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A B S T R A C T

The recent successes of chimeric antigen receptor T cells in the treatment of hematological malignancies have
clearly led to an explosion in the field of adoptive cell therapy for cancer. Current efforts are focused on the
translation of this exciting technology to the treatment of solid tumors and the development of allogeneic ‘off-the-
shelf’ therapies. γδ T cells are currently gaining considerable attention in this field as their unique biology and
established role in cancer immunosurveillance place them in a unique position to potentially overcome these
challenges in adoptive cell therapy. Here, we review the relevant aspects of the function of γδ T cells in cancer
immunity, and summarize clinical observations and clinical trial results that highlight their emerging role as a
platform for the development of safe and effective cancer immunotherapies.
Introduction

There is striking evidence that in addition to our adaptive immune
system, the innate immune system deals with malignant cells long before
visible tumor development. Special interest in this matter is given to the
unconventional group of γδ T cells that share all cytotoxic features with
αβ T cells but also possess innate-like features, including the expression of
various natural killer cell receptors (NCRs) [1]. Evolutionary highly
conserved, γδ T cells are unique in that they recognize a variety of an-
tigens [2] in a major histocompatibility complex (MHC)-unrestricted
fashion, mature in the thymus and retain a preactivated state, meaning
they do not require clonal expansion or differentiation into an effector T
cell phenotype upon activation [3]. Showing strong enrichment in
epithelial tissues, these cells have adopted efficient ways to monitor
other cells for abnormal changes in their physiology in tissues and blood
–– a function that has been summarized as the ‘lymphoid
stress-surveillance response’ [4,5].

Unique contributions by γδ T cells to broader immunological pro-
cesses, such as pathogen recognition and clearance [6], attraction and
maturation of antigen-presenting cells [7] and direct stimulation of αβ T
cells via direct antigen presentation [8], are well established. In addition,
γδ T cells contribute to tissue homeostasis and wound healing [9]. Most
striking is the phenotype of mice that lack the entirety or specific sub-
types of γδ T cells. T cell receptor (TCR) δ chain knockout mice show a
significant increase in the occurrence of papillomas which develop into
carcinomas in a model of chemically induced skin cancer [10]. This
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increase in malignant events is not shared by mice that lack αβ T cells
[11]. Similar protective effects by γδ T cells have been validated in
models of colorectal cancer [12], malignant melanoma [13], B cell
lymphoma [14] and prostate cancer [15]. These important contributions
to tissue homeostasis and cancer immunosurveillance [16] have fuelled
scientific interest to further explore the biology of γδ T cells and their
potential for clinical translation [17,18].

Self-surveillance, natural killer receptor NKG2D and other NCRs

The activating cell surface receptor NKG2D and its ligands play an
important role in cytotoxic immune responses of natural killer (NK) cells,
NK-T cells and γδ T cells against tumors [19]. Ligands for NKG2D include
MHC class I polypeptide-related sequence A and B (MICA/B) and several
UL16-binding proteins (ULBPs) that are poorly expressed in normal tis-
sues but are strongly upregulated in stressed or transformed cells [20].
This stress signal can be induced via the DNA repair response after ul-
traviolet exposure [21], oncogenes such as Ras [22], osmotic shock
and/or oxidative stress via epidermal growth factor receptor signalling
[23]. Moreover, MICA can also be upregulated via pharmacological
manipulation of the mevalonate pathway [24]. In mice, γδ T cells protect
the skin from tumors by responding to increased expression of the MICA
homologue Rae1 [25]. Remarkably, this protective contribution not only
involves direct cytotoxicity, but also the production of interleukin (IL)-13
[26] and modulation of B cells promoting immunoglobulin E class
switching and the accumulation of autoreactive antibodies [27]. Mice
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Figure 1. γδ T cells, predominantly Vδ1þ T cells, are rich in tissues such as colon and skin, where they interact with tissue-selecting proteins of the BTNL family. High
expression of NCRs (e.g. NKG2D, NKp30, DNAM-1) allows these cells to respond to stress ligands [MICA/B, ULBPs] in an MHC-unrestricted and non-clonal fashion,
and at the same time to recognize TCR-specific ligands. Activation of γδ T cells involves direct cytolysis of target cells as well as the production and release of cytolytic
granules, chemokines and TH1 cytokines. Bridging the innate and adaptive systems, γδ T cells have been shown to attract and activate antigen-presenting cells (APCs),
αβ T cells and B cells, thereby orchestrating adaptive immune responses. In blood, mostly Vδ2Vγ9 T cells survey for metabolically hyperactive cells, sensing in-
termediates of the mevalonate pathway through interactions with BTN3A1.
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lacking NKG2D show more susceptibility to spontaneous development of
prostate cancer [28], and T cells and NK cells rapidly clear malignant
cells injected intomice when they express NKG2D ligands [29]. In human
carcinomas of the lung, breast, kidney, ovary, prostate and colon, NKG2D
ligands are widely expressed and prompt responses from
tumor-infiltrating autologous Vδ1þ T cells [30]. In lung cancer, single
nucleotide polymorphisms of MICA influence not only disease progres-
sion but also susceptibility to platinum chemotherapy [31]. Lung cancer
cells that express MICA are recognized and killed by NK cells [32], and in
patients with head and neck cancer, the use of cetuximab causes NKG2Dþ

