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ABSTRACT: The accurate prediction of protein−ligand binding affinities is a fundamental problem for the rational design of new
drug entities. Current computational approaches are either too expensive or inaccurate to be effectively used in virtual high-
throughput screening campaigns. In addition, the most sophisticated methods, e.g., those based on configurational sampling by
molecular dynamics, require significant pre- and postprocessing to provide a final ranking, which hinders straightforward applications
by nonexpert users. We present a novel computational platform named ChemFlow to bridge the gap between 2D chemical libraries
and estimated protein−ligand binding affinities. The software is designed to prepare a library of compounds provided in SMILES or
SDF format, dock them into the protein binding site, and rescore the poses by simplified free energy calculations. Using a data set of
626 protein−ligand complexes and GPU computing, we demonstrate that ChemFlow provides relative binding free energies with an
RMSE < 2 kcal/mol at a rate of 1000 ligands per day on a midsize computer cluster. The software is publicly available at https://
github.com/IFMlab/ChemFlow.

■ INTRODUCTION
The accurate prediction of protein−ligand binding affinities in
solution is a central problem in chemistry and biology with
technologically relevant applications ranging from rational drug
design to chemical sensing.1−3 Despite vigorous effort on
methodological development4 and community-driven actions
such as D3R5 and SAMPL,6 this problem has remained
unsolved. Virtual high-throughput screening (vHTS) is the
computational technique to identify drug candidates for a
given protein target, typically a receptor or an enzyme,7 which
has become an integral part of the drug discovery pipeline in
the pharmaceutical industry.8 In structure-based approaches,
starting with a large library of chemical compounds (typically
5−10 million), often in 2D electronic format, vHTS relies on
ligand preparation (i.e., 3D reconstruction, protonation/
tautomeric state assignment, partial charge determination,
etc.), modeling of the protein−ligand complex, and compound
ranking and prioritization. Given the number of molecules to
be processed, structure-based vHTS of ultralarge chemical
libraries is challenging and requires efficient and fully

automated approaches. Recently, the preparation and docking
of a chemical library of 1.4 billion commercially available
compounds by the open-source software VirtualFlow was
reported9 (also see ref 10 for a recent review on parallelization
algorithms for virtual screening). Moreover, the computational
cost underlying virtual screening imposes severe limitations on
the affordable level of theory, which results in fast but
inaccurate scoring functions for ranking. In fact, rigorous
binding free energy calculations such as double decoupling,11

the geometrical route,12 and more recently nonequilibrium
simulations13 are computationally too intensive and cumber-
some to set up for large-scale library screening. Recently, an
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original rescoring based on the stability of the docking poses in
all-atom molecular dynamics simulations was shown to
improve distinguishing active compounds from decoys.14

Also, a recent classification of existing computational strategies
for protein−ligand binding has provided theoretical guidelines
to tune the balance between accuracy and efficiency.15 A
significant outcome of this analysis was that empirical scoring,
which is used to rank the docking poses, can be theoretically
improved via end-point free energy approaches such as MM-
PBSA16 or LIE17 that explicitly account for configurational
sampling and ligand desolvation upon binding. Although
computationally more intensive, “free energy rescoring” of
docking results is becoming increasingly more accessible,18

particularly after the advent of commodity GPU comput-
ing.19,20 Recently, end-point approaches were shown to
provide accurate binding free energy predictions in host−
guest systems as compared to isothermal titration calorimetry
(ITC) results.21,22

■ IMPLEMENTATION
An efficient implementation of end-point free energy methods
for virtual screening requires a significant degree of automation
to prepare, dock, and rescore many ligand poses along with
sufficient computer resources to run molecular dynamics
(MD) simulations started from the docking results. These
intrinsic difficulties have so far hindered the establishment of
fully automated tools for virtual screening with free energy
rescoring. Nonetheless, semiautomatic tools and workflows
have started to emerge.23−25 For this purpose, we developed
ChemFlow, an integrated workflow to bridge the gap between
2D chemical structures and ligand binding free energies. By
combining existing computational chemistry tools via
simplified interfaces, ChemFlow prepares, docks, and rescores
a large library of chemical compounds semiautomatically and
efficiently by leveraging GPU computing resources within a
supercomputer environment. To enable full automation of
binding free energy calculations, ChemFlow makes use of
template files that provide nonexpert users straightforward
access to complex simulation protocols with reasonable default
settings. We note, however, that protein preparation, which
involves modeling of missing loops, modeling of the

protonation state of titratable residues, the inclusion of
crystallographic waters, and/or post-translational modifica-
tions, etc., is left to the user.
ChemFlow is shipped with three independent modules:

