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ABSTRACT
Geographic range is an important macroevolutionary parameter frequently considered
in paleontological studies as species’ distributions and range sizes are determined
by a variety of biotic and abiotic factors well known to affect the differential birth
and death of species. Thus, considering how distributions and range sizes fluctuate
over time can provide important insight into evolutionary dynamics. This study
uses Geographic Information Systems (GIS) and analyses of evolutionary rates to
examine how in some species within the Cephalopoda, an important pelagic clade,
geographic range size and rates of speciation and extinction changed throughout the
Pennsylvanian and early Permian in the North American Midcontinent Sea. This
period is particularly interesting for biogeographic and evolutionary studies because
it is characterized by repetitive interglacial-glacial cycles, a global transition from an
icehouse to a greenhouse climate during the Late Paleozoic Ice Age, and decelerated
macroevolutionary dynamics, i.e. low speciation and extinction rates. The analyses
presented herein indicate that cephalopod species diversity was not completely static
and actually fluctuated throughout the Pennsylvanian and early Permian, matching
findings from other studies. However, contrary to some other studies, the mean
geographic ranges of cephalopod species did not change significantly through time,
despite numerous climate oscillations; further, geographic range size did not correlate
with rates of speciation and extinction. These results suggest that pelagic organismsmay
have responded differently to late Paleozoic climate changes than benthic organisms,
although additional consideration of this issue is needed. Finally, these results indicate
that, at least in the case of cephalopods, macroevolution during the late Paleozoic
was more dynamic than previously characterized, and patterns may have varied across
different clades during this interval.

Subjects Biogeography, Evolutionary Studies, Paleontology
Keywords Geographic information systems (GIS), Macroevolution, Late paleozoic, Cephalopods,
Biogeography

INTRODUCTION
Much work has focused on the relationship between geographic range size and rates of
speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
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Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004; Rode & Lieberman, 2005;
Kiessling & Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009;
Stigall, 2010; Myers & Saupe, 2013; Myers, MacKenzie & Lieberman, 2013; Dunhill & Wills,
2015; Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al.,
2017; Pie & Meyer, 2017; Simões et al., 2016; Lam, Stigall & Matzke, 2018; Schneider, 2018).
Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated
investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006;
Hendricks, Lieberman & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie & Lieberman, 2013;
Dunhill & Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic
range size and rates of speciation and extinction changed throughout the Pennsylvanian
and early Permian in the North American Midcontinent Sea in the Cephalopoda, an
important clade of pelagic invertebrates (Kullmann, 1983; Kullmann, 1985; House, 1985;
Becker & Kullmann, 1996; Landman, Tanabe & Davis, 1996; Wiedmann & Kullmann, 1996;
Monnet, De Baets & Klug, 2011; Korn & Klug, 2012; Klug et al., 2015; Korn, Klug & Walton,
2015), using GIS. This time interval is particularly interesting for biogeographic and
evolutionary analysis because it is characterized by repetitive glacial-interglacial cycles, and
a global transition from an icehouse to greenhouse climate during the Late Paleozoic Ice Age
(LPIA) (Montañez & Poulsen, 2013). Further, it is generally considered a time of sluggish
macroevolutionary dynamics, i.e., low speciation and extinction rates and low degrees
of faunal turnover, that have been demonstrated in studies of other marine invertebrate
taxa (Sepkoski Jr, 1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011). However,
Ramsbottom (1981), Kullmann (1985), Becker & Kullmann (1996), and Wiedmann &
Kullmann (1996) did cogently argue that this was not the case for cephalopods. More
recently, Balseiro (2016) did document the existence of some profound evolutionary
turnover in bivalves and brachiopods over the course of this interval in regions closer to
the ice sheets, such as present-daywesternArgentina. Furthermore, Segessenman & Kammer
(2018) showed that advanced cladid crinoids do display elevated rates of evolution and
turnover during this time interval (although three other subclasses of crinoids do show
subdued evolutionary rates), and fusulinid foraminifera also fit the pattern shown in the
advanced cladids (Groves & Lee, 2008; Groves & Yue, 2009; Segessenman & Kammer, 2018).

There have been a variety of hypotheses proposed for the postulated decelerated
macroevolutionary dynamics (albeit not necessarily in cephalopods) of the LPIA. Some
studies contend that this pattern is a result of environmental changes linked to glacial cycling
while others point to tectonic activity (Stanley & Powell, 2003; Powell, 2005; Fielding, Frank
& Isbell, 2008;DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010;Bonelli & Patzkowsky,
2011; Cecil, DiMichele & Elrick, 2014; Segessenman & Kammer, 2018). To date, many of the
more recent studies focusing on the macroevolutionary dynamics of the LPIA have
concentrated on benthic marine invertebrates (e.g., Stanley & Powell, 2003; Powell, 2007;
Bonelli & Patzkowsky, 2011;Balseiro, 2016; Segessenman & Kammer, 2018) as they are highly
diverse and very abundant. However, it is valuable to also investigate evolutionary patterns
in pelagic marine invertebrates as these are also diverse and abundant organisms in late
Paleozoic marine ecosystems (Landman, Tanabe & Davis, 1996; Monnet, De Baets & Klug,
2011; Klug et al., 2015; Korn, Klug & Walton, 2015). In particular, given the significant role
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that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould, 1972; Jablonski,
1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski & Hunt, 2015; Pie &
Meyer, 2017), we might expect that pelagic organisms, because of their innately greater
dispersal ability (at least as adults), might show different patterns relative to taxa that
were benthic (Rojas et al., 2017; Yacobucci, 2017). This greater dispersal ability might
allow pelagic organisms to more fully occupy potentially available habitats than benthic
organisms, which could lead to larger geographic ranges and also less change in geographic
ranges through time. (In addition, there are certain paleoecological constraints that
reduce the dispersal potential of cephalopods, such as minimum water depth required
for vertical migration, Ward &Westermann, 1985; Ritterbush et al., 2014; RT Becker, pers.
comm., 2019). It also could potentially influence patterns of speciation and extinction by
dampening opportunities for geographic isolation and creating larger effective population
sizes. Further, sea-level fall is known to cause regular and repeated patterns of extinction
in ammonoids (Kullmann, 1983; Kullmann, 1985; House, 1985; Hallam, 1987; Becker &
Kullmann, 1996; Wiedmann & Kullmann, 1996; Kaiser et al., 2011; Zhang et al., in press;
and RT Becker, pers. comm., 2019).