NK cells to recognize MICA, which induces a tumor antigen-specific
adaptive response through dendritic cell maturation and consequent
activation of cytotoxic T lymphocytes [33].

The activating NCRs NKp30, NKp44 and NKp46 are also expressed on
human Vδ1þ T cells after activation and costimulation with cytokines
enhancing the production of interferon gamma (IFNγ) [34]. Further-
more, the engagement of NKp30 and NKp44 on Vδ1þ T cells promotes
the recognition and killing of leukemia cells and correlates with
increased granzyme expression [35]. Not limited to cytotoxicity alone,
activation of NKp30 on Vδ1þ T cells induces production of the CC che-
mokine ligands CCL3, CCL4 and CCL5, linking target recognition with
the attraction of antigen-presenting cells such as monocytes and con-
ventional αβ T cells [36]. NCRs have also been shown to bind to
self-proteins expressed on malignant or stressed cells; for example,
binding of B-associated transcript 3 [37] or B7-H6 [38] on target cells by
NKp30 renders these cells prone to killing by NK cells. Similarly, the
multiplicity of NCRs expressed [34], especially on intra-epithelial γδ T
cells [39], is expected to enable these cells to respond to markers of
dysregulation and stress immediately where they reside [4,25].

The impact of other NK cell-associated inhibitory receptors on γδ T
cells (e.g. CD94 heterodimers with NKG2A), which have been shown to
be strongly inhibitory for NK cells and conventional cytotoxic αβ T cells
in tumors [40], remains unclear as reports investigating the expression
on γδ T cells and modulation of function through NKG2A are currently
lacking.
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γδ T cells in humans: same but different

Human T cells expressing a γδ TCR show functional similarities with
mice in that they are highly capable and primed killer cells that almost
exclusively produce IFNγ upon activation [41–43]. However, there are
fundamental differences between γδ T cells in humans and mice. For
example, the signature subset of mouse dendritic epidermal T cells is
completely absent in humans, most likely due to a premature stop codon
in the Vγ5 selecting protein Skint-1 [44]. Other γδ T cell-specific
tissue-selecting proteins do show conservation between mice and
humans, namely butyrophilin-like (Btnl) 1/6 in mice and BTNL3/8 in
humans, selecting mouse Vγ7 T cells into the intestinal epithelium or
human Vγ4 T cells into the colonic epithelium, respectively [45]. Fasci-
natingly, these interactions of γδ TCRs and BTNLs happen through
germline-encoded regions of the TCR, allowing for additional binding of
clone-specific antigens through the complementarity-determining re-
gions 1–3 [46].

A striking functional difference in mice is that γδ T cells develop into
two functional lineages in the thymus that produce high levels of either
INFγ or IL-17 upon activation [47]; the latter is abundant in the dermis,
together with its INFγ-producing counterpart. IL-17 producing γδ T cells
have been shown to have undesirable effects on tumor growth and pro-
motion in mouse models of breast cancer [48] and ovarian cancer [49].
Although there has been a report of human γδ T cells producing IL-17 in
colorectal cancer [50], humans lack the mouse counterpart of the dedi-
cated IL-17þ γδ T cells at steady state, which is identified by the lack of
CD27 expression in mice.

