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ABSTRACT  A number of neuromuscular and muscular diseases, including am-
yotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several 
myopathies, are associated to mutations in related RNA-binding proteins 
(RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor 
similar modular primary sequence with RNA binding motifs and low complexi-
ty domains, that enables them to phase separate and create liquid microdo-
mains. These RBPs have been shown to critically regulate multiple events of 
RNA lifecycle, including transcriptional events, splicing and RNA trafficking 
and sequestration. Here, we review the roles of these disease-related RBPs in 
muscle and motor neurons, and how their dysfunction in these cell types 
might contribute to disease. 
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INTRODUCTION 

Neuromuscular diseases collectively affect muscle function, 
either by directly impairing muscle structure or function, or 
by affecting muscle control by motor neurons. As a conse-
quence of impaired muscle function, patients develop 
weakness that can be progressive and lead to paralysis and 
early death. Amyotrophic lateral sclerosis (ALS) and spinal 
muscular atrophy (SMA) are two typical diseases of the 
motor neurons, in which muscle weakness is primarily 
caused by the degeneration of motor neurons [1]. In con-
trast, myopathies primarily affect muscle structure and/or 
function with clinically affected muscles either proximal, 
such as in limb girdle muscle dystrophy, and/or distal in 

distal myopathies. Although the distinction between pri-
mary muscle and primary neuronal neuromuscular diseas-
es might a priori seem obvious, there are significant clinical 
and genetic overlaps between these diseases [2–4]. In this 
review, we describe how mutations in functionally related 
RNA-binding proteins (RBPs) are associated with both mus-
cle and motor neuron diseases, and how these mutations 
participate in compromising the neuromuscular system. 
The most important neuromuscular diseases considered 
are presented in BOX 1. 

In recent years, genetics uncovered a large number of 
causes of neuromuscular diseases. Interestingly, a subset 
of genes causing either motor neuron diseases or myopa-
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KEY CONCEPTS 
 

• Mutations in RNA-binding proteins with prion like domains cause neu-
romuscular diseases.  

• RNA-binding proteins with “prion-like domains” are involved in multiple 
steps of RNA metabolism. 

• RNA-binding proteins with prion like domains regulate muscular devel-
opment and function. 
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thies encode proteins that bind RNA (hence RNA-binding 
proteins, RBPs) and share a number of biochemical and 
functional properties. RBPs associated to neuromuscular 
diseases are part of a large group of proteins involved in 
mRNAs lifecycle, that are collectively termed heterogene-
ous nuclear ribonucleoproteins (hnRNPs). Many of these 
hnRNPs also display a low complexity domain that resem-
bles yeast prions and is called “prion-like domain” (PrLD). 
Most of these PrLD containing RBPs are associated with 
human diseases [5–9], in particular neuromuscular diseas-
es.  

In this review, we describe the general properties of 
disease associated RBPs. We then provide specific exam-
ples for the involvement of RBPs in neuromuscular diseas-
es.   

 
MODULAR STRUCTURE AND GENERAL CELLULAR 
FUNCTIONS OF RBPs 
RBPs associated to neuromuscular diseases display a mod-
ular structure with well identified subdomains. First, inter-
action of RBPs with RNA occurs through relatively limited 
sets of protein modules [10] in particular RNA recognition 
domains (RRM) and/or hnRNPK homology domain (KH). 
Other protein domains are variably present in RBPs and 
include Arginine-Glycine-Glycine rich domain (RGG), dou-
ble-stranded RNA binding motifs (dsRBM), DEAD box, A2 
recognition element (A2RE), AU rich element (ARE), Zinc 
fingers domain (Zn), Zn-knuckle motifs, S1 domain, PAZ and 
PIWI domains [10, 11]. (Figure 1).  

This interaction with various RNA species, as well as 
their capacity to shuttle between nucleus and cytoplasm 
allow RBPs to participate in all steps of the mRNA cycle, 
from transcription, maturation, transport, translation, sta-
bility to degradation [11–14]. RBPs also contribute to trans-
lational and post translational regulation through binding 

to 3’ untranslated regions (UTR) of mRNAs [15]. Besides 
mRNAs, a number of these RBPs are also critical in the life 
cycle of small RNA species, in particular microRNA biogen-
esis [16–18].  