This study focuses on cephalopods from the Pennsylvanian-early Permian (Morrowan,
Atokan, Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea
of the United States as knowledge of their systematic affinities, geographic distribution
and overall diversity is relatively well understood (Miller, Dunbar & Condra, 1933; Newell,
1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Nassichuk, 1975; Boardman II et
al., 1994; Landman, Tanabe & Davis, 1996; Kröger, 2005; Klug et al., 2015; Korn, Klug &
Walton, 2015), the stratigraphy of the region is well constrained (Heckel, 2008; Heckel,
2013), and there are extensive exposures of fossiliferous units in the region. Moreover,
at this time the Midcontinent Sea was bordered by the Antler Orogeny to the north, the
Ancestral Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain
belt to the south/southeast (as well as various structural arches), such that it constituted a
distinct biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas,
2011; Joachimski & Lambert, 2015).

The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic
and is relatively well understood due to numerous stratigraphic, sedimentologic,
paleontologic, and isotopic studies (e.g., Mii, Grossman & Yancey, 1999; Isbell, 2003;
Stanley & Powell, 2003; Raymond & Metz, 2004; Montañez, 2007; Powell, 2007; Tabor &
Poulsen, 2007; Fielding, Frank & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli &
Patzkowsky, 2011;Montañez & Poulsen, 2013;Balseiro, 2016;Roark et al., 2017; Segessenman
& Kammer, 2018). Glacial cycling in the North American midcontinent region has received
much study (e.g., Isbell, 2003; Heckel, 2008; Heckel, 2013). Modern synthesis of the glacial
history indicates that the Morrowan to early Desmoinesian represented a localized glacial
period, the late Desmoinesian to early Virgilian represented a widespread interglacial
period with minor glaciation, and the late Virgilian to early Wolfcampian represented
the apex of widespread glaciation (Montañez & Poulsen, 2013). Modeling predicts that
sea-level oscillations in the late Pennsylvanian were between 50–100 m depending upon
the number and volume of melting ice sheets, and that water temperatures are estimated
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to have been between 4–7 ◦C cooler during glacial maxima than inter-glacial periods
(Heckel, 1986; Isbell, 2003; Montañez, 2007; Tabor, 2007; Heckel, 2008; Cecil, DiMichele &
Elrick, 2014). The sea-level and temperature changes were likely to have had an important
influence on species distribution and geographic range size during this time (Waterhouse
& Shi, 2010). Perhaps cephalopod taxa would be less influenced by glacial sea-level cycles
than benthic taxa, as these cycles are also known to cause variation in seafloor ventilation,
with concomitant dysoxia/anoxia that is more severe for benthic taxa (A Dunhill, pers.
comm., 2018). By contrast, sea-level fall is known to have caused ammonoid extinctions
and Paleozoic cephalopods were sensitive to water temperature (RT Becker, pers. comm.,
2019).

