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Abstract

While studies of taxonomy usually focus on species description, there is also a taxonomic

correction process that retests and updates existing species circumscriptions on the basis

of new evidence. These corrections may themselves be subsequently retested and recor-

rected. We studied this correction process by using the Check-List of North and Middle

American Birds, a well-known taxonomic checklist that spans 130 years. We identified 142

lumps and 95 splits across sixty-three versions of the Check-List and found that while lump-

ing rates have markedly decreased since the 1970s, splitting rates are accelerating. We

found that 74% of North American bird species recognized today have never been corrected

(i.e., lumped or split) over the period of the checklist, while 16% have been corrected exactly

once and 10% have been corrected twice or more. Since North American bird species are

known to have been extensively lumped in the first half of the 20th century with the advent of

the biological species concept, we determined whether most splits seen today were the

result of those lumps being recorrected. We found that 5% of lumps and 23% of splits fully

reverted previous corrections, while a further 3% of lumps and 13% of splits are partial rever-

sions. These results show a taxonomic correction process with moderate levels of recorrec-

tion, particularly of previous lumps. However, 81% of corrections do not revert any previous

corrections, suggesting that the majority result in novel circumscriptions not previously rec-

ognized by the Check-List. We could find no order or family with a significantly higher rate of

correction than any other, but twenty-two genera as currently recognized by the AOU do

have significantly higher rates than others. Given the currently accelerating rate of splitting,

prediction of the end-point of the taxonomic recorrection process is difficult, and many

entirely new taxonomic concepts are still being, and likely will continue to be, proposed and

further tested.
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Introduction

The goal of taxonomy is to provide a complete, accurate catalogue of planetary biodiversity.

When taxonomists encounter vouchers or exemplars of a putative new species, they collect evi-

dence to support the hypothesis that it is distinct enough from any known species to necessi-

tate its own name. If so, this species is formally described, is associated with a new species

hypothesis, and is given a new name under the appropriate codes of nomenclature [1,2]. Over

16,000 species have been described every year between 2000 and 2010 [3], and both the num-

ber of new descriptions and the number of authors involved in species description across mul-

tiple plant and animal groups have been rising since the 1750s, while the number of species

described by each author has been falling [4,5]. These observations may suggest that more tax-

onomists are chasing fewer remaining species, and thus species description may be approach-

ing completion in some groups [6]. But the taxonomic process remains incomplete even after

all species have been described: an unknown number of species hypotheses will eventually be

re-tested and, if falsified, may be rejected in favor of other hypotheses of conspecificity [7]. The

proportion of species hypotheses that will eventually be falsified may be expected to vary over

time as techniques and species delimitation philosophies change and as more evidence accu-

mulates. While much attention has been given to the description of species and higher taxa,

the subsequent correction process remains understudied by comparison.

Taxonomic changes have a practical impact on lists of recognized species widely used in

biological analyses [8]. In particular, there has been a sharp increase in the number of subspe-

cies being raised to full species across a wide range of animal groups in the last few decades [9],

including primates [10,11], amphibians [8], bovids [12] and birds [13]. This phenomenon has

been termed “taxonomic inflation” by Isaac et al. [10]. Some scientists have argued that this

may be the result of a shift in taxonomic practice, either from the biological species concept to

the phylogenetic species concept [10] or from an assumption of free interbreeding to an

assumption of reproductive isolation [14]. Focusing on birds, a recent paper has estimated that

the number of globally recognized bird species may double as a result of changing species con-

cepts and the application of molecular methods [15]. Sangster established that diagnosability

rather than reproductive isolation has remained the most commonly used criterion to justify

proposed taxonomic changes since the 1950s by analyzing published bird taxonomic proposals

between 1950 and 2009 [13,16]. While studies of taxonomic proposals can provide valuable

information on the changes being advocated by taxonomists, they do not provide information

on if and when these changes became broadly recognized within the taxonomic community,

and whether they were subsequently reverted. It is this perspective on the shifting taxonomic

view that we attempt to measure in this article.

Simply counting the number of taxonomic changes that are recognized is not enough, as

these changes may themselves require correction. Remsen Jr noted in 2015 [17] that “virtually

all current systematists, regardless of species concepts, recognize that current species limits in

many bird groups are far too broad, incorrect, or weakly justified”, and posited that “overappli-

cation of Biological Species Concept (BSC) criteria by many taxonomists in the mid-20th cen-

tury, often without explicit rationale, demoted by mere pen strokes hundreds of taxa from the

rank of species to subspecies, before the importance of vocal differences was recognized”.

Some systematists in the 1920s and 1930s were equally skeptical about demoting species to

subspecies [18–21]. This all points to a current, ongoing taxonomic recorrection process, in

which corrections made in the first half of the 20th century are now being reverted in light of

new evidence and better tools. We delineate focused, testable questions related to this recorrec-

tion process below, but first discuss the importance of checklists for examining this recorrec-

tion process over long periods of time.

