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Abstract
Purpose of Review Zoonotic influenza viruses are those influenza viruses that cross the animal-human barrier and can cause
disease in humans, manifesting fromminor respiratory illnesses tomultiorgan dysfunction. The increasing incidence of infections
caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities.
In this second part of a two-part review, we discuss the clinical features, diagnostic modalities, and treatment of zoonotic
influenza, and provide an overview of prevention strategies.
Recent Findings Illnesses caused by novel reassortant avian influenza viruses continue to be detected and described; most
recently, a human case of avian influenza A(H7N4) has been described from China. We continue to witness increasing rates
of A(H7N9) infections, with the latest (fifth) wave, from late 2016 to 2017, being the largest to date. The case fatality rate for
A(H7N9) and A(H5N1) infections among humans is much higher than that of seasonal influenza infections. Since the emergence
of the A(H1N1) 2009 pandemic, and subsequently A(H7N9), testing and surveillance for novel influenzas have become more
effective. Various newer treatment options, including peramivir, favipiravir (T-705), and DAS181, and human or murine mono-
clonal antibodies have been evaluated in vitro and in animal models.
Summary Armed with robust diagnostic modalities, antiviral medications, vaccines, and advanced surveillance systems, we are
today better prepared to face a new influenza pandemic and to limit the burden of zoonotic influenza than ever before. Sustained
efforts and robust research are necessary to efficiently deal with the highly mutagenic zoonotic influenza viruses.
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Introduction

This article is the second part of the two-part series titled
“Zoonotic Influenza and Human Health.” In the previous issue
of this journal, we described the structure of influenza virus and
its effect on pathogenesis, the epidemiology of zoonotic influen-
za, and the major pandemics ascribed to zoonotic influenza de-
scribed in human history. In this second and concluding part, we
describe the clinical features, diagnosis and treatment of zoonot-
ic influenza, and provide an overview of prevention strategies.

Clinical Features

Avian Influenza A(H5N1)

For human influenza A(H5N1) infections, bird-to-human is
the predominant route of transmission; however, some degree
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of non-sustained human-to-human transmission has also oc-
curred, and environment-to-human spread is also thought to
occur [1]. Most patients with H5N1 infection give a history of
recent exposure to dead or ill poultry. Current data indicate an
incubation period of 7 days or less, with a mean of 2 to 5 days
and ranging up to 17 days [2]. A distinct feature of avian
influenza H5N1 is the predominance of cases in children
and young adults. Patients have ranged in age from 3 months
to 75 years, with the median age being 20 years. Half of all
cases have occurred in people aged younger than 20 years, and
90% of cases have been in those younger than 40 years of age
[3]. Most affected individuals present with respiratory symp-
toms, but patients with only gastrointestinal or central nervous
system involvement have also been described. In most cases,
respiratory symptoms may be accompanied by gastrointesti-
nal symptoms, headache, myalgia, sore throat, rhinorrhea, or
uncommonly conjunctivitis or bleeding gums. In severe cases,
complications include multiorgan failure with renal dysfunc-
tion and cardiac compromise, pulmonary hemorrhage, pneu-
mothorax, and pancytopenia. The case fatality rate is as high
as 60%, with deaths resulting from respiratory failure [2].
Patients with severe disease often have leukopenia, neutrope-
nia, lymphopenia, and thrombocytopenia on hospital admis-
sion [4–6]. Other laboratory abnormalities include
transaminitis (AST >ALT), elevated lactate dehydrogenase,
creatine kinase, and hypoalbuminemia [1, 4]. Radiographic
findings of H5N1 avian influenza may be include diffuse,
multifocal, or patchy infiltrates, interstitial infiltrates, and seg-
mental or lobular consolidation [7]. Pleural effusions are usu-
ally not seen. Progression to respiratory failure is associated
with diffuse bilateral ground-glass infiltrates [5]. Pathological
changes observed at autopsy have included severe pulmonary
injury with diffuse alveolar damage, alveolar hemorrhage,
hyaline-membrane formation, lymphocytic infiltration into
the interstitium, and the presence of reactive fibroblasts [8, 9].