MATERIALS AND METHODS
Taxa considered, stratigraphic correlation, specimens examined, and
georeferencing
Seventy-nine species belonging to 26 genera (13 nautiloids and 13 ammonoids) of
cephalopods in the Pennsylvanian-Permian North American Midcontinent Sea were
considered (Table S1). These represent abundant, well preserved, and taxonomically
well understood species for which we were able to obtain type material and collections
material of sufficient quality to enable taxonomic assignments on a breadth of material.
Other species from the mid-continent of North America certainly exist and adding
these to our analyses could change our results. However, at this time it was not possible
to consider these via obtaining type and other material for them and pursuing the
significant additional taxonomic work this would entail. Therefore, results are based
on consideration of what is essentially a random selection of some of the (albeit well
known) species in the region and this analysis is best viewed as an initial approach to
considering paleobiogeographic dynamics in the region. Range reconstructions relied on
the occurrence records of specimens derived from a comprehensive consideration of the
entire taxonomic literature on the taxa studied. In particular, the following publications
were utilized: Cox (1857), Swallow (1858), McChesney (1860), Meek & Worthen (1860),
Meek & Worthen (1870), White & St. John (1867), White (1889), Hyatt (1891), Hyatt
(1893), Keyes (1894),Miller (1892), Smith (1896), Smith (1903), Girty (1911), Girty (1915),
Mather (1915) Böse (1919), Böse (1920), Miller (1930), Sayre (1930), Miller, Dunbar &
Condra (1933), Miller & Cline (1934), Miller & Owen (1934), Miller & Owen (1937),
Miller & Owen (1939), Foerste (1936), Miller & Thomas (1936), Newell (1936), Plummer
& Scott (1937), Elias (1938a), Elias (1938b), Miller & Moore (1938), Smith (1938), Miller
& Furnish (1940a), Miller & Furnish (1940b), Miller & Furnish (1957), Teichert (1940),
Clifton (1942), Miller & Unklesbay (1942), Young (1942), Sturgeon (1946), Miller, Lane &
Unklesbay (1947), Miller & Downs (1948); Miller & Downs (1950), Miller & Youngquist
(1947), Miller & Youngquist (1949), Miller, Youngquist & Nielsen (1952), Kummel (1953),
Kummel (1963), Ruzhentsev & Shimanskiy (1954), Unklesbay (1954), Arkell et al. (1957),
Unklesbay & Palmer (1958), Hoare (1961), Furnish, Glenister & Hansman (1962), McCaleb
(1963), Gordon (1964), Miller & Breed (1964), Teichert et al. (1964), Furnish & Glenister
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(1971), Ruzhentsev & Bogoslovskaya (1971),Nassichuk (1975), Sturgeon et al. (1982),Hewitt
et al. (1989), Boardman II et al. (1994), Kues (1995), White & Skorina (1999), Kröger &
Mapes (2005), Furnish et al. (2009), and Niko & Mapes (2009) as well as from examination
of all specimens, including types, housed in: the Division of Invertebrate Paleontology,
Biodiversity Institute, University of Kansas (KUMIP); the University of Iowa Paleontology
Repository (UI); and the Yale University Peabody Museum of Natural History (YPM).
These institutions are among the most complete repositories of cephalopod diversity from
this region and time and contain many of the type specimens of the species examined.
Moreover, all specimens used in the analysis were personally examined and taxonomically-
vetted via consideration of the literature, relevant type specimens, and other material, with
species assignments and determinations made by the first author. Over 1,100 specimens
were identified to species level in this study (Kolis, 2017). We chose to focus on the
particular species considered, rather than downloading data from the Paleobiology Data
Base (PBDB), as we wanted to be able to personally validate the taxonomic identity of
specimens using collections data in conjunction with the literature in order to present
more rigorously corroborated hypotheses about the geographic distributions of species.
We consider this approach to be complementary to those approaches that utilize the PBDB
in paleobiogeographic studies. On the one hand, our approach did limit the number of
species we were able to consider. On the other hand, we believe it is quite important
to evaluate hypotheses about systematic affinities of fossil specimens, the actual data
of the fossil record themselves, in detail and thereby accurately define the taxonomic
units considered. Given that species represent key macroevolutionary units in nature
(Eldredge, 1989; Wiley & Lieberman, 2011; Hendricks et al., 2014), correctly characterizing
them taxonomically, and thus validating the scope of their geographic distributions, is
critical. Moreover, it has recently been shown by Marshall et al. (2018) that incorporating
museum specimen data in the manner that our study has can greatly expand, enhance,
and improve knowledge of geographic distributions of fossil species, relative to studies
that only utilize data from the PBDB. In the case of some species, ∼30% of the total
considered, our analyses indicated moderate changes in stratigraphic range (addition of a
stage, etc.) relative to what is presented in the PBDB. This happened primarily because via
this study we were able to identify specimens to species that previously had been treated
as indeterminate at the species level, or we were able to determine that specimens had
previously been mis-identified to species.

Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan,
Morrowan, or Wolfcampian stages using the USGS National Geologic Map Database
(USG, 2017; Sawin et al., 2006; Sawin et al., 2008; Sawin et al., 2009; Zeller, 1968; Pope,
2012;Heckel, 2013). The temporal boundaries of stages were derived fromDavydov, Korn &
Schmitz (2012) (Table S2). It is important to note that the boundaries of international stages
are based on few geochronological tie points and the correlation of the North American
stage boundaries with these is arbitrary; also, some of the boundaries used are still being
researched (RT Becker, pers. comm., 2019.) In addition, while more resolved stratigraphic
assignment to biostratigraphic zone is possible for units in Europe (e.g., Davydov &
Leven, 2003), the northern Appalachian Basin of North America (e.g., Heckel, Barrick &
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Rosscoe, 2011), and parts of the North American midcontinent (e.g., Boardman II et al.,
1994; Heckel, Barrick & Rosscoe, 2011), it is less tractable to associate the boundaries of the
biostratigraphic zones from the North American midcontinent with radiometric dates for
the stratigraphic units and regions considered herein. Furthermore, themuseum specimens
considered herein lacked the information needed to make it possible to constrain them
to biostratigraphic zone, only stage. For this reason, it was unfortunately not possible to
consider changes in geographic range, nor rates of speciation and extinction, at a temporal
scale more resolved than stage. Although this is often the standard degree of temporal
resolution used in a variety of paleobiogeographic studies, it does entail that we were not
able to discern events transpiring more rapidly than the time scale of stage. This means that
we will be missing important patterns; although speciation and extinction does not appear
to frequently be transpiring within stage boundaries in this region, at least sometimes it
is, and moreover geographic range shifts by species were certainly happening within these
boundaries.

All specimen localities were georeferenced during the course of the study. GEOLocate
(Rios & Bart Jr, 2018) and the MaNIS Georeferencing Calculator (Wieczorek & Wieczorek,
2015) were used to obtain coordinates and uncertainty radii. All points were calculated in
decimal degrees within the WGS84 model in the GEOLocate (Rios & Bart Jr, 2018) world
topo layer to ensure consistency and accuracy in determinations. Most uncertainty radii
were less than 10 kms. Any specimens with questionable locality information were excluded
from analyses, as were specimens with an uncertainty radius larger than the county they
were contained within. This left 950 specimens (Table S1) to use in range reconstruction
and statistical analysis of geographic range through geologic time. All statistical analyses
were performed using Minitab R© Statistical Software Minitab v. 17 (Minitab, 2016) and
RStudio (2017).

Range reconstruction using GIS
Methods for range reconstruction follow Rode & Lieberman (2004), Rode & Lieberman
(2005), Stigall & Lieberman (2006), Hendricks, Lieberman & Stigall (2008), Myers &
Lieberman (2011), Myers, MacKenzie & Lieberman (2013), and Dunhill & Wills (2015).
In particular, after specimen occurrence data were georeferenced and assigned to temporal
bins, Excel CSV files were compiled for the occurrence points for all specimens within
species. CSV files were imported into ArcGIS v. 10.3 (Esri, Redlands, CA, USA) and layers
were created using geographic coordinate system ‘WGS 1984’’ and projected coordinate
system ‘WGS 1984 World Mercator’ (Fig. 1). These layers were input into PaleoWeb
(The Rothwell Group LP, 2016) to rotate coordinates into continental configuration and
geographic position of the midcontinent region during the Pennsylvanian-early Permian
(Fig. 2). These paleo-coordinate layers were then re-projected into ArcMap (Esri, Redlands,
CA, USA).