The taxonomic correction process in North American birds over the last 127 years
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Tracking the recorrection process using taxonomic checklists

Taxonomic changes are proposed and published in a wide variety of scientific literature, from

scientific monographs to taxonomic checklists to general-interest identification guides. Previ-

ous analyses have surveyed a set of journals where taxonomic corrections are likely to be pub-

lished (e.g. [13,16]), but there is no easy way to determine whether or not a particular proposal

has gained traction within its taxonomic community. Conventional methods to gauge the

impact of a publication, such as citations counts, do not help: a contentious proposal may be

heavily cited by scientists disputing it, while a generally accepted proposal may only be cited a

few times before being incorporated into compiled resources, which may then be cited instead.

Taxonomic checklists provide us with a source of taxonomic changes that are representative

of a taxonomic group and are generally recognized by both taxonomists and other biologists

when studying well-known taxa, such as birds. These are expert-curated authoritative lists of

recognized species within a taxonomic group in a particular geographical area. Checklists are

neither universally used nor necessarily congruent: different biologists often disagree on which

taxonomic checklists they use when identifying taxa, and checklists may circumscribe species

differently on the basis of differences in available evidence, taxonomic philosophy or tools

used [22]. Taxonomic checklists may be critiqued by taxonomists [12,17] and have been used

to estimate the stability of binomial names [23,24]. In this study, we focused on one such

checklist project, which has been maintained over the last 130 years by the North American

Classification Committee of the American Ornithologists’ Union (AOU): the Check-List of
North American Birds, hereafter referred to as the "AOU Checklist". This checklist was first

published in 1886, and since then has been updated in six major and fifty-seven minor updates

through 2016 [25]. The North American Classification Committee reviews corrections submit-

ted to it based on changes proposed in the literature, and accepts those supported by two-

thirds of its members [26]. These corrections are then published as a series of editions and sup-

plements. The first update was published in 1889, yielding 127 years of corrections until 2016.

The last complete edition (the 7th edition) was published in 1998 [27]. Supplements have been

published at an average of one every 2.03 years. Since 2002, updates have been published every

year. A subset of these changes, from 1950 to 2009, have been previously analyzed by Sangster

as part of a larger study of taxonomic proposals made against global bird species in order to

examine the criteria used to determine whether the rank of a species or subspecies should be

changed [13,16]. Our analysis asks different questions and includes changes made to the AOU

Checklist extending back to 1889, the first year in which an update to the AOU Checklist was

published.

The AOU Checklist therefore provides a community review process for taxonomic correc-

tions. It continues to be widely used as an authoritative source for taxonomic names among

both professional ornithologists and an often highly engaged public, the birding community,

either directly or indirectly through birding organizations and field guides that track the AOU

Checklist. These include the National Audubon Society’s Bird Guide App [28], the Cornell

Lab of Ornithology’s eBird/Clements Checklist [29], the American Birding Association Check-

list [30], and the Sibley Guide to Birds [31].

Species description in North American birds is largely considered to be close to completion

[32] after over 250 years of study [33], but the number of currently recognized North and Mid-

dle American bird species is increasing rapidly as previously described species are being recog-

nized again. The AOU Checklist has grown from approx. 1,908 species in 1983 [34] to 2,127

species in 2016 [25], an 11.5% increase within a consistent geographical area. Since birds have

been central to the development of the biological species concept [35], the phylogenetic species

concept [36], as well as Remsen Jr’s observations of past, potentially problematic corrections

The taxonomic correction process in North American birds over the last 127 years
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mentioned earlier [17], they are a particularly apt group to examine the taxonomic correction

and recorrection processes.

Key questions and specific hypotheses

Our work here focusses on corrections that alter the circumscription of a scientific name with-

out altering the name itself [37]. These are of two kinds: the division of putative species into

multiple species (“splits”), which usually occurs through the raising of a subspecies to a full

species, and the union of putative species into a single species (“lumps”). We interpret “spe-

cies” here to mean a particular named species hypothesis recognized in a contemporary AOU

Checklist, consisting of both a taxonomic name and an associated taxonomic circumscription.

In other words, we consider a taxon to be a species if a biologist relying on the most recently

published AOU Checklist would have considered it to be a species, using no other information

from other sources. Another possible definition of a species, as a taxon consisting of a set of

clearly-defined subspecies, might have been used before the sixth edition of the AOU Check-

list, published in 1983 [34], but after this date the AOU Checklist published lists of recognized

species only, and no longer provide a comprehensive list of the subspecies recognized within

each species.

In order to understand how taxonomic circumscriptions change after initial description,

we quantify several rates. We define the “correction rate” as the proportion of currently recog-

nized species that have ever been corrected, and the “recorrection rate” as the proportion of

currently recognized species that have been corrected more than once. The “full reversion

rate” is the proportion of all corrections that completely reverted an earlier correction (i.e.

when a lump is subsequently resplit, or a split is subsequently relumped). Note that full rever-

sions may not yield exactly the same circumscriptions. We further define a more general

“reversion rate” as the proportion of all corrections that have been partially or completely

reverted, in which two or more split species are relumped or where two or more lumped spe-

cies are resplit, along with other sister species. These rates are similar to Alroy’s rates of invali-

dation and revalidation [38], but applied to currently recognized species and taxonomic

changes rather than to taxonomic names. To quantify how these taxonomic corrections led to

the current taxonomy, we summarized the sequence of lumps and splits that involve each of

the currently recognized species.