Avian Influenza A(H7N9)

For both the H5N1 and H7N9 avian influenza viruses, the
average incubation period is longer than that for seasonal
influenza (2 days) [10]. The usual incubation period for
H7N9 influenza has been estimated to be from 1 to 7 days
(mean 5 days), but has been reported to be as long as
10 days [10]. Unlike H5N1 infections, fewer cases of
H7N9 infection have been detected in children, with less
than 3% of H7N9 infections occurring in children less than
10 years of age [11]. To date, there is no evidence of
sustained human-to-human transmission, with most cases
developing after exposure to infected poultry [12].
Presenting signs and symptoms may include fever, cough,
dyspnea, headache, myalgias, and malaise [13, 14]. On
laboratory examination, patients have been found to have
lymphopenia and thrombocytopenia [15]. Elevated levels

of aspartate aminotransferase, alanine aminotransferase,
lactate dehydrogenase, creatine kinase, and C-reactive pro-
tein have been reported [15, 16]. Complications including
fulminant pneumonia, respiratory failure, acute respiratory
distress syndrome (ARDS), septic shock, multiorgan fail-
ure, rhabdomyolysis, disseminated intravascular coagula-
tion, and encephalopathy have been described [15–17].
The case fatality rate for A(H7N9) (approximately 40%)
[18] virus infections among humans is much higher than
that of seasonal influenza infections, but not as high as that
of A(H5N1) (approximately 60%) [3, 12].

Other Avian Influenzas

Among individuals affected by avian influenza H5N6 in-
fection, all cases but one were hospitalized, and in severe
or critical condition, with 11 (69%) of cases fatal [11].
Avian influenza H7N7 and H7N3 viruses seem to have a
preference for conjunctival epithelium, and affected indi-
viduals may present with isolated conjunctivitis following
direct contact with poultry or inoculation with contaminat-
ed material [19, 20]. So far, one case of death due to avian
influenza H7N7 has been recorded; a Dutch veterinarian
reported having conjunctivitis, which developed 1 day af-
ter he had visited an affected farm, and he died a week later
from respiratory distress [21]. H9N2 influenza viruses
have been reported to cause mild, self-limited upper respi-
ratory illnesses in children [22]. There has only been one
fatal H9N2 infection documented, in an adult with under-
lying conditions, among the approximately 45 cases re-
ported to WHO between 1998 and August 2017 [11].
Most recently, on 14 February 2018, the National Health
and Family Planning Commission (NHFPC) of China no-
tified the World Health Organization (WHO) of one case of
human infection with avian influenza A(H7N4) virus. This
is the first human case of avian influenza A(H7N4) infec-
tion to be reported worldwide. The case patient was a 68-
year-old woman from Jiangsu Province with pre-existing
cardiac disease, who was admitted to hospital for treatment
of severe pneumonia after experiencing symptoms for a
week, and she eventually improved after 21 days. The in-
dex case patient reported exposure to live backyard poultry
prior to illness onset [23••].

Swine Influenza

From case series of humans infected with swine influenza,
there are no clinical features that can distinguish swine influ-
enza in humans from typical seasonal influenza, resulting in a
likely underreporting of cases. Although a number of cases
had predisposing underlying immunocompromising condi-
tions, healthy persons were also at risk for illness and death
from swine influenza [24]. The duration of illness also appears
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to be similar to typical uncomplicated seasonal influenza, last-
ing approximately 3 to 5 days [25••]. It is expected that exac-
erbation of underlying medical conditions is possible.
Therefore, the same people at increased risk for complications
of seasonal influenza would also likely be at a high risk for
serious complications from variant virus infection [25••].

During the 2009 pandemic, deaths were observed in both
immunocompetent and immunocompromised patients [26]. In
addition to extremes of age and chronic underlying medical
illness, other risk factors for severe disease or complications
included immunosuppressive therapy, underlying neurologi-
cal conditions, and obesity [27]. Globally, hospitalization rates
of children with confirmed A(H1N1)pdm09 influenza were
higher than those seen for seasonal influenza. Previously
healthy young people and pregnant women (especially in their
second and third trimester) also developed severe respiratory
failure, occasionally associated with multiorgan failure and
death. This was in contrast to seasonal influenza where fatal
disease occurs mostly in the elderly (> 65 years old) [28].