Geographic range values were calculated for each species (Table S3) using minimum
bounding geometry. This method has been shown to provide the most accurate procedure
for reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe,
2018). Convex hulls or buffers were given to every specimen occurrence point in each
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Figure 1 Distribution of Pennsylvanian and early Permian cephalopods. (A) Distribution of Pennsyl-
vanian nautiloid and ammonoid data points (red) and (B) early Permian nautiloid and ammonoid data
points (blue) across the midcontinent region of North America. Plotted using ArcGIS v. 10.3 (Esri, Red-
lands, CA, USA) software at 1: 20,000,000.

Full-size DOI: 10.7717/peerj.6910/fig-1

Figure 2 Occurrence points of Metacoceras sp. andMooreoceras sp. For the Virgilian, shown on pos-
sible paleogeography of that stage, at 1:1,000,000,000 scale; plotted using PaleoWeb (Rothwell Group LP,
2016).

Full-size DOI: 10.7717/peerj.6910/fig-2

species and these shapefiles were re-projected in ‘South America-Albers Equal Area Conic’.
This model was used to accommodate the rotation of species occurrence coordinates into
the southern hemisphere during the late Paleozoic. Species with three or more occurrence
points were given a convex hull that spanned the entire area between occurrences (see
Rode & Lieberman, 2004; Hendricks, Lieberman & Stigall, 2008; Myers & Lieberman, 2011;
Darroch & Saupe, 2018). In this way, multiple occurrence points were combined to recreate
the geographic range of a single species. Species with only one occurrence point were given
a 10 km2 buffer; species with just two occurrence points were given a 10 km2 wide buffer
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which was used, in conjunction with their distance, to derive an area value (following Rode
& Lieberman, 2004; Rode & Lieberman, 2005; Hendricks, Lieberman & Stigall, 2008; Myers
& Lieberman, 2011; Myers, MacKenzie & Lieberman, 2013). Species geographic range size
data were tested for normality within each temporal stage using the Anderson-Darling
normality test (this is a commonly used test to assess normality, see Sokal & Rohlf, 1994).

Assessing fossil record bias
A common concern when studying the fossil record is that there might be biases that
could lead to inaccurate or artifactual findings. This concern can be manifold, but the
two most pertinent issues here involve incomplete sampling and/or issues of stratigraphic
bias. While it is important to be aware of the fact that the fossil record is incomplete, it is
worth recognizing that there is a large body of research that demonstrates that many of
the biogeographic patterns preserved in the fossil record, particularly in marine settings,
represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman,
2011; Rook, Heim &Marcot, 2013; Dunhill & Wills, 2015), although that does not mean
that such artifacts played no role in this study. Further, it is also prudent to realize that
sampling bias is a common issue in studies of extant biodiversity and species distribution,
and much work needs to be done in this area to alleviate the biases of the extant biota
(Lieberman, 2002; Carrasco, 2013).

The possibility that biases in the fossil record might lead to artifactual results was
assessed in a few different ways. First, the relationship between outcrop availability and the
geographic range of Pennsylvanian and Permian cephalopods was determined (see Myers
& Lieberman, 2011). A percent coverage table of the range size of species overlaid against
temporal outcrop availability was created using ArcGIS v. 10.3 (Esri, Redlands, CA, USA).
A low percentage of overlap between range size and outcrop area would suggest species
distributions are more likely to reflect ‘real’ biogeographic patterns while a high percentage
of overlap would suggest the presence or absence of outcrop was significantly influencing
results (Myers & Lieberman, 2011; Myers, MacKenzie & Lieberman, 2013) (however, see
also Dunhill, 2012 for an alternative viewpoint). The second test used was an ‘‘n-1’’
jackknifing analysis (see Myers & Lieberman, 2011; Myers, MacKenzie & Lieberman, 2013).
This procedure sub-sampled species range size within each temporal bin to test the
resilience of data to outliers. Mean range size estimations were generated for each temporal
bin; these were input into a one-way ANOVA to compare jackknife estimates with the
initial geographic range size estimates (Myers & Lieberman, 2011; Myers, MacKenzie &
Lieberman, 2013). Finally, a Pearson rank correlation test was performed to test the
association of occurrence points and geographic range size; a close correlation would
indicate that reconstructed ranges were very much dependent on sampling and suggest
that reconstructed biogeographic patterns might be an artifact of a biased fossil record
(Myers, MacKenzie & Lieberman, 2013).

Speciation and extinction rate calculations
Speciation and extinction rates were calculated in order to consider macroevolutionary
dynamics in cephalopods from the Late Paleozoic Midcontinent Sea. Macroevolutionary
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rates were calculated using the following equation, presented in Foote (2000) and Rode &
Lieberman (2005):

Nf=N0ert

where N0 is the species richness at the beginning of a temporal bin, Nf is the species
richness at the end of a temporal bin, t is the duration of a temporal bin, and r is the total
rate of diversity change. The temporal bins used were North American stages (Table S2).
Species richness values (Nf) were determined for each temporal bin and were parsed into
‘carry-over’ (N0) and ‘new’ species richness values to ensure the accuracy of speciation
and extinction rate calculation. In this way, it was possible to calculate the rate of diversity
change between bins. For example, rAtokan = (ln N0−Desmoinesian − ln N0−Atokan)/tAtokan.
Speciation rate within each temporal bin was calculated using the equation SAtokan =
(ln Nf−Atokan − ln N0−Atokan)/tAtokan, and extinction rate within each temporal bin was
calculated using the equation EAtokan = SAtokan − rAtokan for each temporal stage (Foote,
2000; Rode & Lieberman, 2005).