The main difference between γδ T cells in humans and mice is the fact
that humans, among other primates, have an additional subset of γδ T
cells which express a Vγ9 chain paired to a Vδ2 chain to form the TCR
[51]. Rodents completely lack this type of invariant T cell, whereas in
humans, this cell type dominates the composition of γδ T cell subtypes in
the blood, representing up to 5% of all T cells (Figure 1).

T cells expressing the Vδ2Vγ9 TCR recognize the bacterial metabolite
(E)-4-hydroxy-3-methyl-but-2-enyl and show cross-reactivity with the



Table 1
Pilot/Phase 1 trials evaluating safety and clinical activity of in vivo activation of
Vγ9Vδ2 T cells

Year Disease Treatment n OR CR Reference

2003 MM
NHL

Pamidronate þ IL-2 19 3/
19

0/
19

[94]

2003 Prostate cancer
Breast cancer

Zoledronate 9 0/9 0/
9

[95]

2007 Prostate cancer Zoledronate vs
zoledronate þ IL-2

18 3/
18

0/
18

[96]

2010 Breast cancer Zoledronate þ IL-2 10 0/
10

0/
10

[97]

2010 RCC
Colon cancer
Esophagus
cancer
Gastric cancer
Ovarian cancer
Breast cancer

BrHPP þ IL-2 28 0/
28

0/
28

[98]

2011 RCC Zoledronate þ IL-2 12 0/
12

0/
12

[99]

2012 RCC
MM
AML

Zoledronate þ IL-2 21 2/
21

0/
21

[100]

2016 Neuroblastoma Zoledronate þ IL-2 4 0/4 0/
4

[101]

MM, multiple myeloma; NHL, non-Hodgkin lymphoma; RCC, renal cell cancer;
AML, acute myeloid leukemia.

Table 2
Pilot/phase 1 trials evaluating safety and clinical activity of adoptively trans-
ferred autologous ex vivo expanded Vγ9Vδ2 T cells

Year Disease Treatment n OR CR Reference

2007 RCC Vγ9Vδ2 T cells þ
zoledronate þ IL-2

7 3/
7

0/
7

[102]

2008 RCC Vγ9Vδ2 T cells þ
BrHPP þ IL-2

10 0/
10

0/
10

[103]

2009 MM Vγ9Vδ2 T cells þ
zoledronate þ IL-2

6 0/
6

0/
6

[104]

2010 NSCLC Vγ9Vδ2 T cells þ
zoledronate þ IL-2

10 0/
10

0/
10

[105]

2011 RCC Vγ9Vδ2 T cells þ
zoledronate þ IL-2

11 1/
11

1/
11

[106]

2011 Melanoma
Colon cancer
Breast cancer
Cervical cancer
Ovarian cancer
Gastrointestinal
cancer

Vγ9Vδ2 T cells þ
zoledronate

18 3/
12

1/
12

[107]

2011 NSCLC Vγ9Vδ2 T cells þ
zoledronate þ IL-2

15 0/
12

0/
12

[108]

2013 Colon cancer Vγ9Vδ2 T cells 6 0/
6

0/
6

[109]

2014 NSCLC Vγ9Vδ2 T cells 15 0/
12

0/
12

[110]

2014 Gastric cancer Vγ9Vδ2 T cells þ
zoledronate

7 [64]

BrHPP, bromohydrin pyrophosphate; CR, complete response; IL, interleukin;
MM, multiple myeloma; NSCLC, non-small cell lung cancer; OR, objective
response; RCC, renal cell cancer.
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mevalonate pathway metabolites isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate [52]. The mevalonate pathway is the
exclusive metabolic source for prenyl residues for the post-translational
prenylation of proteins, which is crucial for the function of multiple
members of the RAS superfamily [53]. In human malignancies with a
mutated p53 oncogene, representing ~50% of human cancers, it has
been reported that the mevalonate pathway is significantly upregulated
and maintains a malignant phenotype of tumor cells [54]. Vδ2þ T cells
recognize increased levels of IPP, resulting in cytotoxic responses against
5

malignant cells but not normal tissues [55]. Targeting the mevalonate
pathway using aminobisphosphonates (N-bis) (e.g. zoledronic acid,
which is commonly used in the treatment of osteoporosis) results in
accumulation of IPP in cancer cells, thereby further increasing the
immunogenicity of cancer cells towards Vδ2þ T cells [5]. Moreover, it has
been demonstrated that γδ T cells respond to various mevalonate
pathway intermediates; this process is influenced by stress-related cyto-
kines [56,57]. Interestingly, the recognition of phosphoantigens by
Vδ2Vγ9 T cells involves the modulation of BTN 3A1, 2 and 3 [58,59],
further supporting the idea of γδ T cell regulation and activation via the
family of butyrophilin and butyrophilin-like molecules [60,61].