The so-called PrLD is typically found in most disease as-
sociated RBPs. It consists of a domain of low primary se-
quence complexity, rich in uncharged polar amino acids 
(asparagine, glutamine, and tyrosine) and in glycine [19, 
20] and displays high similarity to yeast proteins with prion 
properties [21]. In the human genome, more than 200 en-
coded proteins display a PrLD, and a large proportion of 
these also include RNA binding motifs [14, 19, 20]. The 
combination of RNA binding properties with PrLDs allows 
RBPs to phase separate in liquid compartments. Liquid 
Liquid Phase Separation (LLPS) is a disassembly mechanism 
of two liquids resulting in the appearance of two phases 
[22]. This leads to the rapid and reversible creation of liq-
uid microdomains (so called membrane-less organelles), 
physically separated from the rest of the cell, and allowing 
specialized functions. [14]. In this respect, RBPs are re-
quired for the generation and maintenance of key nuclear 
subdomains such as nucleoli, paraspeckles, gems, Cajal 
bodies, P-bodies or cytoplasmic stress granules through 
LLPS. Disease associated mutations in RBPs compromise 
LLPS, leading to the appearance of solids aggregates [23–
26]. 

In the next sections, major RBPs are reviewed for their 
involvement in neuromuscular diseases (Table 1). 

 
TDP43 
TAR DNA-binding protein of 43 kDa (TDP43) is an RBP able 
to bind to single stranded DNA and RNA in order to modu-
late splicing, RNA stability and biogenesis [27–29]. TDP43 
was initially characterized as a protein binding to the retro-
viral protein Tar [30] and later shown to modulate the 

BOX 1 | Clinical definition of the major neuromuscular diseases reviewed here. 
 

Amyotrophic lateral sclerosis ALS: is a neurodegenerative disease whose first symptoms generally occur around 60 years 

of age and which is characterized by progressive paralysis leading to death within a few years after onset. ALS is associated 

with the degeneration of lower (spinal and bulbar) and upper (cortical) motor neurons. 

Fronto-temporal dementia FTD: is a form of dementia involving progressive atrophy of frontal and temporal lobes of the 

cerebral cortex. FTD affects individuals usually between 55 and 65 years, and is characterized by alterations in cognitive 

functions (behavior, language, sociability, personality) and loss of memory.  

Inclusion body myositis IBM: is a subtype of inflammatory myopathy, usually occurring in patients older than 50 years of 

age. IBM leads to progressive muscle weakness and histopathological features such as atrophic muscle fibers, infiltration 

of non-necrotic myofibers, rimmed vacuoles or congophilic inclusions. 

Multisystem proteinopathy: is a degenerative disorder that can manifest either as IBM, FTD, ALS, or can be associated 

with Paget disease of the bone or combinations between these different diseases. 

Spinal muscular atrophy SMA: is a juvenile neuromuscular disorder characterized by loss of motor neurons, muscular 

weakness and muscle wasting. Four types of SMA are defined according to disease onset and severity: type I is the most 

severe form and begins before the age of six months, type II begins between the ages of six and 18 months, type III begins 

in childhood or adolescence and type IV which begins in adulthood and is the least severe form. SMA is caused by loss of 

expression of the SMN protein. 
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splicing of key exon 9 in the CFTR gene associated with 
cystic fibrosis [28]. In 2006, a landmark study identified 
TDP43 protein as the major ubiquinated protein in aggre-
gates present in patients with ALS and fronto-temporal 
dementia (FTD), two major neurodegenerative diseases 
(BOX 1) [31]. Indeed, TDP43 inclusions have been found in 
approximatively 95% of all ALS cases (sporadic and familial) 
and half of the FTD cases [31]. Subsequently, mutations in 
the TARDBP gene, encoding TDP43, were found to account 
for 3% of familial cases and 1.5% of sporadic cases of ALS 
[32–34].  