In coining the term “correction rate”, we are not implying that every change made to a tax-

onomic checklist will eventually be judged correct. Instead, our use of terms recognizes that

every change in delimitation is made with the intention of improving the accuracy of the

checklist by correcting previous issues. By doing so, we are not making quality judgements on

the corrections and their subsequent recorrections. Rather, we are focusing on the pattern of

correction and recorrection we observe, which are ultimately indicative of taxonomic progress.

We decided not to refer to these as “changes”, as that includes all changes that might be made

to a taxonomic checklist: changes in spelling, in authorship, in higher taxonomy or even in

common names. We also considered using the term “revision”, but decided that it might be

confused with “taxonomic revisions”.

To test whether newly recognized bird species were the result of resplitting previous lumps,

we first determined the proportion of all splits that were the result of a previous lump and then

tested whether lumps were as likely to be reverted as splits were. If this period of splitting is

largely the result of undoing lumping from before 1980, we would expect to see many more

splits reverting previous lumps than vice versa. If, on the other hand, most splits are uncon-

nected with previous lumps, this suggests taxonomists are generating novel circumscriptions

and not solely correcting a backlog of incorrect lumping. We also ask if certain bird groups, at
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multiple taxonomic hierarchical levels, are more likely to be corrected than others, given that

traits that make species delimitation more difficult may be shared among closely related spe-

cies. For instance, some traits may make species boundaries more difficult to identify or by

making the species themselves harder to study. Our analyses thus provide insight into past and

current taxonomic correction processes for North American birds, especially how often

entirely new concepts have been and are still forming as opposed to the re-recognition of pre-

viously subsumed concepts.

Materials and methods

Source data

The AOU Checklist consists of sixty-four checklists published between 1886 and 2016: seven

major editions, which list every recognized species, and fifty-seven “supplements”, which list

changes to the checklist since the previous supplement (S1 Table). We began with lists of addi-

tions, deletions and changes in scientific names to the AOU Checklist collected by one of the

authors (DL) for checklists published between 1886 and 2012. These changes were collected as

part of the online database Avibase [39], which also contains information on which circum-

scriptions are entirely contained within others [22]. Based on this information, we excluded

additions and deletions that did not involve intersecting or overlapping species circumscrip-

tions for recognized species–in most cases, these were the results of changes in distributional

records, such as when a previously described species was discovered in North America. We

checked changes involving overlapping circumscriptions against the AOU Checklists them-

selves to identify those that were explicitly stated to be a lump or split in the publications; for

instance, " . . .we divide B[ranta] canadensis by recognizing a set of smaller-bodied forms as

the species B. hutchinsii . . ." from the 45th supplement [40]. Lumps or splits identified by Avi-

base were excluded from our analyses if the AOU Checklist did not explicitly indicate them as

such, since Avibase may have made this determination based on the view of later taxonomists

while we aimed to capture the contemporary view as far as possible in order to closely track

changing bird taxonomy as recorded by the AOU Checklist. As a result, our measures are con-

servative counts that are likely smaller than the true values–a more thorough study of the con-

temporary literature might lead to evidence that a particular addition was known at the time to

be a split. Since the 34th Supplement provided a list of all species recognized in 1982 and the

AOU published an online spreadsheet of recognized species in 2016, we used these to correct

any discrepancies that may have entered our dataset before those dates. For checklists between

2013 and 2016, which postdate our initial export of Avibase data, we extracted the lumps, splits

and name changes directly from the supplements themselves [25,41–43]. In all, we found 148

lumps and 191 splits recognized by the AOU Checklist between 1889 and 2016, covering

North America excluding Hawaii before 1982 and North and Central America including

Hawaii after 1982.

Our analysis was complicated by a large increase in the geographic range of the AOU Check-

list in 1982 and 1983, expanding to include Mexico, the Hawaiian Islands, the Caribbean Islands

and Central America while removing species found only in Greenland. From approx. 858 spe-

cies recognized in the 33rd Supplement (1976) [44], the number of recognized species rose to

937 species in the 34th Supplement (1982) [45] and to approx. 1,908 species in the 6th Edition

(1983) [34] (S1 Table). To obtain a consistent picture of taxonomic corrections over as long a

time period as possible, we eliminated all additions, deletions, renames, lumps and splits involv-

ing species first added to the checklist after 1981, thus isolating corrections among species in

continental North America. This resulted in 142 unambiguous lumps and 95 unambiguous

splits recognized by the AOU Checklist between 1889 and 2016 (S2 Table). After eliminating

The taxonomic correction process in North American birds over the last 127 years

PLOS ONE | https://doi.org/10.1371/journal.pone.0195736 April 19, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0195736


these changes, the number of recognized species varied from 771 (in 1886) to 875 (in 1956),

before reaching its current count of 851 species in 2016 (S3 Table). Of these 851 recognized spe-

cies, 17 were the result of “extralimital” lumps and splits that took place outside of the AOU

Checklist’s geographical area, resulting in 834 currently recognized species after filtering. We

eliminated ten checklists because no unambiguous lumps or splits took place in them (1894,

1909, 1912, 1920, 1957, 1983, 1991, 1998 and 2009). We calculated the cumulative change in the

number of lumps and splits over the last 127 years (Fig 1) and summarized these changes by

decade to look at overall trends (Fig 2).