DockFlow, LigFlow, and ScoreFlow (Figure 1). In coordina-
tion with the standalone software PrepFlow,27 which was
designed to handle chemical library preparation robustly and
efficiently, hundreds of thousands of ligands are prepared,
docked, prioritized, and finally reranked using simplified free
energy calculations by ChemFlow. Starting from the output of
PrepFlow, DockFlow performs virtual high-throughput dock-
ing against one or multiple targets using four popular docking
codes: AutoDock Vina,28 QVINA,29 SMINA,30 and
PLANTS.31 LigFlow provides compound parametrization by
atom-typing to GAFF232 and partial charge assignment to
AM1-BCC33 or RESP34 charges by quantum-mechanical
calculations, which is required for running MD. Finally,
ScoreFlow reranks the docking poses by the one-average
MM/PBSA or MM/GBSA methods as implemented by
MMPBSA.py35 in AmberTools.36 By making use of high-
performance computer resources through the architectural
standards of the SLURM37 and PBS38 queuing systems along
with error handling and resuming capability tools, the
implemented workflow opens the door to virtual high-
throughput docking with free energy rescoring.

■ RESULTS
The use of ChemFlow is illustrated using a subset of the
Greenidge dataset.26 The resulting dataset is highly relevant for
virtual screening purposes because (1) it features 626 protein−
ligand complexes with drug-like organic compounds; (2) it
includes 234 distinct proteins, 25 of which cocrystallized with
≥5 ligands; (3) it was curated by experts from the
pharmaceutical industry; (4) it provides high-resolution
structures (X-ray) and thermodynamic data (pKd) for all
complexes; and (5) it comes with in silico predictions for
benchmarking computational methods (see Tables S6 and S7
for details). To emulate a typical vHTS campaign, the ligands
were extracted and processed by PrepFlow.27 The chemical
library was prepared using GAFF2 parameters and RESP
charges and forwarded to DockFlow, which prioritized 10

Figure 1. (A) Diagram of ChemFlow features within a typical workflow. (B) Linear regression and determination coefficient (r2 = 0.52) for 626
protein−ligand complexes extracted from the Greenidge data set. All data points correspond to MM/GBSA free energy scores (with no entropy)
based on 20 ns explicit-water MD of the protein−ligand complex (see the SI for details).
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binding modes per ligand via PLANTS and the ChemPLP
scoring function.39 The best binding pose per ligand along with
the coordinates of the protein were postprocessed by
ScoreFlow. For this purpose, explicit-water MD for 20 ns
was performed and analyzed using the one-average MM-GBSA
method. For the MD simulations, the Amberff14SB40 (explicit-
solvent) and Amber99SB-ILDN41 (implicit-solvent) force
fields were used for the protein, GAFF232 was used for the
ligand, and the TIP3P model42 was used for water. For the
MM/GBSA calculations, the Amber GB2 model43 that
implements the OBC implicit-solvent model44 was used with
an internal dielectric constant of 4 (see the Supporting
Information (SI) for details). The numerical predictions for
626 protein−ligand complexes extracted from the Greenidge
dataset with no entropy contribution are compared to
experimental binding affinities in Figure 1. The data show
that docking with free energy rescoring provides binding
affinity results that are significantly correlated with experiments
with a Pearson correlation coefficient R = 0.72 (or,
equivalently, a determination coefficient r2 = 0.52), which
corresponds to a root-mean-square error (RMSE) of 1.94 kcal/
mol (see the SI for details on the quantification of errors).
These results are consistent with those of Greenidge (R =
0.74)45 and demonstrate the reliability of free energy rescoring
provided by ChemFlow. Moreover, analysis of the correlation
with the experiments shows that free energy rescoring by
explicit-solvent MM/GBSA improves the accuracy of docking
by 20% (Table S2).