The above functional aspects of Vδ2þ T cell biology and the fact that
these cells can easily be grown and expanded ex vivo using N-bis [62] and
synthetic phosphoantigens (pAgs), such as bromohydrin pyrophosphate
(BrHPP) [63], have motivated investigators to exploit Vδ2þ T cells for
cancer immunotherapy.

Clinical experiences with Vδ2þ T cell immunotherapy in cancer

Two strategies of Vδ2þ T cell cancer immunotherapy have been
developed and applied. The first is to stimulate and expand Vδ2þ T cells
in vivo by systemic administration of pAgs or N-bis. This approach has
been tested in eight pilot/phase 1 clinical trials in hematological malig-
nancies and solid tumors over the last years (Table 1). The use of BrHPP
or N-bis (pamidronate or zoledronate), mainly in combination with IL-2,
was found to be safe and resulted in Vδ2þ T cell expansions in vivo and/or
maturation towards an IFNγ-producing effector phenotype in most pa-
tients. Eight out of a total of 121 patients (7%) showed objective re-
sponses, but no complete responses were observed.

The second approach that has been clinically applied is the adoptive
transfer of autologous Vδ2þ T cells after ex vivo expansion using synthetic
pAgs or N-bis. Infusion of ex vivo expanded autologous Vδ2þ T cells alone
or in combination with BrHPP or zoledronate and IL-2 was well tolerated
across nine different clinical trials (Table 2), and resulted in six objective
responses (8%; n¼86) and two complete responses (2%; n¼86) in total.

Intraperitoneal injections of ex vivo expanded autologous Vδ2þ T cells
in combination with zoledronate for the treatment of malignant ascites
have been reported for seven patients with gastric cancer, resulting in a
significant reduction in the number of tumor cells in the ascites and a
significant reduction in the volume of ascites in two patients [64].

Allogeneic Vδ2þ T cells have also been used as part of a more het-
erogeneous cell population in a small pilot study [65]. Four patients with
advanced refractory hematological malignancies received
CD4þ/CD8þ-depleted infusions of haploidentical leukapheresis products
highly enriched for Vδ2þ T cells after lymphodepleting chemotherapy
with cyclophosphamide and fludarabine. A marked in vivo expansion of
donor Vδ2þ T cells was observed in all patients without any signs of graft
versus host disease (GvHD). Although refractory to all prior therapies,
three of four patients achieved complete remissions, which lasted for 8
months in a patient with plasma cell leukemia.

Most recently, Alnaggar et al. [66] published a case report of a patient
with stage IV cholangiocarcinoma showing recurrent mediastinal lymph
node metastasis after liver transplantation. The patient received eight
consecutive infusions of allogeneic Vδ2þ T cells that were expanded from
peripheral blood mononuclear cells (PBMCs) of a healthy donor. No
adverse effects were observed after cell infusion, and the authors re-
ported a complete response with no detectable peritoneal lymph node
metastasis at the end of treatment.

In summary, these clinical results clearly demonstrate that Vδ2þ T
cell-based immunotherapy is safe and well tolerated, but the signs of
clinical efficacy are highly variable. This might be explained by the very
heterogeneous group of diseases treated and the variation in protocols
used for ex vivo or in vivo expansion of Vδ2þ T cells, or in the variability of
treatment regimens applied in these studies. In vivo activation of Vδ2þ T
cells by pAgs or N-bis clearly resulted in activation of circulating Vδ2þ T
cells, but no study could provide evidence that this approach also
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resulted in activation of the small number of tissue-resident Vδ2þ T cells
or resulted in recruitment of Vδ2þ T cells from the circulation to the
tumor site. In addition, Vδ2þ T cells are dysfunctional in some cancer
patients, are susceptible to activation-induced anergy, and repeated
stimulation of Vδ2þ T cells may induce terminal differentiation and
exhaustion [67–69]. This might explain why the adoptive transfer of ex
vivo expanded Vδ2þ T cells seems to be the more effective approach
resulting in complete responses in some patients. Strikingly, four of five
patients treated with allogeneic Vδ2þ T cells showed complete responses,
compared with only two complete responses observed in 98 patients
treated with autologous Vδ2þ T cells. Although the number of patients
treated with allogeneic cells is too small to draw definitive conclusions,
these results might indicate that allogenic Vδ2þ T cells expanded from
healthy donors have a functionally superior phenotype compared with
autologous patient-derived Vδ2þ T cells. The fact that allogeneic Vδ2þ T
cells do not induce GvHD, together with the possibility to generate large
numbers and batches of cells from a single healthy donor, will certainly
advance the use of healthy donor-derived Vδ2þ T cells in future clinical
studies.