To account for synonymy while measuring these rates, we assembled “name clusters” that

link together species names that have been renamed. For example, Phyllopseustes borealis was

first added to the AOU Checklist in 1886, but has since become known as Acanthopneuste bore-
alis and Phylloscopus borealis as it was moved between different genera. These three names con-

stitute a single name cluster, and a lump involving one name will be matched in our analysis

with a split involving another name in the same name cluster. All 834 name clusters are included

in S3 Table, where extralimital name clusters are indicated by an ‘NA’ in the ‘Order’ column.

This approach can be contrasted with a “taxonomic concept”-based approach. Such an

approach might use the vocabulary established by Franz and Peet [46] to identify precise rela-

tionships between different taxonomic circumscriptions, even when these circumscriptions

are identically named (e.g. Branta canadensis published in the AOU Checklist before and after

2004). However, doing so would require reconstructing the relationship between these circum-

scriptions as understood at a particular point in time, which is challenging to do comprehen-

sively, accurately and consistently over a 127 year period. Instead, we opted to document name

clusters being lumped or split as well as the name clusters resulting from the change. This sim-

pler model provides a way to compare taxonomic changes with each other between different

time periods.

Fig 1. Individual and cumulative lumps and splits within the AOU Checklist between 1886 and 2016. Each circle represents a single checklist, showing periods

of activity (1944–1957, 1980–2016) as well as periods of relative inactivity (1920s and 1960s).

https://doi.org/10.1371/journal.pone.0195736.g001
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Taxonomic corrections

To measure how often individual lumps and splits are reverted, we identified partial and full

reversions for every lump and split. A full reversion is one where the other change exactly

undoes the first one, such as Gallinula galeata being lumped into Gallinula chloropus in the

18th Supplement [47] but then resplit in the 52nd Supplement [48]. A partial reversion occurs

when two or more lumped species are resplit or two or more split species are relumped along

with other species. An example is Rallus obsoletus being lumped into Rallus longirostris in the

19th Supplement [49], but later resplit in the 55th Supplement [42] into R. obsoletus and R. cre-
pitans. It is possible but not guaranteed that the circumscription for R. obsoletus as of the 55th

Supplement is congruent to the circumscription for R. obsoletus before the 19th Supplement;

therefore, our analysis assumes that every lump or split results in a new circumscription. The

full list of reversions is included in the table of lumps and splits (S2 Table). To test whether

resplitting previously lumped species directly caused increases in recognized species, we deter-

mined whether lumps were as likely to be resplit as splits were to be relumped.

For each currently recognized species name cluster, we identified the sequence of lumps

and splits in which they have been involved. In particular, we wanted to know what proportion

of name clusters had never been corrected, what proportion had been corrected one or more

times (the “correction rate”), and what proportion had been corrected more than once (the

“recorrection rate”). In order to determine the trajectory of corrections necessary to obtain the

current name cluster, we tallied up the number of lumps and splits each name cluster had been

involved with in chronological order. We also counted the total number of lumps and splits

for each name cluster. Since every lump and split potentially results in a new circumscription

(i.e. a new taxonomic concept sensu Franz et al. [50]), this gives us the number of circumscrip-

tions associated with each species name cluster. This is included in the table of name clusters

(S3 Table).

Differences in correction rates among higher-level taxa

To determine whether different taxonomic groups showed significantly different correction

rates, we modeled the number of taxonomic corrections (lumps + splits) involving currently

recognized name clusters as a Poisson distribution, in which the rate at which new corrections

are made to species (λ) is assumed to be constant within a taxonomic group. Since our analysis

focuses on 834 currently recognized species clusters, we used the higher taxonomic system

provided by the AOU Checklist in 2016. Our model had three hierarchical levels of grouping:

at the level of genus (π), family (τ) and order (ρ). Additionally, we included an offset to account

for the different lengths of time that different species have been in the checklist. Our hierarchi-

cal model can be described as:

yi � PoissonðliÞ

logðliÞ ¼ l0 þ pi þ tj½i� þ rk½j½i�� þ logðtiÞ

Each of these parameters were modeled as normally distributed random variables, with a

mean of zero and with variable standard deviations (σπ, στ and σρ respectively). The terms refer

to the individual (λi), the genus the individual belong to (πi), the family the genus belongs to

(τj[i]) and the order the family belongs to (ρk[j[i]]). ti is the number of checklists that this species

has been recognized in the AOU Checklist, to control for some species having been recognized

by the AOU Checklist earlier, giving them a longer time span within which to be lumped or

split than others. This model failed to converge in rSTAN 2.15.1 [51], and so we used

The taxonomic correction process in North American birds over the last 127 years
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transformed parameters to define standard normal deviations that were multiplied by the vari-

able standard deviations (see S1 Code). This model converged successfully in rSTAN and gave

us an estimate of the overall mean rate of correction (λ) as well as the mean rate for every

order (S4 Table), family (S5 Table) and genus (S6 Table).

Results

Overall trends in lumping and splitting

Currently, the AOU Checklist recognizes 2,127 species from North and Central America,

including Hawaii [25]. The rate of species description among these species has been falling

steadily: 191 species (9%) have been described since the AOU Checklist was first published in

1886, half of which (101 species or 4.8%) have been described since 1900, and only 14 species

(0.7%) have been described since 1950. When we looked at the 834 species remaining in our

checklist after filtering out names added after 1981 as well as extralimital species, 30 (3.6%)

were described since 1886, 15 (1.8%) since 1900 and only three species (0.4%) since 1950.