How TDP43 aggregates are linked to neurodegenera-
tion in ALS and FTD is complex and still not completely 
understood. First, TDP43 aggregates are cytoplasmic and 
associated with complete nuclear clearance of TDP43 [35], 
and cells with TDP43 aggregates thus display loss of TDP43 
nuclear function. Indeed, loss of function of TDP43 in mo-
tor neurons is sufficient to trigger motor neuron degenera-
tion [36–38], that is likely due to defective repression of 
splicing of cryptic exons [39, 40] and defective autophagy 
[38]. Gain of function mechanisms are also likely to partici-
pate as expression at physiological levels of mutant TDP43 
is able to drive neurodegeneration [41–45]. It is likely that 
the function of TDP43 in splicing in motor neurons is criti-
cal in this mutant gain of function [43, 45, 46]. A potential 
critical target is the Tardbp mRNA (encoding TDP43) itself 
whose autoregulation is disrupted upon the expression of a 
mutant TDP43 [43, 45]. Altered TDP43 function might also 
be involved in other motor neuron diseases, such as SMA. 

In this disease, caused by loss of the survival of motor neu-
rons (SMN) protein, TDP43 might contribute to the splicing 
dysfunction caused by loss of SMN. Indeed, TDP43 pro-
motes the inclusion of exon 7 of the SMN2 pre-mRNA in 
vitro [47] and depletion of TDP43 leads to reduction and 
loss of gems, thereby strengthening the role of TDP43 in 
SMA [48–50]. Thus, TDP43 might participate directly or 
indirectly in the pathophysiology of a number of neuro-
degenerative disorders. 

Beyond neurons, TDP43 has been shown to be critical 
for skeletal muscle function, pointing towards a potential 
involvement of TDP43 in muscle diseases. TDP43 is re-
quired for muscle regeneration [51] and forms cytoplasmic 
granules sequestering sarcomeric RNAs to facilitate regen-
eration. Furthermore, TDP43 is required for expression of 
critical regulators of myogenesis such as MYOD or MYOG 
[52] and key myogenic microRNAs such as miR-1 and 206 
[53]. Consistently, TDP43 loss of function [54, 55] or muscle 
overexpression of TDP43 is highly detrimental for muscle 
structure and function [56, 57]. TDP43 also participates in 
neuromuscular junction (NMJ) formation at least in Dro-
sophila [58, 59]. This importance of TDP43 in muscle func-
tion indirectly suggests that this protein could be involved 
in muscle dysfunction in human diseases. Indeed, muscle 
cytoplasmic aggregates of TDP43 were observed in pa-
tients with ALS, muscle dystrophy and inclusion body myo-
sitis (IBM) [60–68]. TDP43 might also indirectly participate 
in muscle pathology developed during inherited peripheral 
neuropathies of myofibrillar myopathies [69] (Figure 2). 

FIGURE 1: Domain organization of RBPs with prion like domains. NLS: nuclear localization signal, NES: nuclear export signal, RRM: RNA 
recognition motif, RGG:arginine/glycine-rich region, G-rich: glycine-rich region, ZNF: Zinc finger motif, Q/G/S/Y rich region: glutamine, gly-
cine, serine and tyrosine-rich region, B1: B1 isoform of hnRNPA2, PrLD : prion like domain. 
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FUS 
FUS is an RBP belonging to the FET family, that also in-
cludes EWS and TAF15. The FET proteins are predominant-
ly localized in the nucleus where they control DNA/RNA 
metabolism [70, 71]. Multiple results demonstrate a plei-
otropic function of FUS in regulating mRNA expression, 
stability, maturation in multiples cells including muscle 
cells.  

Mutations in the FUS gene have been identified in pa-
tients with ALS in 2009 [72, 73] and currently more than 50 
mutations in this gene have been described. ALS patients 
with FUS mutations show generally an earlier age at onset, 
sometimes in their 20’s, and aggressive progression [74]. 
Most of these mutations are in or around the C-terminal 
nuclear localization signal (NLS) [73, 75–78], and severity is 
correlated with the degree of impairment of FUS nuclear 

