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ABSTRACT: The biological formate hydrogenlyase
(FHL) complex links a formate dehydrogenase (FDH)
to a hydrogenase (H2ase) and produces H2 and CO2 from
formate via mixed-acid fermentation in Escherichia coli.
Here, we describe an electrochemical and a colloidal
semiartificial FHL system that consists of an FDH and a
H2ase immobilized on conductive indium tin oxide (ITO)
as an electron relay. These in vitro systems benefit from
the efficient wiring of a highly active enzyme pair and
allow for the reversible conversion of formate to H2 and
CO2 under ambient temperature and pressure. The hybrid
systems provide a template for the design of synthetic
catalysts and surpass the FHL complex in vivo by storing
and releasing H2 on demand by interconverting CO2/H2
and formate with minimal bias in either direction.

Semiartificial catalytic systems combine synthetic and
biological units to drive challenging reactions and provide

new concepts for catalyst design.1 Such solar-driven systems
have already demonstrated coupling of water oxidation to the
reduction of CO2,

2−4 and protons4,5 for the production of
chemical fuels. However, storage and transport of energy
vectors are also important components in energy production−
utilization cycles and their development will benefit from more
advanced approaches and model systems.
H2 is a promising fuel in a carbon-neutral economy and its

conversion to formate allows for easier storage and transport.
H2 and formate are therefore an attractive energy vector pair.
Furthermore, H2 gas cleanly separates from dissolved formate,
and their interconversion comes at little thermodynamic cost
(eqs 1−3).6,7 Achieving kinetic efficiency in HCO2

−/H2
interconversion remains a synthetic challenge. Artificial
systems commonly compete between decomposition of formic
acid to CO and H2O (dehydration), and CO2 and H2
(dehydrogenation), and rely on precious metals, high temper-
ature/pressure, organic solvents, and light.8−10

F ECO H HCO ( 0.366 V vs SHE, pH 6.5)2 2+ °′ = −+ −

(1)

F E2H H ( 0.382 V vs SHE, pH 6.5)2 °′ = −+
(2)

F E UHCO H CO H ( 0.016 V)2 2 2 rxn+ + °′ = °′ = −− +

(3)

FHL complexes are biological machines for HCO2
−/H2

interconversion.11 They are either membrane-associated
complexes composed of a multisubunit [NiFe]-H2ase coupled
to an FDH,11−13 or smaller soluble complexes of an [FeFe]-
H2ase and an FDH.14,15 The E. coli FHL-1 complex, composed
of the membrane-bound [NiFe]-H2ase 3 (HYD-3/HycE) and
FDH-H (FdhF; Figure 1a), represents a well-studied FHL,
evolving H2 under fermentative conditions.11,12 The constit-
uent enzymatic units of FHL-1 have been demonstrated to be
reversible electrocatalysts,16−20 but the complex is catalytically
biased toward H2 production from formate.14,15,19 Intercon-
version of HCO2

−/H2 has also been reported in whole-cell
studies,14,20 notably in sulfate-reducing bacteria in the absence
of sulfate.21,22 Desulfovibrio vulgaris Hildenborough can grow
by converting formate to H2,

23 with formate oxidation
catalyzed by a periplasmic FDH, and H2 produced either via
direct (periplasmic H2ase) or transmembrane electron transfer
(cytoplasmic H2ase).

24

Redox biocatalysts, including H2ases and FDHs, have been
coupled to other enzymatic processes via electron relays.
H2ases have been connected to nitrate and fumarate
reductases,25 diaphorase moieties,26 nicotinamide reductase,
and alcohol dehydrogenase27 via graphitic particles. Notably,
coupling a H2ase to carbon monoxide dehydrogenase
efficiently catalyzed the water−gas shift reaction.28 Enzymatic
cascades have linked FDH with formaldehyde and alcohol
dehydrogenases for methanol production.29,30 However, the
reversible interconversion of substrate and product has not
been previously accomplished with such coupled enzymes in
vitro.
Here, a semiartificial FHL complex mimic is presented by

rewiring FDH31,32 and H2ase
33 from D. vulgaris Hilden-

borough into electrochemical and colloidal systems (Figure
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1b,c). These systems rely on efficient electrical contact of the
[W/Se]-FDH active site via four [Fe4S4] clusters and the
[NiFeSe]-H2ase active-site via three [Fe4S4] clusters with
nanostructured ITO.
Macro-mesoporous inverse opal (IO) ITO electrodes (20

