50_9MYCO-5.hmm finalDatabase.fa

Fig. 4 Abbreviated command-line examples for non-iterative searches. For BLAST, we searched with PSI-BLAST set to a single iteration on the
MultiDomainBenchmark target database. For non-iterative HMMER, we first produced a hidden Markov model (HMM) with hmmbuild, then
searched the MDB target database using that HMM with hmmsearch. For PSI-BLAST, first, we search for up to five iterations on a clustered version of
the NR database (see main text for details), saving the resulting position-specific scoring matrix (PSSM). Then, using the resulting PSSM, we searched
the MDB target database. For iterative HMMER, we saved the resulting HMIM produced by searching up to five iterations with jackhmmer. Then, we
performed a final search on the MDB target database with hmmsearch using the resulting HMM. The e-value threshold (and -num_descriptions and
-num_alignments) were set artificially high for performance analysis reasons. For complete command-line usage, see the MDB website

Given the phylogenetically diverse set of queries in the  19.4% of its scores being the same. The average differ-

MDB Test subset, the TAP-k scores for both searching
tools span the full range from 0.0 to 1.0. Figure 5 sum-
marizes the results for the non-iterative search executions
by plotting the difference of subtracting HMMER’s TAP-k
scores from BLAST’s for each data set (larger values indi-
cate BLAST performed better than HMMER). Note, for
each value of k = {1, 3, 5, 20}, the x-axis is sorted indepen-
dently to provide a visually discernible graph. The most
common difference is exactly 0.0, as one might expect.
For k = 20, 7.2% of the TAP scores were the same. This

ence varies from 0.12 (for k = 1), to 0.16 (for k = 3)
(larger averages indicate BLAST performed better than
HMMER). Figure 6 summarizes the results for the iter-
ative search executions by plotting the differences for
subtracting HMMER from PSI-BLAST (larger values indi-
cate PSI-BLAST performed better than HMMER). Here,
TAP-k scores for iterative searches show much more dis-
cord than for the non-iterative ones. For example, the
percentage of searches that have the same TAP-k score
varied from 3.8% (k = 20) to 15.0% (k = 1). Addi-

percentage increases as k decreases with k = 1 having tionally, the averages ranged from 0.16 (k = 1) to 0.18
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Fig. 5 Distribution of differences in non-iterative TAP-k scores (for k = {1, 3,5, 20}) between BLAST and HMMER for the MultiDomainBenchmark Test
queries. The average differences (and standard deviations) are 0.1240.18, 0.1640.20, 0.15£0.18 and 0.16+0.18 for k = {1, 3,5, 20} respectively. A
larger area under the curve indicates that BLAST had more datasets that performed better. Note, the x-axis is sorted independently for each k
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Fig. 6 Distribution of differences in iterative TAP-k scores (for k = {1,3, 5, 20}) between PSI-BLAST and HMMER for the MultiDomainBenchmark Test
queries (using the profile generated from searching up to five iterations on a clustered version of the NR database). The average differences (and
standard deviations) are 0.1640.25, 0.18+0.27,0.1740.27 and 0.1740.27 for k = {1, 3,5, 20} respectively. A larger area under the curve indicates that
PSI-BLAST had more datasets that performed better. Note, the x-axis is sorted independently for each k

(k = 3). The distribution of TAP-k scores is illustrated in
the Additional file 1.

Additionally, we gathered timing results. We executed
the programs on a shared environment system and there-
fore the timing results are just first approximations to the
actual execution times. Figure 7 summarizes the timing
results for BLAST/PSI-BLAST and HMMER using box-
and-whisker plots. The whiskers represent the minimum
and maximum execution times. The bottom and the top of
the (blue) box in each plot indicate the first and third quar-
tiles. The thick black horizontal line represents the second
quartile (or median) value. Note, the y-axis is logarithmic.
For the non-iterative runs, HMMER generally has faster
execution times than BLAST with a median of 10 s com-
pared to BLAST’s 24 s. For the iterative runs, PSI-BLAST’s
median is one hour and 0 min compared to HMMER’s
median execution time of 54 min (however, PSI-BLAST’s
average is one hour and 19 min compared to HMMER’s
average execution time of one hour and 37 min).

Researchers have been benchmarking sequence search-
ing tools for decades. With just the exceptions men-
tioned previously, these benchmarks have only had
single-domain sequences. As one would expect, sequence
searching tools perform differently on single- and multi-
domain benchmarks. To quantify this, we divided the
ASTRAL database into two halves, each with 5162
sequences (as has been done elsewhere [11]). We com-
pared the distribution of TAP-1 scores for PSI-BLAST on
ASTRAL and MDB (see Fig. 8). The average PSI-BLAST
TAP-1 score on the ASTRAL database is 0.38 whereas the
average on the MDB is 0.33. Using a one-sided Wilcoxon-
Mann-Whitney test [37], the probability that the two
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BLAST HMMER
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Fig. 7 Box-and-whisker plot of the non-iterative (a) and iterative (b)
execution times for BLAST/PSI-BLAST and HMMER (non-iterative:
hmmsearch; iterative: jackhmmer + hmmsearch) for the
MultiDomainBenchmark Test queries. Whiskers represent the shortest
and longest execution times. The blue box indicates the first and third
quartiles and the thick black line the second quartile (or median)
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Fig. 8 PSI-BLAST TAP-1 scores for both the (single-domain) ASTRAL
database (bottom x-axis) and MultiDomainBenchmark (top x-axis).

These two distributions have a p-value of 0.0114 of being from the

same population (see the main text for details)

distributions of scores coming from the same population
is p = 0.0114.

Conclusion

In this study, we presented MultiDomainBenchmark,
the first phylogenetically diverse benchmark with multi-
domain queries. MDB has a target database with 227,512
single- and multi-domain sequences. The 66,602 multi-
domain sequences have 2525 unique DAs. We applied
additional filters yielding 412 phylogenetically diverse
DAs and from each one we randomly selected a query
sequence. We designed this benchmark on the one hand,
to bring attention to the issue of evaluation of searches
with multiple domains, and on the other, to perform such
analyses. Here, we also provided the initial use of MDB by
assessing BLAST/PSI-BLAST’s and HMMER’s ability to
capture domain architectures and their execution times.
While many other sequence searching tool exist, our case
study here simply demonstrates the use of MDB.

We invite other developers and researchers to also use
MDB. To this end (and for reproducibility), we provide the
scripts on our website that we used to perform the case
study.

Additional file

Additional file 1: Supplementary material. Supplementary material
detailing multi-domain proteins in UniProt-SwissProt and the distribution
of TAP-k scores from the case study. (PDF 259 kb)
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