import [76]. FUS aggregates are also found in a subset of 
FTD patients, yet in the absence of germline mutations, 
with different post-translational modifications [79, 80] and 
with co-deposition of other proteins including TAF15, EWS 
and TNPO1 [81–83]. In a manner similar to TDP43, both 
gain and loss of FUS function have been postulated to par-
ticipate in FUS-related neurodegeneration. First, FUS cyto-
plasmic accumulation, due to loss of nuclear import, might 
lead to neuronal death through a so-called cytoplasmic 
gain of function. In particular, cytoplasmic FUS might se-
quester proteins of importance, such as SMN [49, 84–87] 
or PRMT1 [88, 89] and lead to the accumulation of toxic 
stress granules and cytoplasmic aggregates [79, 88, 90]. 
Second, clearance of FUS from the nucleus might lead to 
alterations in the many nuclear FUS functions, including 
transcription, splicing or DNA damage repair [91, 92]. Im 

TABLE 1. Summary of selected RBP with prion like domain in neuromuscular disease. 

RBP Reported RNA motifs Functions 

in muscle 

Pathological  
alterations 

RBP-associated  
muscular disease 

MATR3 UC-rich motif [136, 176] Proliferation 

Differentiation 

Mutations 

Aggregates 

VCPDM 

ALS 

hnRNP UAGG motifs [177] 

 

Muscle development 

Contraction 

Mutations 

Aggregates 

FXTAS 

ALS 

FTD 

LGMD1 

OPMD 

MP 

SMA 

TDP43 (GU)n repeat 

UG motifs [178, 179] 

Muscle development 

NMJ formation 

Mitochondrial functions 

Mutations 

Aggregates 

ALS 

FTD 

MD 

IBM 

SMA 

FUS Several motifs reported, 
including GGUG, GU-rich 

and CU rich hexamers 
[170, 180–184]  

Muscle development 

Differentiation 

NMJ formation 

Mitochondrial functions 

Mutations 

Aggregates 

SMA 

ALS 

FTD 

MG 

HD 

EWSR1 G-rich motif [181] 

 

Muscle development 

Differentiation 

Proliferation 

Mitochondrial functions 

Mutations 

Aggregates 

ALS 

FTD 

SMA 

TAF15 GGUAAGU [181, 185] Mitochondrial fusion Mutations 

Aggregates 

ALS  

FTD 

ALS: Amyotrophic lateral sclerosis, DM: Distal myopathy, FXTAS: Fragile X-associated tremor/ataxia syndrome, HD: Huntington disease, 
IBM: Inclusion body myopathy, LGMD1: limb-girdle muscular dystrophy 1D, MD: Muscular dystrophy, MG: Myasthenia gravis, MP: 
Multisystem proteinopathy, OPMD: Oculopharyngeal muscular dystrophy, SMA: Spinal muscular atrophy, VCPDM: Vocal cord and pharyn-
geal weakness with distal myopathy. 
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portantly, accumulation of cytoplasmic FUS is necessary to 
lead to motor neuron degeneration in mice [93–96]. For 
instance, we and others have shown that heterozygous Fus 
knock-in mouse models with truncated mutations develop 
mild, late onset muscle weakness and motor neuron de-
generation, but not haploinsufficient Fus knock-out mice, 
demonstrating that the presence of the protein in the cy-
toplasm is necessary to trigger motor neuron toxicity [93, 
94, 97]. Loss of FUS function might contribute to FTD 
symptoms, through alterations  of splicing  of key  neuronal  
mRNAs such as MAPT, encoding the TAU protein, or of 
stability of mRNAs encoding synaptic proteins such as 
GluA1 and SynGAP1 [98–102]. Although less studied than 
its function in neurons, FUS plays important roles in the 
muscle. Indeed, muscles of sporadic IBM [64, 65] can dis-
play FUS aggregates, while mutations in FUS were found in 
one patient with myositis [103]. In the muscle, FUS regu-
lates alternative splicing and differentiation through its 
action on DUX4 and PTBP1 [104, 105] but also hnRNPA1 
and MATR3, two proteins involved in muscle development 
[106] and ALS [20, 107, 108]. Furthermore, FUS has been 
shown to be important for the function of PGC1α, a key 