RESULTS
Paleobiogeographic patterns
Geographic range data were analyzed separately across all cephalopods and individually
for both nautiloids and ammonoids. As mentioned above, species geographic range size
data were tested for normality within each temporal stage using the Anderson-Darling
normality test (see Sokal & Rohlf, 1994). Range size data within each temporal stage were
not normally distributed for any data combination (P < 0.005). Instead, distributions
were left skewed across all temporal stages for every data grouping. Data were subsequently
log-transformed to normalize data, and statistical analyses were performed on both original
and transformed data.

In general, geographic range size (eithermean of transformed data ormedian of original)
of ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3),
which was a time of sea-level rise due to warming during an interglacial (Isbell, 2003;
Montañez & Poulsen, 2013), such that there may be an association between the sea-level
rise and the increase in geographic range. Another possibility is that there was some change
in taphonomic or collecting conditions associated with Virgilian strata that made it easier
to discern the actual biogeographic distributions of species at this time, relative to other
time intervals (G Piñeiro, pers. comm., 2018). However, none of the changes in geographic
range were statistically significant, so it is not possible to infer strong correlation between
the sea-level rise, or possible taphonomic factors, and the range expansion. For instance,
Mann–Whitney U tests, a non-parametric test used to compare two sample medians (see
Sokal & Rohlf, 1994), found no statistically significant changes (at P ≤ 0.05) in median
geographic range size for any temporal stages separately across all studied cephalopods, as
well as individually for nautiloids and ammonoids, even prior to correction for multiple
comparisons. This is because for the cephalopods studied median range values are constant
through time (79 km2). Mean values (which are also relevant for understanding patterns of
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Figure 3 Mean geographic range size in km2 of cephalopods through time. Nautiloid species (A) and
ammonoid species (B) range changes occur but are not statistically significant when analyzed using non-
parametric tests (note, median range size data not graphed but for all cephalopods they are 79 km2 for all
time intervals, for ammonoids they are 78.5 km2 for the Desmoinesian and Wolfcampian and 79 km2 for
all other time intervals, and for nautiloids they are 79 km2 for all time intervals) or when log transformed
data are analyzed using parametric tests (note log transformed data not graphed but mean transformed
values for all cephalopods are 5.51 [standard error 0.75] for the Morrowan, 4.05 [standard error 1.02]
for the Atokan, 4.36 [standard error 0.49] for the Desmoinesian, 5.65 [standard error 0.49] for the Mis-
sourian, 5.96 [standard error 0.79] for the Virgilian, and 4.31 [standard error 0.52] for the Wolfcampian).

Full-size DOI: 10.7717/peerj.6910/fig-3

change in the data, G Piñeiro, pers. comm., 2019) do show more change through time in
our data than the corresponding median values, as might be expected, but median values
are better to focus on for statistical purposes when the data are not normally distributed,
as is the case herein.

The same was true for two-sample t-tests (see Sokal & Rohlf, 1994) performed on
log-transformed data which again found no statistically significant changes (at P ≤ 0.05)
in mean geographic range size though time, even prior to employing a statistical correction
needed in the case when there are multiple comparisons. Again, recall thatmean range size
data are shown in Fig. 3, and the differences among log-transformed data through time
are far less substantial (and ultimately not significant). Furthermore, a one-way ANOVA,
either with or without the assumption of equal variance, failed to find any significant
differences (at P ≤ 0.05) between stages for log-transformed mean geographic range size
across all cephalopods as well as individually for nautiloids and ammonoids. Still, it is worth
noting that changes in range size are occurring through time, most notably in the Virgilian,
and these could be related to climatic changes that occurred then, and also changes in the
paleogeography of the region, although in the absence of statistical evidence we could not
convincingly document such a link in the present study. However, it is important to note
that previous studies (e.g., Ramsbottom, 1981) have documented such a link.

Analysis of macroevolutionary rates
Speciation rate (S) and extinction rate (E) were calculated for the Atokan, Desmoinesian,
Missourian, and Virgilian stages across all selected cephalopods and within selected
nautiloids and ammonoids, respectively. The S and E presented across all selected
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Table 1 Speciation rates (S) per millions of years (Myr), extinction rates (E) per Myr, and rate of turnover (R) per Myr, for each stage across all
cephalopods, with species richness values, species carryover from the previous stage, new species originating in the stage, No (the initial number
of species), Nf (the final number of species), and duration (inMyr) also given.

Stage Species
richness

Species
carryover

New
species

No Nf Duration R S E

Wolfcampian 13 7 6 7 13 14 0.0442
Virgilian 38 32 6 32 38 5 −0.3040 0.0343 0.3383
Missourian 55 33 22 33 55 3 −0.0103 0.1703 0.1805
Desmoinesian 41 12 29 12 41 3 0.3372 0.4096 0.0724
Atokan 15 7 8 7 15 2 0.2694 0.3811 0.1116
Morrowan 8 0 8 0 8 6

cephalopods are comprised of two calculations; one calculation included taxa that only
occurred in a single temporal stage (singletons) (Table 1; Fig. 4), while the other calculation
excluded taxa that occurred in a single temporal stage (Table S4). S and E were also
calculated for ammonoids and for nautiloids including (Tables S5 and S6) and excluding
taxa that occurred in a single stage (Tables S7 and S8). Note, due to the dependence of
calculations on diversity metrics from both adjacent stages, it is not possible to accurately
calculate the rate of biodiversity change (R), or S and E for the first stage considered, the
Morrowan, nor R or E for the last stage considered, the Wolfcampian (these are thus left
blank in Table 1 and Tables S4–S8). While it might have been possible to infer S and
E using other methods, to do so would exaggerate the significance of edge effects and
thus be problematic (Foote, 2000). A problem with including singleton taxa is that since
they speciate and go extinct in the same interval there will always be a direct one to one
correlation between S and E (Vrba, 1987; Foote, 2000). This is why for studies considering
the relationship between S and E it is recommended that singletons be excluded (Vrba,
1987; Foote, 2000). However, when singletons are not included, a higher proportion of
ammonoids cannot be considered, as many of these have short biostratigraphic ranges
(RT Becker, pers. comm., 2019). To address each of these concerns we have presented
calculations both with and without singletons.