Thus, primary species description in this group appears to be proceeding at a very low but

non-zero rate.

In contrast, taxonomic corrections have been proceeding at a rapid rate: we discovered 142

unambiguous lumps and 95 unambiguous splits on species name clusters added before 1982.

Examining the cadence of lumping and splitting (Fig 1), we note large numbers of lumps, in

particular the 40 lumps in the 4th edition in 1931 [52], 30 lumps in the 19th supplement in

Fig 2. Bar plots of number of lumps and splits by decade showing accelerating number of splits per decade in the present. Note that the first decade is

incomplete, as we only have data on the eight years from 1889 to 1896.

https://doi.org/10.1371/journal.pone.0195736.g002
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1944 [49], and 16 lumps in the 32nd supplement in 1973 [53]. While there are no specific

spikes in the number of splits, most of the splits (70, or 73.7%) in our dataset took place in or

after 1980. Cumulative plots show that lumping has all but ceased since 1980, while splitting

rates have sharply increased since the 1980s and continue to accelerate to the present day (Fig

2). Based on the trends in the data, new formation of taxonomic concepts in North American

birds since 1950 and particularly since 1980 is mainly driven by splitting of taxa. As noted by

Gill [14] and Barrowclough et al. [15], the era of splitting appears to be far from over.

Full and partial reversions

We begin by considering the corrections themselves to determine the scope of original correc-

tion and subsequent recorrection. We found a total of 142 lumps and 95 splits occurring

amongst currently recognized species that were first added to the AOU Checklist before 1982.

Of these, 7 lumps (4.9%) and 22 splits (23.2%) fully revert a previous split or lump, respectively,

for an overall reversion rate of 12.2%. If we count both full and partial reversions, these num-

bers increase to 12 lumps (8.5%) and 34 splits (35.8%) partially reverting an earlier correction,

for an overall partial reversion rate of 19.4%. Thus, 80.6% of all corrections do not revert a pre-

vious correction within the AOU Checklist, and 64.2% of splits do not revert a previous lump

within the AOU Checklist. There were significantly more splits than lumps both fully reverting

previous corrections (exact binomial test, p< 0.01) as well as partial corrections (exact bino-

mial test, p< 0.01). We found the proportion of splits reverting previous lumps were signifi-

cantly higher than would be expected based on the ratio of lumps to splits in our dataset

(Fisher’s exact test, p< 0.001). Less than half of all lumps have been partially (36 lumps,

25.4%) or fully (22 lumps, 15.5%) reverted, suggesting that the resplitting process is either

mostly incomplete or that most lumps may never be resplit. It is worth emphasizing that our

knowledge of which corrections were previously corrected is limited to the period of our data-

set: if a period of lumping took place before the initial publication of the AOU Checklist, for

example, then a higher proportion of the changes currently in our dataset might be involved in

a change or revert previous changes than we report. This is an inherent limitation to our

approach: we cannot improve this by increasing the coverage of our dataset, as there will

always be a period of taxonomic changes before the first checklist we consider.

We can also determine the proportion of all corrections involved in any recorrection, either

by correcting a previous correction or by being corrected in the future. We found 54 correc-

tions (22.8%) involved in full reversions while 86 corrections (36.3%) were involved in partial

reversions. Therefore, 63.7% of all corrections are neither correcting a previous correction nor

have yet been corrected by a future correction.

Corrections involving currently recognized species

Identifying the species affected by the corrections we have catalogued is complex: every correc-

tion affects multiple species, and species that are lumped are no longer recognized as species

by the AOU Checklist. Species may no longer be recognized in the AOU Checklist if the spe-

cies is no longer found within the checklist area, or may be added not for any taxonomic rea-

son but solely because it has been introduced into the checklist area. Thus, there is no clear

denominator of the total number of species recognized with which we can compare the num-

ber of species affected by taxonomic corrections.

Instead, we focused our analysis on one particular question: if a researcher today were to

use a species name currently recognized by the AOU Checklist, how likely is this to be a species

that has been corrected within the lifetime of the Checklist? As previously described, to maxi-

mize the time period we could cover, we started with the 2,127 species currently recognized,
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eliminated species added after 1981 and obtained 834 currently recognized species names (S3

Table). Of these, 615 species (73.7%) have never been corrected in the course of the Checklist

(Fig 3), suggesting that most species are not corrected over long periods of time.