Diagnostic Considerations for Zoonotic
Influenzas

The identification of zoonotic influenzas and discrimination
from human strains is a diagnostic challenge. Routine influ-
enza testing often involves reverse transcription real-time
PCR (RT-PCR) targeting the matrix (M) gene for influenza
A, and the NS1 gene for influenza B, which is more sensitive
than virus culture [29]. Subtyping PCRs targeting the HA and
NA genes of seasonal influenzas are also available, and most-
ly used in reference laboratories, though incorporated in sev-
eral commercial multiplex assays. Zoonotic IAVs are
suspected when influenza A viruses do not match any of the
seasonal subtypes when their respective HA and/or NA gene
PCRs are run. If this occurs, such specimens should always be
investigated further for the possible presence of a zoonotic
influenza using subtyping PCRs targeting novel avian and/or
swine subtypes and gene sequencing.

Zoonotic influenzas may also be detected if suspected clin-
ically and specific subtyping PCRs are performed (e.g., avian
H5, H7, H9, N1, N9), and followed up by gene sequencing of
HA, NA, and other gene segments to further characterize the
virus present in a clinical specimen. Because some swine var-
iant influenza viruses can cross react with seasonal IAV
subtyping PCRs, specimens can be screened with a swine
NP gene PCR, or through gene sequencing, to identify them
as swine variant viruses when clinically suspected.

Because the influenza A typing PCR targeting the M gene
of influenza A is generally more sensitive than HA and NA
subtyping PCRs, on occasion a sample containing a seasonal
IAV with low viral load and high cycle threshold (CT) value
will be influenza A-positive but not match any of the seasonal

subtypes. The extent to which such samples are further inves-
tigated depends on the risk factors for zoonotic influenza in
the particular patient being evaluated, and extensive further
investigations are usually not required in such circumstances
if there are no risk factors for zoonotic influenza infection.

Rapid or point of care (POC) modules have been gaining
traction in recent years and are generally reliable for the de-
tection of influenza type A and B antigens or nucleic acid.
These tests yield results in a clinically actionable time frame
(15–30 min) and are generally simple to perform. Most are
capable of detecting human influenzas (A/B) but sensitivity
and specificity can vary based on the IAV subtype [30, 31•,
32]. Of additional concern is the observed poorer analytical
and clinical sensitivities when detecting zoonotic influenzas.
In one study, several POC tests had “in-use” clinical sensitiv-
ities of 40–60% to avian H7N9 and swine H3N2v [33]. Poor
performance for some subtypes might be due to predilection
for lower respiratory tract mucosal cells with more α2-3-SA
receptors, with typically sampled URTspecimens not contain-
ing sufficient viral loads for detection [33].

Another challenge is that most tests often do not identify
the influenza A virus subtype, which is an important first step
in identifying zoonotic IAV strains causing human infection.
Multiplex approaches have been devised that permit the de-
tection of human influenza while providing some subtyping
information, but these are generally aimed at identifying cur-
rently circulating seasonal strains [A(H1N1)pdm09 and
A(H3N2)]and not viruses from a zoonotic source.

The World Health Organization gold standard for typing
takes a more specific approach using type-, subtype-, or
strain-specific antibodies and detection of their ability to
inhibit virus hemagglutination of red blood cells. This assay
requires a ≥ 8-fold difference in hemagglutination activity
between isolates and reference strains to indicate antigenic
variance of HA within strains and for identifying novel vi-
ruses or zoonotic IAV [34, 35]. However, these methods are
time consuming and technically demanding, requiring
banked virus isolates, antibodies, and virus culture to be
conducted. The requirement of virus culture is especially
challenging given the BSL3 containment requirement for
suspected novel/zoonotic influenzas. Furthermore, molecu-
lar subtyping assays require periodic re-evaluation due to
change in test performance (primarily sensitivity and spec-
ificity) as a result of natural genetic drift which alters HA
antigenic targets. Because of these limitations, there has
been an increased interest in molecular assays for typing
and identifying zoonotic IAV infections in humans.
Oftent imes , these molecular approaches re ly on
multiplexing, hybridization of specific probes, or direct se-
quencing of gene segments [36, 37, 38•]. Regardless of test
used, results should be interpreted within context of overall
setting in which infections occur, considering potential ex-
posures with zoonotic IAV-carrying animals.
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Treatment

Antiviral Medications

The two classes of drugs approved for influenza infections are
adamantanes and neuraminidase inhibitors (NAI).
Adamantanes such as amantadine and rimantadine block the
M2 hydrogen ion channel of influenza A virus, interrupting
the viral life cycle [39]. NAIs inhibit the viral NA of influenza
A and B, preventing viral cleavage from host cell and subse-
quent spread [40]. The most widely available NAIs are
oseltamivir and zanamivir, but other NAIs such as peramivir
and laninamivir are licensed in a limited number of countries.