Across all cephalopods studied, S was high in the Atokan and Desmoinesian, fell in
the Missourian, and reached very low levels in the Virgilian and Wolfcampian (Fig. 4).
By contrast, E was low in the Atokan and Desmoinesian, began to rise in the Missourian,
and reached even higher levels in the Virgilian (Fig. 4). Essentially, across all cephalopods
examined, when S is high, E is low, and when S is low, E is high. This is potentially contrary
to the pattern expected with an ecological opportunity model of speciation (Simões et al.,
2016), although the specific processes driving the diversification could not be determined
at this time. However, it is possible that when S was high there may have been many
short-lived species that could not be sampled that were actually going extinct, and this
phenomenon would artificially depress E. To consider this in more detail, what is truly
needed is a zone by zone analysis of all cephalopod species known from the North American
midcontinent (RT Becker, pers. comm., 2019).
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Figure 4 Speciation and extinction rates through time.Values given in per Myr and derived from Ta-
ble 1.

Full-size DOI: 10.7717/peerj.6910/fig-4

As expected, S and E are lower when singletons are excluded (see Table 1, S4).
Segessenman & Kammer (2018) found in their macroevolutionary study on crinoids from
this interval that including or excluding singletons substantially influenced their results,
but in our study including or excluding these did not produce a substantial change.
Notably, S and E patterns diverge somewhat between ammonoids and nautiloids when
considered individually (and the patterns in nautiloids better match the overall patterns
across all the cephalopods studied). For instance, in nautiloids S is high in the Atokan
and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in the
Virgilian andWolfcampian (Table S6), whereas in ammonoids S is only high in the Atokan,
declines to moderate in the Desmoinesian, declines somewhat more in the Missourian and
then remains essentially constant through the Wolfcampian (Table S5). In addition, E is
low in ammonoids during the Desmoinesian and Missourian but high in the Atokan and
Virgilian (Table S5), whereas in nautiloids there are no observed extinctions during the
Atokan; values remain quite low for nautiloids in the Desmoinesian, rise somewhat in the
Missourian, and then rise again in the Virgilian (Table S6).

An important caveat regarding the calculation of S is that many of the species analyzed
belong to genera that were widely distributed beyond the Midcontinent Sea during the late
Paleozoic. Thus, although none of the species considered in these analyses occurred outside
of the Midcontinent Sea, their close relatives did. It is conceivable that while speciation
events and rates by necessity are herein treated as occurring in situ, this might not always
have been the case. Instead, some speciation events could have occurred outside of the
Midcontinent Sea with subsequent invasion events into that region. These invasions would
appear as in situ speciation events in this analysis, although they actually were not. In the
absence of phylogenetic hypotheses for the genera considered it is not currently possible
to consider how much of the pattern pertaining to speciation rate shown in Fig. 4 is due to
invasion instead of speciation such that both might be playing a role (Metacoceras is one
example where the genus occurs well outside of the North American mid-continent, it is
known to occur in beds ∼100 kms southeast of Moscow, Russia, such that some of the
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Table 2 Pearson correlation test for association between S and geographic range and E and geographic
range across all cephalopods and for ammonoids and nautiloids individually, with Pearson’s r and P-
values given.

Taxon–speciation Pearson’s r P-value Taxon–extinction Pearson’s r P-value

All Cephalopods-S −0.541 0.347 All Cephalopods-E 0.925 0.075
Nautiloids-S −0.463 0.432 Nautiloids-E 0.913 0.087
Ammonoids-S −0.519 0.370 Ammonoids-E 0.803 0.197

cladogenetic events involving this genus might comprise instances of invasion). Further,
a related phenomenon could affect the calculation of E: at times what were treated as
extinction events might have simply been local extinctions in the Midcontinent Sea which
could have included emigration to other regions. As mentioned previously, it does not
appear that any of the species considered occur outside of the Midcontinent Sea, but a
phylogenetic hypothesis for these groups would be valuable for considering this issue in
greater detail.