Role of Vδ1þ T cells in cancer

The fact that mice are protected from malignant events by tissue-
resident Vδ1þ TCR chain-expressing T cells and lack the Vδ2þ T cell
subtype entirely has sparked great interest in studying the tumor-
protective role of Vδ1þ T cells in human cancer. Human tissues contain
large numbers of Vδ1þ T cells, especially the intestine, colon and dermis
[3,46], but preclinical research on Vδ1þ T cells was held back in the past
by a lack of imaging reagents to discriminate γδ T cells from αβ T cells
and, more importantly, to differentiate Vδ1þ T cells from Vδ2þ T cells.
Although commercial antibodies to stain γδ T cells in tissues are available
[45,70], we still rely on tissue digestion or PBMC isolation and flow
cytometry to identify γδ T cell clonotypes.

Several studies have shown that γδ T cells are an important compo-
nent of tumor-infiltrating lymphocytes (TILs) in patients with different
types of cancer, and a recent analysis of ~18 000 transcriptomes from 39
human tumors identified tumor-infiltrating γδ T cells as the most sig-
nificant favorable cancer-wide prognostic factor. The same study also
showed NKG2D to be positively associated with better outcome [71].
Although this study could not discriminate between Vδ1þ and Vδ2þ T
cells, other studies showed that Vδ1þ T cells represent the predominant
tumor-infiltrating γδ T cell subtype [72,73].

More direct clinical evidence to support the tumor-protective features
of Vδ1þ T cells comes from a larger study in patients with acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) who received T
cell-depleted bonemarrow grafts from partially human leukocyte antigen
(HLA)-mismatched donors [74]. Disease-free survival at 30 months post
Table 3
Companies developing γδT-cell-based immunotherapies

Company Modality T-cell type Source Auto

Adicet Bio Cell therapy Vδ1 Blood Allog
Beijing Doing Biomedical Cell therapy Vδ2 Blood Auto
Cytomed Therapeutics Cell therapy Vδ2 Blood Allog
Gadeta Cell therapy αβ Blood Auto
GammaCell Biotechnologies Cell therapy Vδ2 Blood Auto
GammaDelta Therapeutics Cell therapy Vδ1 Skin/blood Allog
Hebei Senlang Biotechnology Cell therapy Vδ2 Blood Auto
Immatics Cell therapy Vδ2 Blood Allog
Incysus
Therapeutics

Cell therapy Vδ2 Blood Auto

PhosphoGam Cell therapy Vδ2 Blood Allog
TC BioPharm Cell therapy Vδ1/Vδ2 Blood Auto
Imcheck Therapeutics Antibodies Vδ2 - -
Lava Therapeutics T-cell engager Vδ2 - -
Nybo Antibodies Pan γδ - -

CAR, chimeric antigen receptor; TCR, T cell receptor.
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transplant was significantly better in those patients in whom the per-
centage of γδ T cells exceeded 10% of the total lymphocyte count in the
blood. No significant difference in the incidence of acute or chronic
GvHDwas observed, suggesting an enhanced graft versus leukemia effect
in the absence of GvHD. In an extended 42-month follow-up study, these
data were confirmed [75], and a further 8-year follow-up study with
additional patients (n¼153) showed significantly better 5-year
leukemia-free survival and overall survival for patients who recovered
with an increased proportion of γδ T cells [76]. The expanded γδ T cell
subtype in >90% of long-term survivors in this study was predominantly
Vδ1þ, suggesting that these cells were involved in long-term clearance of
leukemia.