μm film thickness; 0.25 cm2 geometrical surface area) were
assembled as previously reported.34 IO-ITO|FDH and IO-
ITO|H2ase electrodes were prepared by drop-casting an FDH
solution (2 μL, 19 μM with 50 mM DL-dithiothreitol,
incubated for 15 min) and a H2ase solution (2 μL, 5 μM),
onto IO-ITO.31,34 Protein film voltammetry (PFV) was
recorded using a three-electrode configuration (Figures 2a
and S1) in CO2/NaHCO3 solution. Current densities (J) of
−185 μA cm−2 (CO2 reduction to formate by FDH) and −450
μA cm−2 (H+ reduction to H2 by H2ase) were observed at an
applied potential (Eapp) of −0.6 V vs standard hydrogen
electrode (SHE). Addition of sodium formate (20 mM) to the
IO-ITO|FDH system resulted in formate oxidation to CO2,
and 300 μA cm−2 was reached at −0.2 V vs SHE. After purging
the IO-ITO|H2ase system with H2 (0.4 bar), H2 oxidation to
H+ was observed and 440 μA cm−2 was reached at −0.2 V vs
SHE. The voltammograms cut through zero current around
the formal potentials of the CO2/HCO2

− (eq 1) and H+/H2
redox couples (eq 2), demonstrating reversible electrocatalysis
for both enzymes.6,35

Multiple PFV scans of IO-ITO|FDH and IO-ITO|H2ase
(Figure S2) showed minimal desorption/activity losses.
Controlled-potential electrolysis (CPE) of IO-ITO|FDH and
IO-ITO|H2ase was performed to measure H+/CO2 reduction
(Eapp = −0.6 V) as well as H2/formate oxidation (Eapp = −0.2
V) (Figure S3). Following equilibration, both electrodes

retained good activity after 24 h in both directions. Faradaic
efficiencies (ηF) for formate and H2 production were
determined to be 76% and 77%, respectively. Efficiency losses
may be attributed to the capacitive background current of
porous IO-ITO,34 undetected trapped product, and a
contribution from ITO/FTO degradation.36,37

The comparable formal redox potentials of H+/H2 and
CO2/HCO2

− conversion (eq 1-3), reversible catalysis of the

Figure 1. (a) Biological E. coli FHL-1 complex. FdhF, [Mo]-FDH; B/
F/G, Fe−S cluster-containing proteins; HycE, [NiFe]-H2ase; HycD/
C, membrane proteins.17 (b) IO-ITO|FDH||IO-ITO|H2ase cell: IO-
ITO|FDH wired to IO-ITO|H2ase electrode. (c) FDH−ITO−H2ase
nanoparticle (NP) system with enzymes immobilized onto ITO NP in
solution. Species size not drawn to scale.

Figure 2. (a) Three-electrode PFV (ν = 5 mV s−1, 1st and 5th scan,
increasing transparency) using IO-ITO|FDH or IO-ITO|H2ase
working, Ag/AgCl (KClsat) reference and Pt mesh counter electrodes.
(b) Two-electrode PFV (ν = 5 mV s−1, 1st and 5th scan) of IO-ITO|
FDH wired to IO-ITO|H2ase. (c) Two-electrode CPE of IO-ITO|
FDH wired to IO-ITO|H2ase. Conditions: CO2/NaHCO3 (100 mM),
KCl (50 mM), 1 bar CO2 or 0.4/0.6 bar H2/CO2, pHinitial = 6.5−6.7,
T = 25 °C, stirring. Substrates: formate (20 mM) and/or 0.4/0.6 bar
H2/CO2.
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individual enzymes, high and matching current densities, and
good stability make this enzyme pair a promising candidate for
assembling a reversible HCO2

−/H2 interconversion system.6

Thus, the IO-ITO|FDH (working electrode) was wired to the
IO-ITO|H2ase (counter electrode) in a two-electrode config-
uration (Figure 2b). When no additional substrate was present
(only buffering CO2 and H+), only a noncatalytic current
attributed to IO-ITO capacitance was observed. Upon addition
of formate, an oxidative current was observed (formate
oxidation to CO2 and H+ reduction to H2) at a positive
applied voltage (U > 0 V); 250 μA cm−2 was reached at U =
0.2 V. Addition of H2 resulted in a reductive current (H2
oxidation to H+ and CO2 reduction to formate) at a negative
voltage with −250 μA cm−2 obtained at U = −0.2 V.
To achieve reversible formate/H2 interconversion (eq 3)

both formate and H2 were added in addition to CO2 and H
+. A

reversible voltammogram was observed, with zero current at
approximately U°′ at 0.02 V. A marginally more positive or
negative voltage drove the reaction in either direction,
demonstrating reversible unbiased electrocatalysis. 200 μA
cm−2 and −200 μA cm−2 were reached at U = 0.2 V and −0.2
V, respectively. Multiple PFV scans of the IO-ITO|FDH||IO-
ITO|H2ase cell (Figure S4) showed stability of the system with
marginal losses. Control experiments with IO-ITO|FDH (or
ITO|H2ase) wired to IO-ITO (Figure S5) gave only a small
capacitive current in the presence and absence of substrates
(H2/formate).
CPE over 2 h at Uapp = 0.2 V with the IO-ITO|FDH||IO-