regulator of muscle mitochondrial function [109]. FUS also 
exerts critical roles in neuromuscular junction develop-
ment. Animal models of FUS-ALS show alteration of synap-
tic transmission and modification of NMJ numbers and size 
[110–114], and we recently demonstrated that FUS is re-
quired for the post-synaptic development of the NMJ [115]. 
Indeed, both knock-in and knock-out mice for Fus devel-
oped NMJ morphology defects. Newborn homozygous Fus 
mutant mice displayed predominantly postsynaptic NMJ 
defects whereas adult heterozygous Fus mutant mice dis-
played constitutively smaller neuromuscular endplates that 
denervate. Importantly, FUS was enriched in muscular sub-
synaptic nuclei and this enrichment depended on innerva-
tion and was perturbed in heterozygous Fus mutant mice. 
Mechanistically, FUS binds to the promoter region and 
stimulates transcription of acetylcholine receptor (AchR) 
subunit genes involved in NMJ formation through the tran-
scription factor ERM. In induced pluripotent stem cell 
(iPSC)-derived myotube cultures and motor neu-
ron/myotube co-cultures from FUS-ALS patients, endplate 
maturation was impaired and AChR expression reduced. 
Finally, in motor neuron/myotube co-cultures, ALS-mutant 

FIGURE 2: TDP43 and FUS alterations in neuromuscular diseases. Mutant TDP43 aggregates are found in motor neurons and muscles of 
patients. TDP-43 mislocalization causes axonopathy and mitochondrial alterations, alters synaptic transmission, NMJ development and mus-
cle regeneration. Similar observations are made for FUS, which is also involved in subsynaptic transcription. 
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FUS was intrinsically toxic to both motor neurons and myo-
tubes. Altogether, these data show that FUS plays a key 
role in regulating selective expression of AChR genes in 
subsynaptic nuclei and indicate that intrinsic toxicity of 
ALS-mutant FUS in the muscle may be critical for ALS [115]. 

FUS is also involved in SMA, through a direct interac-
tion between FUS and SMN through the U1-snRNP. Similar 
as TDP43, FUS is associated with gems, that are affected by 
ALS causing mutations [49, 113]. Furthermore, snRNAs 
seem to be trapped by cytoplasmic FUS [116, 117].  

Besides motor neuron diseases, FUS is also associated 
with other neuromuscular diseases such as myasthenia 
gravis and Huntington’s disease. Myasthenia gravis is an 
autoimmune disorder of the NMJ inducing skeletal muscle 
weakness. In this disease, an increase of FUS transcript is 
observed in the blood of myasthenic patients [118]. Its 
significance remains unknown. In Huntington’s disease, 
mutant huntingtin (HTT) protein sequesters FUS in neu-
ronal inclusions [99, 119, 120]. 

 
EWS 
EWS is the second member of the FET family, encoded by 
the EWSR1 gene. This oncogenic protein is involved in pro-
liferation and cell differentiation [121–123]. In analogy 
with FUS mutations, Couthouis and collaborators identified 
three EWSR1 missense mutations in ALS patients able to 
lead to EWS mislocalization in the cytoplasm of motor neu-
rons. Indeed, EWS appears to be mislocalized in the cyto-
plasm of motor neurons in sporadic ALS in the absence of 
EWS mutations [19, 124] and FUS-FTD [81]. Like for FUS 
and TDP43, EWS interacts with SMN and is required for its 
function in splicing, suggesting a role of EWS in SMA [125, 
126]. 

In muscle, EWS may participate to myogenesis through 
its regulation of the transcriptional co-activator PGC1α. 
Indeed, EWS loss leads to PGC1α degradation due to im-
paired stability [127]. Consistently, the loss of EWSR1 caus-
es abnormalities in mitochondrial structure and a decrease 
in DNA and mitochondrial density. 

 
TAF15 
TAF15, the last member of FET family, shares similar struc-
ture and functions as FUS and EWS and appears associated 
with ALS. 

In 2011, Couthouis et al. identified three missenses mu-
tations in TAF15, whereas Ticozzi et al. discovered four 
other mutations in ALS patients [19, 128]. These mutations 
affect mainly the RGG domain [128] and promote cyto-
plasmic foci in primary rat embryonic neuron cultures [19]. 
In human post-mortem spinal cord tissue of control pa-
tients TAF15 is nuclear while TAF15 in ALS patients is nu-
clear and forms cytoplasmic aggregates. Furthermore, neu-
rodegeneration and abnormal mitochondrial fragmenta-
tion in muscle and motor neurons were observed in TAF15 
ALS fly models [19, 129]. These mitochondrial abnormali-
ties are mediated by mitofusins as mutant TAF15 decreases 
mitofusin protein expression and mitochondrial defects 

can be rescued upon rescue of mitofusin in Taf15 mutant 
flies [129]. 