Increases in Vδ1þ T cells have also been correlated with cytomega-
lovirus (CMV) reactivation in patients with leukemia following alloge-
neic hematopoietic stem cell transplantation (HSCT) [77,78]. When
isolated, these Vδ1þ T cells not only kill CMV-infected cells but also
leukemic cells and other tumor cells in vitro via HLA- and
NKG2D-independent mechanisms [78,79]. Moreover, Vδ1þ T cells that
are specifically expanded in patients with CMV reactivation are more
cytotoxic against primary ALL and AML cells compared with Vδ1þ T cells
from patients without CMV reactivation [80]. This may explain, at least
in part, the favourable effect of CMV reactivation after HSCT on the risk
of relapse [81], further supported by a 2–6-year follow-up study in pa-
tients after kidney transplantation, where expanding numbers of Vδ1þ T
cells associated with CMV reactivation strongly correlated with a
significantly reduced occurrence rate of malignancies [82].

Taken together, these data warrant clinical testing of Vδ1þ T cells as a
novel effector cell type for cancer immunotherapy, and the period
following HSCT in patients with leukemia seems to be a promising
therapeutic window for adoptive transfer of Vδ1þ T cells to prevent
relapse. However, the lack of clinical-grade protocols to selectively
expand Vδ1þ T cells in vivo or ex vivo has prevented the conduct of clinical
trials to harness the therapeutic potential of Vδ1þ T cells to date.

Vδ1þ T cells and their development for cancer immunotherapy

The use of Vδ1þ T cells for preclinical research and clinical devel-
opment is currently limited to isolation of very small cell numbers from
human PBMCs or isolation from human tissues using enzymatic digestion
or alternative methods. Vδ1þ T cells expanded from blood using a com-
bination of IL-7 and phytohemaglutinin controlled tumor growth in an
NSG mouse model for colon cancer much better than Vδ2þ T cells [83],
but this protocol is not applicable for clinical-grade expansion of Vδ1þ T
cells. A system using genetically modified antigen-presenting cells linked
to anti-γδ TCR antibodies generated a mixed population of expanded γδ T
cells comprising Vδ2þ T cells and non-Vδ2þ T cells. Whilst all γδ T cells in
this system exerted cytotoxicity against GD2-expressing neuroblastoma
logous/allogeneic Engineering Comments

eneic CAR -
logous Unmodified/CAR -
eneic CAR
logous Vδ2 TCR -
logous/allogeneic Unmodified -
eneic Unmodified/CAR -
logous CAR/αβ TCR -
eneic αβ TCR -
logous Engineered Engineered for chemotherapy resistance

eneic Unmodified -
logous/allogeneic Unmodified/CAR -

- Activation of Vδ2 T cells (BTN3A)
- Redirection of Vδ2 T cells against tumors
- Depletion of inhibitory γδ T cells
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cells, Vδ2þ T cells relied on antibody-dependent cellular cytotoxicity via
the expression of CD16, whilst non-Vδ2þ, including Vδ1þ T cells, did not
[84]. A more easily translatable system for the expansion of Vδ1þ T cells
specifically, using a combination of common γ chain cytokines and the
CD3 engaging antibody OKT3, was developed recently [35]. These Vδ1þ

T cells show favourable expression of NCRs, exhibit cytotoxicity against
hematological tumor lines in vitro and show the capacity to infiltrate the
tumor core, bone marrow, liver and spleen thus controlling tumor growth
over several weeks in an NSG mouse model of subcutaneously induced
chronic lymphoid leukemia [85]. These blood-derived and expanded
Vδ1þ T cells show cytotoxicity against primary, patient-derived AML
cells that are resistant to chemotherapy. Whilst the mechanism of
recognition and killing most likely did not depend on the TCR, it was
dependent on the expression of NKp30 and B7-H6 on target cells.
Adoptive transfer of Vδ1þ T cells into human AML xenograft mice
improved survival significantly, decreasing tumor load in the blood and
target organs [86].