ITO|H2ase cell with formate present (Figure 2c) produced H2
(5.84 ± 0.88 μmol cm−2) with ηF of (79 ± 11)%. Similarly,
CPE at Uapp = −0.2 V for 2 h with H2 present generated
formate (5.00 ± 0.80 μmol cm−2) with ηF of (81 ± 15)%. This
semiartificial electrochemical FHL system exhibited good
stability, retaining >95% of its initial activity after 2 h in
both directions. After equilibration, the cell exhibited high
bidirectional stability for >1 day (Figure S6). For formate
oxidation (Uapp = 0.2 V), H2 (36.28 μmol cm−2) was detected
with ηF = 72%. For H2 oxidation (Uapp = −0.2 V), formate
(42.80 μmol cm−2) was detected with ηF = 77%. Similarly to
the three-electrode systems, capacitive currents and FTO/ITO
dissolution36,37 might have decreased the product yield.
To further investigate the system’s reversibility without

electrochemical wiring, FDH and H2ase were coassembled on
ITO nanoparticles (NPs) (0.3 mg mL−1) (Figures 3 and S7)
dispersed in electrolyte solution (see Supporting Information).
Solutions of FDH (19 nM, incubated as above) and H2ase (3.4
nM) were added to the vessel, which was sealed and purged
with CO2. Either formate or H2 was introduced to the vessel.
FDH:H2ase molar ratios (Figure S8) and total concentrations
(Figure S9a,b) were screened for the optimum H2 evolution
rate. The optimal system contained an enzyme loading of
approximately 40 FDH and 7 H2ase particles per ITO NP,
based on the adsorption surface area of 27 m2 g−1, ∼31 400
nm2 per NP (assuming a 50 nm diameter sphere), and an
enzyme footprint of ∼100 nm2.
Upon formate addition to the FDH−ITO−H2ase system

(Figure 3a), H2 was produced with a reaction rate (Figure S9c)
of 0.24 ± 0.01 μmol H2 h−1 during the first 8 h [turnover
number, TON = (23.0 ± 1.5) × 103 and turnover frequency,
TOF = 6.4 ± 0.4 s−1 for the H2ase], after which the rate started
to decrease (Table S1). Equilibrium was reached after ∼72 h
(5.82 ± 0.24 μmol H2, pH 6.88, T = 23 °C), in agreement with

calculations (5.95 μmol, 2.97 mM of H2; see Supporting
Information).7

In the presence of H2, the FDH−ITO−H2ase system
(Figure 3b) produced formate with an initial reaction rate of
1.33 ± 0.01 μmol formate h−1 [TON = (15.8 ± 5.4) × 103 and
TOF = 4.4 ± 1.5 s−1 for the FDH] for the first 8 h (Figure
S9d). Equilibrium was reached after ∼96 h (36.16 ± 1.47 μmol
formate, pH 6.99, T = 23 °C), consistent with calculations
(37.11 μmol, 18.56 mM of formate).7 Control experiments
with no ITO NPs, omitting an enzyme or with denatured
enzymes (Figure S10), showed only negligible H2 and formate
production (<0.2 μmol) (Tables S2 and S3). Therefore, the
ITO NPs act as a semiheterogeneous electron relay facilitating
electron transfer between electroactive FDH and H2ase.
In D. vulgaris cells, the two periplasmic enzymes exchange

electrons through the type-I cytochrome c3 (TpIc3) electron
acceptor.24 We therefore studied the activity of these enzymes
in solution with TpIc3. A high concentration of the cytochrome
(1.9 μM, 100-fold excess vs FDH) was required to achieve
comparable kinetics of H2 and formate production (Figure
S11a,b), revealing the superiority of coimmobilizing the two
enzymes on synthetic ITO NPs to achieve efficient electron
transfer.
In summary, we have presented how semiartificial systems

consisting of FDH and H2ase from D. vulgaris wired to ITO
can mimic the biological FHL complex. The semiartificial FHL
systems are based on a bottom-up design that employs a pair of

Figure 3. Product quantification of the colloidal FDH−ITO−H2ase
NP system: using ITO NPs (0.3 mg mL−1), FDH (19.0 nM) and
H2ase (3.4 nM). (a) H2 production in the presence of 10 mM formate
and 1 bar CO2. Vheadspace = 1.72 mL. (b) Formate production in the
presence of 0.4/0.6 bar H2/CO2. Vsolution = 2 mL. Conditions: CO2/
NaHCO3 (100 mM), KCl (50 mM), 1 bar CO2 or 0.4/0.6 bar H2/
CO2, pHinitial = 6.5−6.7, T = 23 °C, stirring.
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reversible redox enzymes immobilized on conductive scaffolds
to enable an overall catalytic reaction to proceed to
thermodynamic equilibrium. The semiartificial FHL concept
can be deployed in either an electrochemical cell or a self-
assembled colloidal suspension, providing versatility for
applications in different contexts. The design concept of
linking two half-reactions via a conductive scaffold also
provides a blueprint to develop improved synthetic H2/
formate cycling catalysts in future development.
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