Relationship between biogeography and macroevolutionary rates
Across all the cephalopods studied, mean geographic range size increased during the
Virgilian (and in ammonoids first in the Missourian but then more prominently in the
Virgilian) and declined in the Wolfcampian (Fig. 3); speciation rates were generally high
in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4); extinction rates were
generally low in the Atokan and Desmoinesian and rose in the Virgilian (Fig. 4). The
Pearson correlation test inMinitab 17 (Minitab, 2016) was used to examine the association
between geographic range and either speciation rate extinction rate in greater detail. No
significant (at P ≤ 0.05) correlation between speciation or extinction rate and range size was
found across all cephalopods or within ammonoids or nautiloids individually (Table 2).
However, in cases the values approach P = 0.05. For instance, the association between
decreasing geographic range size and increasing extinction for all cephalopods and for
ammonoids alone, so it is clear that generally there is some association between the two,
but unfortunately significant support at the .05 level is lacking. We note that numerous
previous studies have documented an association between decreasing geographic range
size and increasing extinction rate (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley,
1990; Jablonski & Roy, 2003; Rode & Lieberman, 2004; Rode & Lieberman, 2005; Kiessling
& Aberhan, 2007; Payne & Finnegan, 2007; Stigall, 2010; Dunhill & Wills, 2015; Jablonski
& Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017; Pie &
Meyer, 2017; Lam, Stigall & Matzke, 2018; Schneider, 2018) and thus this a very robust
phenomenon in general and likely to be operating to some extent herein. However, over
this time interval and for this particular group of species the association is not statistically
significant (Table 2), probably because sample sizes are not large, and further this is likely
because many taxa were culled by the late Mississippian extinction (M Powell, pers. comm.,
2018). Further, sample size could also be influencing the results pertaining to changes in
geographic range size through time (G Piñeiro, pers. comm., 2019).
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Analysis of fossil record bias
The low percentage of overlap between cephalopod species geographic ranges and the
availability of outcrop, less than 1% in 29 out of 30 species (Table S9; the one species with
a larger percentage value, ‘‘Orthoceras’’ kansasense, occurs throughout the Midcontinent
Sea), suggests the results are not simply an artifact of an incomplete fossil record, at least
pertaining to outcrop availability or changes in the paleogeography of the region. The
‘‘n-1’’ jackknifing analysis also supports the robustness of the reconstructed ranges, as no
statistically significant differences were found between the mean of the reconstructed and
subsampled range values for any time interval (all P-values > 0.9), suggesting that one
or a few occurrence records are not having a major influence on biogeographic patterns.
Similar results were found in other taxa and time periods by Hunt, Roy & Jablonski (2005),
Myers & Lieberman (2011), and Myers, MacKenzie & Lieberman (2013), although Dunhill,
Hannisdal & Benton (2014) did find some association between outcrop area and diversity
in the case of the marine fossil record of Great Britain. Finally, the Pearson correlation test
shows no correlation (−0.055, P-Value= 0.789) between the number of occurrence points
and geographic range size; this provides further evidence that the biogeographic signatures
of late Paleozoic cephalopods are unlikely to be simply an artifact of the fossil record.

Diversity patterns
Across all cephalopods, species richness increased from the Morrowan to the Atokan,
peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A similar
pattern is seen in the nautiloids (Fig. S2).However, the ammonoids (Fig. S3) demonstrate an
earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease
in the Wolfcampian. This indicates that the data from nautiloids are most influencing the
recovered patterns (G Piñeiro, pers. comm., 2019). Notably, previous studies of late
Paleozoic brachiopod communities in Bolivia showed a consistent trend between diversity
and glacial cycling with increased diversity during glacial periods and decreased diversity
during inter-glacial periods (Badyrka, Clapham & Lopez, 2013). However, there seems to
be less consistency between species richness trends and glacial cycling in the Midcontinent
Sea. For instance, there is an increase in cephalopod species richness throughout the
Morrowan to Desmoinesian associated with localized glaciation, and an interglacial period
with generally minor glaciation is associated with a decrease in cephalopod species richness
from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is associated with
a decrease in species richness from the Virgilian to the Wolfcampian. Important points,
however, are that these are rawdiversity patterns, and sample standardized diversity patterns
show a different result (M Powell, pers. comm., 2018), and further that brachiopods and
cephalopods can show different behaviors in response to climatic changes (G Piñeiro, pers.
comm., 2019).

DISCUSSION
Geographic range shifts through time are one of the pervasive phenomena in the history
of life; these are manifest both within species and higher-level clades, occur at a number
of different time scales, and are frequently linked to climatic change (Wiley & Lieberman,
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2011). Specific examples do come from the late Paleozoic, a time of extensive climate
change including profound glaciation along with numerous glacial and interglacial cycles
and associated cycles of sea-level rise and fall (Montañez & Poulsen, 2013). (Previous
studies of ammonoids have shown that these changes in sea-level may have caused more
significant changes in biogeographic ranges of taxa than temperature changes during this
time period, and other time periods as well (Hallam, 1987;Hartenfels & Becker, 2016; Zhang
et al., in press). Those changes impacted patterns of geographic range in both terrestrial
plant (e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate
ecosystems (e.g., Ramsbottom, 1981; Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010;
Balseiro & Halpern, 2019). When it comes to marine invertebrates from this time interval,
most of the focus has been on the highly diverse benthic faunas (e.g., Stanley & Powell,
2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016; Segessenman & Kammer,
2018; Balseiro & Halpern, 2019); however, taxa that have a pelagic life style are also worth
examining. Herein, 79 pelagic species of cephalopods were examined for patterns of
range size change using GIS and although in general these species exhibit some evidence
for changes in geographic range size (Fig. 3) especially in the Virgilian, and to a lesser
extent in the Missourian, those changes were not statistically significant, making it hard
to directly tie them to climate changes. However, there is strong evidence that climate
change played a prominent role in influencing geographic range of cephalopods from
other regions during this time period (e.g., Ramsbottom, 1981) and indeed in cephalopods
from other time periods (e.g., Hallam, 1987; Jacobs, Landman & Chamberlain Jr, 1994;
Kaiser et al., 2011; Hartenfels & Becker, 2016; Zhang et al., in press). In a similar vein, many
paleontological studies have demonstrated that species with larger geographic ranges tend
to have lower extinction rates than species with narrower geographic range sizes (e.g.,
Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall
& Lieberman, 2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills,
2015). Again, this phenomenon is not found to be statistically significant in the case of the
late Paleozoic cephalopod species considered herein (Table 2), but there is some general
quantitative evidence for the phenomenon.