 
MATR3 
Matrin 3 (MATR3) is a 125 kDA nuclear matrix protein [130] 
of 845 amino acids [131]. MATR3 binds and stabilizes RNA 
[132] in multiple tissues especially skeletal muscle. Contra-
ry to previous examples, MATR3 has no prion-like domain 
per se, but several intrinsically disordered regions.  

In myotubes, MATR3 is present in the nuclear matrix 
and nuclear membrane [133] and its localization is de-
pendent upon the expression of the muscle specific tran-
scription factor Myogenin [133]. 

MATR3 has been found to be critical in multiple gene 
expression events related to muscle function and differen-
tiation. First, MATR3 is required for normal myoblast pro-
liferation and differentiation since its overexpression in-
creases the expression of myogenic related genes [134]. 
Conversely, MATR3 depletion decreases protein levels of 
myogenin and decreases the differentiation status. MATR3 
regulates alternative splicing through its interaction with 
the Polypyrimidine Tract Binding Protein (PTBP) that is 
critical in muscle differentiation [135, 136]. Furthermore, 
MATR3 binds to and regulates long non-coding RNA in 
muscles [134]. Last, MATR3 binds directly to Lamin A, a 
protein required for muscle differentiation [133, 137, 138]. 
Interestingly, mutations in LMNA gene encoding lamin A/C 
lead to skeletal and cardiac myopathy [139] and disrupt 
lamin A/ MATR3 interaction [133]. 

Mutations in MATR3 have been first associated with 
muscular diseases. First, a MATR3 missense mutation 
p.Ser85Cys (chr5:138643358, C>G) was associated with 
vocal cord and pharyngeal weakness with distal myopathy 
(weakness and atrophy of the hands and feet) [140, 141]. 
The distal myopathy associated with MATR3 mutation usu-
ally begins within the fourth decade, and is characterized 
by heterogeneous involvement of distal limb muscles, 
pharyngeal and respiratory muscles, leading to proximal 
and axial weakness, vocal cord dysfunction with mild voice 
abnormalities, dysphagia and decreased respiratory func-
tion [141–144]. 

More recently, mutations in MATR3 have been associ-
ated with ALS. Johnson et al. performed exome sequencing 
and identified novel missense mutations associated with 
ALS in MATR3: p.Phe115Cys (chr5:138643448, T>G) and 
p.Thr622Ala (chr5:138658372, A>G) [107]. Interestingly, 
the p.Phe115Cys mutation caused a respiratory form of 
ALS leading to death within five years of symptom onset 
whereas the p.Ser85Cys mutation (identified in distal myo-
pathy) induced a slowly progressive form of ALS. MATR3 
immunostaining showed a partial mislocalization in the 
cytoplasm of motor neurons and surrounding glial cells in 
ALS patients but no cytoplasmic inclusions were observed. 
MATR3 and TDP43 co-aggregated in skeletal muscles of 
patients and a direct interaction was observed between 
MATR3 and TDP43, another RBP linked to ALS. Recently a 
novel missense mutation p.Ser610Phe was discovered in 
one patient and three missense variants p.Ala313Gly, 
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p.Arg147Lys, and p.Gln347Lys were observed in three 
healthy subjects [145]. Thus, similar to several other RBPs, 
mutations in MATR3, can lead to a broad spectrum of neu-
romuscular diseases, from pure muscle involvement to 
severe motor neuron disease. 

 
OTHER hnRNPs 
A number of other hnRNPs has been associated with vari-
ous neuromuscular diseases.  