To determine the sequence of lumps and splits affecting each species, we identified all

lumps and splits involving the species (as either source or result) and arranged them in chro-

nological order. Fewer than 2.2% of species were involved in more than two corrections, and

so we have summarized these results on the basis of the first two corrections involving each

species. Of the 219 species (26.3%) that have been corrected one or more times, more species

were first lumped (129 or 58.9%) than first split (90 or 41.1%). As a reminder, these are the

number of species that are involved in lumps and splits, not the number of corrections them-

selves. However, 43.4% of species involved in a lump were subsequently involved in a split,

while only 16.7% of species involved in a split were subsequently involved in a lump. 85 species

(10.2%) were corrected two or more times. Thus, the overall correction rate was 26.3% and the

overall recorrection rate was 10.2%. 18 species that were involved in more than two corrections

are summarized by their first two corrections in Fig 3, and are: Junco hyemalis (5 corrections);

Aphelocoma californica, Ammodramus caudacutus and Rallus crepitans (4 corrections each);

Picoides arizonae, Quiscalus major, Dendragapus fuliginosus, Butorides striata, Branta bernicla,

Melanitta fusca, Melozone crissalis, Ammodramus nelsoni, Dendragapus obscurus, Troglodytes
hiemalis, Rallus obsoletus, Melozone fusca, Oceanodroma leucorhoa and Picoides stricklandi (3

corrections each).

Which species are most likely to be lumped or split?

We used a Bayesian hierarchical model to determine if some orders, families or genera were

more or less likely to be associated with multiple taxonomic concepts than others among the

834 species we used in our analysis. We used the contemporary taxonomy used by the AOU

Checklist in 2016 to determine order, family and genus [25]. Our model fit a Poisson distribu-

tion with λ = 0.3985 While no orders (S4 Table) or families (S5 Table) showed significantly

higher or lower rates of correction, 22 genera recognized by the AOU Checklist in 2016

showed significantly higher rates of corrections: Ammodramus Swainson, 1827, Anser Brisson,

1760, Aphelocoma Cabanis, 1851, Artemisiospiza Klicka and Banks, 2011, Baeolophus Cabanis,

1850, Branta Scopoli, 1769, Butorides Blyth, 1852, Dendragapus Elliot, 1864, Empidonax Caba-

nis, 1855, Gallinago Brisson, 1760, Gallinula Brisson, 1760, Junco Wagler, 1831, Leucosticte
Swainson, 1832, Limnodromus Wied, 1833, Melanitta Boie, 1822, Melozone Reichenbach,

1850, Puffinus Brisson, 1760, Quiscalus Vieillot, 1816, Rallus Linnaeus, 1758, Sternula Boie,

1822, Sula Brisson, 1760, and Troglodytes Vieillot, 1809 (S6 Table). These correspond to 6.5%

of the 338 genera in our dataset and belong to fifteen families across eight orders.

Discussion

Birds are often cited as a taxon in which species description is likely to be complete–for exam-

ple, Bebber et al. [32] estimated on the basis of species description curves that only 26–93 bird

species remained to be described. The AOU Checklist supports this pattern, with over 90% of

currently recognized species having been described before the Checklist was first published in

1886, and a mere fourteen species described since 1950. Taxonomic work in this group is nev-

ertheless incomplete. When only considering species added before 1982 to the American Orni-

thological Union checklist, i.e. those species that was recognized by the checklist when it was

limited to North America excluding Mexico, we found 142 lumps and 95 splits which were

involved in the correction of 218 currently recognized North American species (correction
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rate: 26.3%), of which 85 currently recognized species (recorrection rate: 10.2%) were involved

in more than once correction.

We did not find a concentration of corrections in any one order or family, but 6.5% of

North American bird genera in our study showed significantly higher rates of taxonomic cor-

rection. We were unable to find a higher taxonomic signal, related to shared characteristics

and life-history, or any immediately obvious other factor such as size of the genus. We note,

however, that these numbers only reflect a part of the complete debate over these circumscrip-

tions, since we analyze changes within a single checklist. Thus, a species circumscription that

is heavily debated in the literature may not have been recognized by the AOU Checklist until

they decided collectively to support one particular interpretation. An example of this is the spe-

cies Branta hutchinsii, which had been recognized as a subspecies of Branta canadensis by the

AOU Checklist until it was raised to a full species in the 45th Supplement [40]. Before the

AOU Checklist was first published, both its original author [54] and John James Audubon [55]

treated it as a separate species, and proposals for treating it as a separate species date back until

at least 1946 [56]. Thus, we re-emphasize that both the per-genus correction rates and the

overall correction, recorrection and reversion rates we document reflect a conservative mea-

sure of all proposed corrections in the literature, but are likely accurate for the widely-recog-

nized corrections that scientists use in practice. Studying taxonomic proposals directly [13,16]

can provide a more detailed analysis of the corrections being advocated for and being dis-

cussed by taxonomists, but provide limited opportunities for assessing how these corrections

affect the interpretation of actual data. In understanding the entirety of the taxonomic

Fig 3. A diagrammatic representation of the corrections involved in generating the 834 currently recognized

name clusters. Note that a lump followed by a split does not imply that the split reverted the lump; different species

might have been split out of the lumped circumscription to obtain the current circumscription. We see relatively low

rates of initial corrections, but once corrected, 43% of species involved in lumps are later involved in splits, while only

17% of species involved in splits are subsequently involved in lumps. 18 species that were involved in more than two

corrections are summarized by their first two corrections above.

https://doi.org/10.1371/journal.pone.0195736.g003
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process–how a taxonomic proposal is conceived, tested, published, contested, recognized, cor-

rected and recorrected–both of these approaches have much to contribute, and further studies

towards a unified theory of taxonomy is necessary. The first step might be to collect and pub-

lish taxonomic changes from both taxonomic proposals and checklists, such as those we

include (S2 Table), which might facilitate large studies covering several parts of this taxonomic

process.