■ PERFORMANCE
When running on a midsized GPU cluster, the entire protocol,
including ligand preparation, docking, and free energy
rescoring takes approximately 3 h per ligand. As shown in
Table 1, rescoring of the docking results by MM/GBSA is

clearly the bottleneck, which accounts for 88% of the total
computational effort for an ordinary protein of ∼300 amino
acids. When implicit-solvent MD is used for rescoring with
AM1-BCC charges, the computational effort drops to 25 min
per ligand (Table 1), which allows for processing a larger
number of ligands and/or binding modes per ligand. It should
be noted that although free energy rescoring involves a
significant computational effort, these calculations are
independent, so the actual performance of the protocol scales
linearly with the number of available GPU nodes. In addition,
explicit-solvent MD avoids the use of harmonic restraints on
the protein backbone, which allows sampling of the natural

fluctuations of the biomolecule, including the plasticity of the
binding site. Since the implicit-solvent results are strongly
correlated with explicit-solvent MM/GBSA, unlike docking
(Figure S10), we recommend the use of implicit-solvent
simulations for rescoring thousands of docking poses followed
by explicit-water simulations (which are 1 order of magnitude
more expensive than implicit-water ones) of the top 100/200
compounds for virtual screening purposes.

■ CONCLUSION
The newly introduced workflow for protein−ligand binding
named ChemFlow opens the door to virtual screening of large
chemical libraries by docking with free energy rescoring.
Although the benefits of such rescoring remain to be fully
established, ChemFlow provides a ready-to-use working
environment for testing and benchmarking computational
strategies and protocols for drug discovery. Moreover, the
protocols implemented by ChemFlow can be easily augmented
by coupling to recent developments that account for the
entropy loss upon ligand binding, such as the interaction
entropy method46 or the quasi-harmonic multibasin (QHMB)
approach.47 With the constant increase in computer power,
particularly GPU-based computing, automated virtual screen-
ing procedures like the one presented here, which explore
molecular recognition in solution or even in lipid membranes,
are expected to flourish and eventually replace classical high-
throughput docking approaches.

■ DATA AND SOFTWARE AVAILABILITY
The ChemFlow software is freely distributed at the following
link: https://github.com/IFMlab/ChemFlow. A tutorial on
the installation and use of ChemFlow for protein−ligand
binding affinities with α-thrombin is available at https://
github.com/IFMlab/ChemFlow/blob/master/docs/Tutorial-
ChemFlow.rst. ChemFlow interfaces several programs whose
availability is indicated below. Conda is open-source and free
of charge for not-for-profit institutions. The docking software
Autodock Vina, QVINA, and SMINA are open-source and free
of charge. The docking program PLANTS is available to
academic not-for-profit users under a specific license agree-
ment. The Open Babel tool is open-source and free of charge.
For MD simulations and MM/PB(GB)SA calculations, the
AmberTools suite is free of charge, and its components are
mostly released under the GNU General Public License
(GPL). For running MD on GPUs (Amber)36 and RESP-
charge ligand parametrizations (Gaussian), the required
software is commercial and requires paid licenses. The Maestro
molecular modeling program package, which was used to
prepare the proteins of the data set, is commercial and requires
a paid license. The dataset used in this study is available at
https://github.com/IFMlab/ChemFlow/blob/master/DATA-
BENCHMARK.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00919.

Details on the collection of the data set; preparation of
the proteins, ligands, and protein−ligand complexes;
docking experiments; MM/GBSA calculations; quantifi-
cation of errors from experiments; and computational

Table 1. Benchmark Results: Average Execution Time Per
Protocola

module protocol timing

DockFlow PLANTS 37 s
AutoDock Vina 267 s
QVINA 59 s
SMINA 154 s

LigFlow AM1-BCC 6 min
RESP 19 min

ScoreFlow minimization 20 s
MD, implicit solvent 19 min
MD, explicit solvent 2.6 h

aDetails on the performances of DockFlow, LigFlow, and ScoreFlow
are given in Table S4, Figure S5, and Table S5, respectively.
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