First, hnRNPA3 was found to bind to mutant C9ORF72 
RNA in ALS and could mediate some of its toxic effects [146, 
147]. Furthermore, hnRNPA3 was also reported to be pre-
sent in TDP43, p62 immunoreactive dipeptide repeat (DPR) 
inclusions in C9orf72 cases [148, 149] further linking 
hnRNPA3 to C9orf72 ALS/FTD. Second, mutations in 
hnRNPA1 and hnRNPA2B1 have been identified in 
multisystem proteinopathy, a disorder combining IBM, FTD, 
ALS or Paget’s disease of the bone (PDB) [20]. Disease mu-
tations impact C-terminal regions of hnRNPA2 (residues 
185–341) and hnRNPA1 (residues 186–320) which are 
located in the PrLD, essential for RNA granule formation. 
Indeed, disease associated mutations of hnRNPA2B1 and 
hnRNPA1 alter stress granule formation through 
cytoplamic mislocalization and accelerated fibrillization of 
the mutant protein. Interestingly hnRNPA1 and 
hnRNPA2B1 co-localize in stress granule with TDP43 and 
VCP, two proteins involved in ALS. hnRNAPA1 could be 
involved in ALS and was shown to  be mislocalized in post-
mortem samples of ALS patients [150]. Moreover, hnRN-
PA1 interacts and co-localizes with wild type but not mu-
tant FUS. 

hnRNPA2B1 could be involved in Fragile X-associated 
tremor/ataxia syndrome (FXTAS), a late onset disorder 
inducing a form of mental retardation. This disease is 
caused by expansion of more than 200 CGG in the FMR1 
gene and provokes tremor, ataxia and cognitive defects 
[151]. In 2007, Sofola and collaborators identified an inter-
action between hnRNPA2/B1 and the mutant RNA carrying 
CGG repeats in mouse cerebellar lysates [152]. Consistent 
with RNA toxicity, overexpression of hnRNPA2/B1 prevents 
the neurodegenerative eye phenotype induced in CGG 
transgenic flies. In muscles, Liu and collaborators showed 
that hnRNPA1 depletion causes muscle developmental 
defects associated with an increase of myofibers in the 
heart, a decrease in diaphragm and tongue [106] and 
dysregulated expression of the genes involved in the de-
velopment and muscular contraction. Indeed, hnRNPA1 
and hnRNPA2/B1 are also involved in limb-girdle muscular 
dystrophy 1D (LGMD1D). This skeletal and cardiac myopa-
thy, can be caused by missense mutations in DNAJB6, in-
duces ambulation problems and is characterized by myofi-
brillar protein aggregation and autophagic rimmed vacu-
oles. Recently, Bengoechea and collaborators reported an 
accumulation and co-localization of hnRNPA1 and hnRN-
PA2/B1 with DNAJB6 in sarcoplasmic stress granules [67]. 
Further strengthening the link between hnRNPs and LGMD, 

hnRNPDL mutations were observed in LGMD1G [153], and 
are thought to cause disease through aggregation in mus-
cle and loss of function [154]. 

hnRNPs are also associated with oculopharyngeal mus-
cular dystrophy (OPMD) an adult-onset disease character-
ized by droopy eyelids, external ophthalmoplegia, dyspha-
gia and proximal limb weakness. OPMD is caused by a GCG 
repeat expansion in PABPN1 (poly(A)-binding protein N1) 
and induces inclusions. These contain insoluble intranucle-
ar aggregates of PABPN1 but also hnRNPA1 and A/B [155]. 
Finally, hnRNPs are also involved SMA, a juvenile neuro-
muscular disorder characterized by a loss of motor neurons, 
muscular weakness and wasting. The disease is caused by a 
mutation in the SMN1 gene and several studies revealed 
an interaction between SMN and hnRNPA1, HnRNPC1/C2, 
hnRNPG, hnRNPM, hnRNPQ, hnRNPR [156–163]. 