Our results show a clear period of lumping in the 1920s to the 1980s, followed by a period

of rapid splitting in the AOU checklist. 19.4% of all lumps and splits in our dataset are full or

partial reversions of a previous correction, 74% of which are splits reverting a previous lump.

Reversions are clearly a part of the current period of splitting, but the vast majority (64.2%) of

splits do not partially or fully revert a previous lump. Furthermore, 80.6% of all corrections do

not partially or fully revert a previous correction, showing that the generation of circumscrip-

tions novel to the AOU Checklist have been and continue to be a critical part of taxonomic

revision. Both previously uncorrected species circumscriptions as well as previously recog-

nized corrections are being actively retested and corrected by North American bird taxono-

mists today.

A checklist-based approach to studying taxonomic change has an inherent limitation in

that it tracks only a single taxonomic view over time, and our results do not necessarily reflect

the patterns we would observe if we examined other taxonomies of North American birds or

in bird checklists globally. There is also no documented evidence that the AOU Checklist’s

methods and philosophies have changed since at least the advent of the BSC in the 1930s: for

example, the committee members “strongly and unanimously continues to endorse the biolog-

ical species concept (BSC)” in 1998 [57]. Coincident have been development of concepts such

as the Comprehensive Biological Species Concept in 1999 [58], which advocates for a less nar-

row interpretation of the BSC. Sangster’s bibliometric analysis [16] further supports the view

that there has not been a major shift in philosophy or tools over the course of this checklist: he

found that the majority of lumps and splits proposed for global bird species between 1950 and

2009 used diagnosability as a criterion for delimiting species, with reproductive isolation used

in fewer than half the proposals in every decade (with the exception of the 1970s, when it

briefly reached 50%). However, North American bird taxonomy began long before the first

AOU Checklist was published–the earliest changes we observe might have corrected taxo-

nomic opinions that were incorporated into the first edition of the Checklist, and further

cycles of lumping and splitting might have been observed if the AOU Checklist extended fur-

ther back in time. As we did not incorporate pre-1889 information into our study, we likely

underestimate the number of changes that corrected previous changes, and overestimate the

proportion of names that had never been corrected.

The stability we observe in the methodology of the AOU Checklist raises the question of

possible causes of the shift from lumping to splitting in the 1980s. The 1980s were a period of

great technological innovation in both biology, with the development of Sanger sequencing in

1977 and the polymerase chain reaction in 1983, and in the world at large, with the develop-

ment of the personal computer in the late 1970s and early 1980s and NSFNET, the predecessor

of the Internet, in 1985. The use of ancient DNA are also changing our understanding of evo-

lutionary relationships among groups of birds [59]. Any of these, as well as any number of

changes in the funding or production of taxonomic work, may have led to an increased output

from taxonomists, shown as an increased rate of correction since the 1980s. We observe that

rates of species description [4,5] as well as the number of scientists involved in species descrip-

tion [60] have been increasing since the 1950s. Whatever factors are responsible for that

increase may also be increasing the number of taxonomists testing and correcting taxonomic

circumscriptions, leading to the accelerating splitting rates we see. Further, some of that work
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appears to have been put into the recorrection of previously corrected species circumscrip-

tions. One further line of inquiry along these lines is to focus on changes that were partially or

completely reverted, and compare the evidence used to justify the initial correction with the

subsequent recorrection.

Extrapolating this pattern into the future and using taxonomic concepts (sensu Franz et al.

[50]) as the key unit, rather than simply the species names, we expect a continuing period in

which both the development of concepts that have not been previously recognized by the

AOU Checklist and the reversion of previously recognized concepts are carried out side-by-

side. The refinement of theoretical approaches to species delimitation and growth in empirical

datasets such as genomic data should lead to fewer novel species circumscriptions and taxo-

nomic corrections remaining to be found. While taxonomists will likely continue to debate

which corrections are accurate and which are not, we extrapolate an end state in which taxo-

nomic corrections fall to a low, but non-zero rate, in much the same way species description

rates have in North American birds. This rate will never reach exactly zero, not only because

new evidence will continue to refine our view of historical speciation, but also because specia-

tion is an ongoing process that will continue to lead to divergent lineages and thus to new spe-

cies, likely at a very low rate. Species description and lumping appear today to be proceeding at

these low but non-zero rates, especially considering the much higher rates they demonstrated

in the 1800s and between 1930 to 1960 respectively. By comparison, splitting is proceeding at

an unprecedented rate within the checklist, which continues to accelerate. If they predomi-

nantly reverted previous lumps, we might have been able to extrapolate when all previous

lumps might be fully resplit, but we find that only 25% of lumps have been reverted, and 81%

of all changes do not revert a previous change. Therefore, our results do not provide an empiri-

cal means to predict when this end state might be reached. However, we do note that continu-

ing acceleration along the trajectory we show here could hasten what others [14] have argued

is likely to be a slow process.