Although human clinical studies testing the safety and efficacy of
enriched and purified preparations of autologous or allogeneic Vδ1þ T
cells have yet to be conducted, patients have been treated with high
numbers of Vδ1þ T cells as part of a more heterogenous cell population.
Adoptive transfer of autologous TILs has shown impressive clinical re-
sults in patients with metastatic melanoma. The efficacy of this person-
alized immunotherapy based on preconditioning chemotherapy followed
by infusion of TILs and IL-2 has been confirmed in several independent
studies. Objective response rates of 40–50%, including complete tumor
regressions in 10–20% of treated patients, have been reported consis-
tently [87,88]. In metastatic melanoma, Vδ1þ T cells can represent the
major TIL subset, accounting for ~50% of the total CD3þ population
[72]. Indeed, detectable amounts of Vδ1þ T cells in clinical-grade TIL
preparations were found in 20 of 27 patients analysed in a recent study of
adoptive TIL transfer, and infusion products from 10 patients contained,
on average >1 x 109 of these cells [89]. Notably, one patient achieving a
complete response was infused with 7.8% Vδ1þ T cells, approximately
6.5 x 109 cells in total. Since all cell products also contained CD8þ T cells,
no conclusions can be drawn on the contribution of Vδ1þ T cells to the
clinical antitumor activity observed, but when tested, these cells showed
high cytotoxicity against melanoma cells in vitro. In summary, infusion of
Vδ1þ T cells together with high numbers of αβ T cells in a clinical trial
was safe and well tolerated, and the authors concluded that Vδ1þ T cells
should be further scrutinized as a potentially useful tool for the treatment
of patients with metastatic melanoma.

Conclusion and outlook

Harnessing the unique biology of γδ T cells for cellular or targeted
immunotherapy holds considerable promise for the treatment of different
types of cancer. First, γδ T cells do not recognize and kill tumor cells
dependent on the expression of a single antigen. In contrast, they
recognize most cancer types through a broad pattern of different NCRs
expressed on their cell surface in a non-clonally expanded fashion,
minimizing tumor immune escape mediated by single antigen loss. Sec-
ond, γδ T cells distribute and reside in abundance within tissues. The
natural tissue tropism of γδ T cells, especially Vδ1þ T cells, could give
these cells an advantage over conventional αβ T cells to migrate into
tissues and infiltrate solid tumors more efficiently and execute their
functions in more hypoxic environments. Third, the ability to recognize
target cells in an MHC-independent manner and the low risk for allor-
eactivity will allow the development of allogeneic cell products without
the need for further genetic engineering. Finally, γδ T cells have been
shown to interact with antigen-presenting cells and other members of the
adaptive immune system, enabling the orchestration of secondary im-
mune responses post activation.

Whilst these combined features of γδ T cells make them an attractive
source for unmodified cell-based adoptive immunotherapy approaches,
γδ T cells may also be harnessed for genetic manipulation. Either as a
7

vehicle for chimeric antigen receptors (CARs) or αβ T cell-derived TCRs
[90], γδ T cells could combine tissue resident biology and innate target
recognition with antigen-specific activation and selection. Furthermore,
a better understanding of γδ Τ cell interaction with BTN/BTNL mole-
cules, as well as their regulation and activation in normal tissues and
tumors, may allow for therapeutic manipulation in situ using targeted or
checkpoint therapies.

Not surprisingly, several companies are now developing next-
generation γδ T cell immunotherapies (Table 3). Most of these ap-
proaches focus on Vδ2þ T cells as a platform for autologous or allogeneic
cell therapies engineered to express CARs. Alternative methods of
expanding and/or activating Vδ2þ T cells in vivo that do not depend on the
administration of N-bis or pAgs are also in development. A better under-
standing of Vδ2þ TCR biology and the role of BTN3A in Vδ2þ T cell acti-
vation has led to the development of activating antibodies that potentially
eliminate the need for TCR overstimulation [91]. Other approaches
include the redirection of Vδ2þ T cells towards specific tumor antigens
using bispecific Vδ2þ T cell-engaging molecules [92], or genetically
engineered chemotherapy resistance of Vδ2þ T cells that can be admin-
istered during the therapeutic windowwhen chemotherapy increases the
immunogenicity of tumors by upregulating NKG2D ligands [93].

Moreover, advances in the isolation and expansion of Vδ1þ T cells
from blood and the very first protocol to isolate and grow tissue-resident
Vδ1þ T cells in large numbers for clinical application (authors' unpub-
lished data) have paved the way to add Vδ1þ T cells to the growing
armamentarium of cancer immunotherapy.

It will be exciting to see these different approaches being tested in
clinical trials over the coming years to prove that γδ T cells provide a safe
and effective platform for allogeneic ‘off-the-shelf’ cell therapies for cancer.
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