 
A NETWORK OF RBPs TO FINE TUNE NEUROMUSCULAR 
HEALTH 
The occurrences of mutations in multiple functionally re-
lated RBPs leading to a vast array of neuromuscular diseas-
es suggest that RBPs are involved in a tight network to reg-
ulate neuromuscular health (Figure 3). This RBP network is 
illustrated by the existence of multiple binary protein-
protein interactions between RBPs. For instance, MATR3 
interacts with TDP43 [132, 164] as well as with a number of 
splicing regulators including hnRNPK [132] and hnRNPL 
[165]. MATR3 and FUS interaction is known to regulate 
splicing and transcription in vitro [166], while FUS and 
TDP43 interaction is modulated by disease associated mu-
tations [164]. In addition, RBPs appear to regulate levels of 
other RBPs through splicing. A clear example is provided by 
TDP43-mediated regulation of HNRNPA1 splicing, leading 
to altered hnRNPA1 content, and subsequent protein ag-
gregation and cellular toxicity [167].  

The functions of RBPs are partially overlapping, as ex-
emplified for instance by the common regulation of MAPT 
splicing by FUS and TDP43 [29, 98, 168] or of HDAC6 mRNA 
[169]. However, this overlap is only partial, and TDP43 and 
FUS share only a subset of their mRNA targets [170]. 

Similarly, while FUS, TAF15, EWS and MATR3 are all re-
quired for the function of the U1 snRNP/RNA polymerase II 
complex, they appear to exert distinct, non-overlapping 
molecular functions in this complex [171].  

Thus, mutations or loss of function of one RBP might al-
ter the whole network, and lead to disease. Consistently, a 
recent study showed that mutation in FUS has an impact 
on the homeostasis of a number of RBPs, and that the tox-
icity of FUS mutations could be mitigated by other RBPs 
[172]. Similar evidence has been published in zebrafish, 
with epistatic interactions between FUS and TDP43 [173]. 
In all, RBP homeostasis should be considered globally and a 
number of secondary consequences on multiple RBPs 
could be expected from a mutation in one single member. 
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CONCLUSIONS 
The different examples reviewed here convincingly 
demonstrate a strong involvement of RBPs in neuromuscu-
lar diseases. Importantly, the pathogenic roles of these 
proteins go far beyond the rare cases associated with 
germline mutations, as shown by the widespread aggrega-
tion of TDP43 or FUS in ALS and FTD.  

However, many questions remain open. First, the rela-
tive role of loss of nuclear function versus gain of cyto-
plasmic function remains an open question. Indeed, while 
it is clear that the cytoplasmic accumulation is necessary 
for toxicity, it cannot be excluded that associated loss of 
nuclear function contributes to the toxicity. Furthermore, if 
cytoplasmic toxicity appears critical, it is unclear whether 
toxicity of the mutant proteins occur through aggregation 
or their soluble forms. Indeed, aggregation of these pro-
teins is generally not observed in knock-in animal models, 
which correlates with a mild phenotype. In general, bio-
physical properties of these proteins in the cytoplasm re-
mains to be studied.  

Most importantly, the identification of critical patho-
genic events downstream of RBP mutation or aggregation 
remains to be done. In this respect, recent studies demon-
strated that loss of nuclear TDP43 in motor neurons trig-
gers loss of stathmin 2 in turn possibly responsible of ax-
onal degeneration [174, 175]. The identification of a lim-
ited number of critical events downstream RBPs dysfunc-
tion could help to identify relevant targets. Importantly, as 
the toxicity of mutant RBPs extends beyond motor neurons, 
including muscles or other cell types, it will be necessary to 

study such critical events in different cell types to better 
define possible targets either common to several cell types 
or cell specific. We would like to specifically stress that the 
mechanisms underlying toxicity in skeletal muscles should 
be further investigated, especially given the large body of 
literature reviewed here showing a critical role of RBPs in 
muscle development, function and pathologies. It is very 
likely that the extent of RBP involvement in neuromuscular 
diseases will grow in the next years. 
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FIGURE 3: RBP with prion like domain network in neuromuscular disease. ALS: Amyotrophic lateral sclerosis, DM: Distal myopathy, FXTAS: 
Fragile X-associated tremor/ataxia syndrome, HD: Huntington disease, IBM: Inclusion body myopathy, LGMD1: limb-girdle muscular dystro-
phy 1D, MD: Muscular dystrophy, MG: Myasthenia gravis, MP: Multisystem proteinopathy, OPMD: Oculopharyngeal muscular dystrophy, 
SMA: Spinal muscular atrophy, VCPDM: Vocal cord and pharyngeal weakness with distal myopathy. 
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