How general are the patterns we show here for other taxa and regions? Bird taxonomy was

strongly impacted by extensive lumping from the 1920s to the 1980s, but we still find that the

outcome of splitting is as much new taxonomic circumscriptions as it is reversions to previ-

ously recognized circumscriptions. Among other groups in which “taxonomic inflation” has

been observed, such as primates [10,11], amphibians [8], bovids [12] and birds [13], we might

expect to see a similar pattern of mixed taxonomic corrections and recorrections explaining

the increase in the number of recognized species. More broadly and across a larger spectrum

of the tree of life, we still know little about groups where current description rates far swamp

any taxonomic corrections. As studies like ours are replicated, we hope that broader answers

to questions about the tempo, mode and potential end-states of taxonomic discoveries can be

found.

A final motivation for our work was the extent to which taxonomic correction leads to

errors when biodiversity analyses use species name without considering the different circum-

scriptions that may be associated with that name. In our dataset, we find that 74% of species

names were only associated with a single circumscription, 16% of species names were associ-

ated with exactly two circumscriptions (by being corrected once) and only 10% of species

names were associated with more than two circumscriptions (by being corrected two or more

times). Thus, a still significant proportion of species names are associated with multiple taxo-

nomic concepts that make simple taxon labels ambiguous [22,37]. Errors may be minimized

by focusing analysis on species known to have no taxonomic corrections, but in North Ameri-

can birds, no single order or family was found to be more likely to be recorrected. This sug-

gests one simply cannot avoid "problem-areas" in North American bird groups except possibly
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at the generic level. Instead, any broad-scale analysis that ignores taxonomic concepts is likely

to introduce some error.

Our work draws attention to the parts of the taxonomic process that are often overlooked

when focusing exclusively on species description and on names without reference to circum-

scriptions. Large public databases of species descriptions have been published by several orga-

nizations, including the Catalogue of Life [61], Zoological Record [62], the Plazi Treatment

Bank [63] and downstream databases such as BioNames [64]. These resources have facilitated

many studies of the cadence of description patterns [4], changing properties of species descrip-

tions [65] and estimates of the number of species remaining to be discovered [60]. The first

databases of circumscriptions have been built, including Avibase, which formed the basis of

this study [39,66] and some biodiversity databases now incorporate circumscriptions, includ-

ing citizen science platforms such as iNaturalist [67]. New philosophical, ontological and soft-

ware tools to identify [68], describe [46], share [69,70] and reason over [71,72] taxonomic

circumscriptions have become available recently, which we believe will lead to better, shareable

circumscription datasets that provide a means to move beyond simply capturing name strings

and towards the more fundamental units of biodiversity. The circumscriptions we used in this

project are only one interpretation of the taxonomic acts that we have studied; by making the

data we used in this project available, we hope that future work will be able to build on our

work to assemble larger datasets, leading to a more thorough understanding of how taxonomic

corrections have refined our knowledge of global biodiversity and how they will continue to

do so in the future.

Supporting information

S1 Table. List of AOU checklist updates with authors and estimated counts of recognized

species.

(CSV)

S2 Table. List of 142 lumps and 95 splits after filtering out all changes after 1981. Includes

information on all the changes that revert a particular change, as well as the subset of those

reversions that are complete–where one change perfectly undoes another change. Note that

“reversion” does not imply a particular ordering in time: both the initial change and all its par-

tial or complete reversions will list the other change as reversions.

(CSV)

S3 Table. 851 currently recognized species after filtering out all changes after 1981, includ-

ing 17 extralimital species. Includes a count and list of taxonomic concepts associated with

each name, the ‘trajectory’ of changes (the sequence of additions, deletions, renames, lumps

and splits) we know about associated with this name or its synonyms and in which dataset this

name and its synonyms were first added. The remaining columns are from the 2016 Checklist

of North and Middle American Birds, downloaded from http://checklist.aou.org on October 3,

2016. Extralimital species, i.e. those involved in lumps and splits but not found within the geo-

graphical area of the checklist, have ‘NA’ in all higher taxonomy columns and were not present

in the 2016 Checklist.

(CSV)

S4 Table. Results of the hierarchical model at the order level. The total and mean number of

redescriptions observed in each order are indicated. The ‘min’, ‘max’ and ‘interval_width’ val-

ues refer to the 95% credible interval around the ‘mean’ for the log difference in the λ attribut-

able to that order. The lower interval is greater than zero where the order has a significantly
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higher rate of taxonomic redescription than other orders.

(CSV)

S5 Table. Results of the hierarchical model at the family level. The total and mean number

of redescriptions observed in that family are indicated. The ‘min’, ‘max’ and ‘interval_width’

values refer to the 95% credible interval around the ‘mean’ for the log difference in the λ attrib-

utable to that family. The lower interval is greater than zero where a family has a significantly

higher rate of taxonomic redescription than other families.

(CSV)

S6 Table. Results of the hierarchical model at the genus level. The total and mean number

of redescriptions observed in that genus are indicated. The ‘min’, ‘max’ and ‘interval_width’

values refer to the 95% credible interval around the ‘mean’ for the log difference in the λ attrib-

utable to that genus. The lower interval is greater than zero where a genus has a significantly

higher rate of taxonomic redescription than other genera.

(CSV)

S1 Code. Raw data and analysis scripts for this project. This code is also available online at

http://github.com/gaurav/aou_checklists and has been archived in Zenodo under DOI http://

doi.org/10.5281/zenodo.1214826.
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