There may be a few different explanations for these findings. First, it may be that some
cephalopod species were not significantly affected by the glacial-interglacial climatic cycles
transpiring within the Late Paleozoic Midcontinent Sea. A second possible explanation,
perhaps coupled to the first, is that since cephalopods are highly mobile relative to benthic
marine invertebrates such as gastropods, bivalves, brachiopods, etc., they can more easily
occupy a greater portion of their potential range. Further, perhaps the available potential
range of cephalopod species does not changemuch in glacial relative to interglacial regimes.
This may seem unlikely given the vast fluctuations in sea level occurring at the time, but
pelagic marine organisms, because of their ease of dispersal, may more easily maintain
consistent geographic ranges relative to benthic counterparts. Another possible explanation
for the pattern retrieved is that, given the limits of stratigraphic correlation, sample size,
and the completeness of the fossil record, it was necessary for the analyses of species
distribution conducted herein to focus on the time scale of geological stages, whereas
in actuality there were climatic changes occurring within stages (Heckel, 2008; Heckel,
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2013); these certainly did cause fluctuations in species’ geographic ranges within stages,
but simply could not be observed in the present study. The inability to observe changes
in geographic range size of species at a scale more resolved than stage, in particular, likely
played an important limiting role in the conclusions that could be derived. For instance,
other studies such as Ramsbottom (1981) have looked at European taxa from the same
time period, but focused at the level of zones, and did find a strong association between
climate, sea-level, and geographic distribution. A final set of explanations are related to the
issue of sampling. For instance, it was more difficult for the analyses presented herein to
detect a relationship between geographic range size and macroevolutionary rate because
speciation and extinction rates could only be calculated for four stages. Although we did
not observe a substantial amount of speciation and extinction occurring within stage
boundaries, certainly being able to consider more stages would have enhanced our ability
to retrieve patterns. We suspect that another important explanation for our results is the
relatively limited number of species that could be considered herein. An expansion in the
number of taxa considered could absolutely change our results in various ways, including
via increasing statistical power. Thus, what is presented herein should only be treated
as preliminary results that require further data and additional testing. We would note,
though, that detailed taxonomic vetting of specimens, including through comparison of
type material, especially involving taxonomic studies conducted in some cases more than
70 years ago, requires a significant amount of time investment. Thus, dramatic expansions
to this dataset would require concomitant investments of time. However, other datasets
such as AMMON and the PBDB could be used if one did not feel it was necessary to
spend time vetting taxonomic assignments. Although we posit that it is important to
vet taxonomic assignments that may be outdated, we would assert that our approach
should be viewed as complementary to approaches that rely on mining currently existing
paleontologically oriented databases, and that both types of approaches have value. As a
final possible explanation for our results, we further note that a common concern when
studying the fossil record is the potential role biases can play. This concern can bemanifold.
It is somewhat obviated by the results presented herein regarding the apparent quality of
the fossil record, but that does not mean that there are no inherent problems with the
cephalopod record that are at present difficult to ascertain; these could be influencing the
results retrieved in some at present unspecified way.

There is, however, another finding contrary to what might typically be expected for the
late Paleozoic that is worthmentioning. That is the fact that there seems to have been at least
some moderate degree of evolutionary diversification and turnover within cephalopods,
such that species diversity did fluctuate throughout the Pennsylvanian and early Permian.
Pennsylvanian rates of macroevolution are typically classified as ‘sluggish’ or ‘stolid’ across
all marine animals, and Sepkoski Jr (1998) formalized the notion that there was a marked
decline in evolutionary rates of Carboniferous and Permianmarine faunas. Stanley & Powell
(2003) reiterated this result and identified low mean macroevolutionary rates for marine
invertebrate taxa. Bonelli & Patzkowsky (2011) also documented a pattern of low turnover
in the face ofmajor episodes of sea-level rise and fall due to climatic change. The results from
the analyses presented herein could indicate that macroevolutionary rate in the case of late
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Paleozoic cephalopods was more dynamic than often thought, supporting the conclusions
of a variety of other important studies considering late Paleozoic ammonoid diversity
including Kullmann (1983), Kullmann (1985), House (1985), Becker & Kullmann (1996),
Wiedmann & Kullmann (1996), and Kullmann, Wagner & Winkler Prins (2007). One
possible reason why cephalopods may show a higher rate of diversification than other
groups is that they were a fairly evolutionarily volatile group (Lieberman & Melott, 2013);
thus, relative to many other marine invertebrate groups, they had relatively high rates
of speciation and extinction (Stanley, 1979; Jacobs, Landman & Chamberlain Jr, 1994;
Landman, Tanabe & Davis, 1996; Monnet, De Baets & Klug, 2011; Klug et al., 2015; Korn,
Klug & Walton, 2015). However, this may not be the entire explanation, as some other
groups also show elevated rates of speciation and extinction during this time interval.
For instance, Balseiro (2016) and Balseiro & Halpern (2019) did document evolutionary
turnover at high latitudes, and elevated evolutionary rates have also been found in
fusulinid foraminifera (Groves & Lee, 2008; Groves & Yue, 2009) and advanced cladid
crinoids (Segessenman & Kammer, 2018). Ultimately, we support the contention raised by
Segessenman & Kammer (2018) that patterns from a few individual groups do not refute the
general pattern of sluggish macroevolution postulated for this time period in the history of
life. The results may lend credence to the notion that macroevolutionary patterns across all
marine animals are rarely unitary for any one time period in the history of life, and instead
often tend to be variegated.

CONCLUSIONS
Patterns of range size change in late Paleozoic cephalopods from the North American
Midcontinent Sea were investigated using GIS. These species do exhibit some evidence
for changes in geographic range size through time, but the changes were not statistically
significant nor could they be directly tied to climate change. Further, in contradistinction
to what is usually found in the fossil record, cephalopod species with larger geographic
ranges were not found to have lower extinction rates than species with narrower geographic
ranges. These distinctive patterns may perhaps be related to the fact that cephalopods are
pelagic and highly mobile, at least relative to many benthic marine invertebrates, but it
may also be due to the fact that only 79 species could be considered in our study, or to
the fact that we were constrained to analyze patterns at the temporal level of stage. Finally,
the group shows more evolutionary diversification and turnover during the Pennsylvanian
and early Permian than is typical of other marine invertebrate groups and this could be
related to the fact that cephalopods are an evolutionarily volatile group.
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