Avian Influenza A(H5N1)

Adamantanes

To date, the benefit of adamantanes for H5N1 treatment is still
unclear for several reasons. First, there is a lack of randomized
controlled trials (RCTs) and only a few case series are avail-
able, thus making conclusions about clinical efficacy difficult
[7]. Moreover, resistance to adamantanes is widespread, most-
ly because of a S31N mutation in the M2 protein [41, 42],
although this mutation is less widespread in Europe and some
Asian countries compared to other Asian countries [43–46].
The S31N mutation does not seem to alter viral fitness, which
might explain why the mutant virus has become dominant in
the population without antiviral pressure [47•].

Neuraminidase Inhibitors

Because of widespread resistance to adamantanes, neuramin-
idase inhibitors (NAIs) have been the first-line therapy for
H5N1 infection and among those, oseltamivir has been the
most widely used NAI in humans. Animal data show that
oseltamivir is efficient for H5N1 treatment [48]. There are
no RCTs evaluating oseltamivir for H5N1 treatment and initial
case series only suggested a modest reduction in mortality
[49]. However, more recent data show that oseltamivir treat-
ment is associated with a survival benefit, especially when
started within the first 6–8 days after symptom onset [50,
51]. These differences in the benefit of oseltamivir might be
related to the late treatment onset in early series, as a delay in
treatment onset has been associated with poorer prognosis
[52]. Further, another NAI, zanamivir, has been shown to be
effective in vitro and in vivo against H5N1 [53]; however,
there are no clinical data supporting its use.

Emergence of NAI resistance in H5N1 is a major concern.
As for H1N1 (both before and after the 2009 pandemic), the
H275Ymutation in the NA gene is the most common cause of
NAI resistance for H5N1 [49, 53] and has been associated
with fatal outcomes [49]. As observed for H1N1, the H275Y

mutation in H5N1 strains confers resistance to oseltamivir but
not to zanamivir [53], and limited data seem to show that
zanamivir is effective in case of infection with a mutant
H5N1 strain [53]. The H275Y mutation is of concern, as most
seasonal A/Brisbane/59/2007(H1N1) strains acquired this
mutation despite the absence of antiviral pressure, highlight-
ing a preserved viral fitness [54]. Fortunately, viral fitness
seems to be partially altered in H275Y mutant H5N1 strains
[55], making the widespread emergence of H275YH5N1mu-
tants without antiviral pressure less likely. Other mutations
conferring resistance to a single or to multiple NAIs have been
identified among H5N1 strains, although more rarely [56].

Combination Therapy

Some studies have shown that a combination of oseltamivir
and amantadine with or without ribavirin provided a survival
advantage in mice infected with H5N1 when compared to
monotherapy [57, 58]. However, no human studies have con-
firmed these findings.

Recommendations

Based on the abovementioned data as well as on data extrap-
olated from seasonal influenza [59], the WHO strongly rec-
ommends oseltamivir as the first-line therapy in case of H5N1
infection [60, 61]. The more recent CDC guidance on novel
influenza A infections also recommends NAIs to be started
immediately for confirmed and probable cases, as well as for
persons under investigation, even more than 48 h after symp-
tom onset, and regardless whether patient is admitted or not
[62•]. The currently recommended adult dose of oseltamivir is
75 mg twice daily for 5 days, [61, 62•] but some experts
recommend to consider treating for up to 10 days with
150 mg twice daily for severely ill patients [2, 60, 62•], as
human case series and animal studies have suggested that
H5N1 might require higher NAI doses than other influenza
strains [48, 63, 64], due to possible higher level viral replica-
tion or higher virulence. Given the lack of data about other
NAIs in this context, both WHO and CDC emphasize the
preference for oseltamivir compared to zanamivir [61, 62•].
The CDC also recommends maintaining a high degree of sus-
picion for oseltamivir resistance and considers a transition to
zanamivir in case of non-response to first-line treatment [62•].
Because of widespread resistance to adamantanes, the CDC
recommends against the use of adamantanes for H5N1 treat-
ment [62•], whereas the WHO recommends using
adamantanes as a first-line therapy only when neuraminidase
inhibitors are not available, and especially if the virus is
known or likely to be susceptible [61].

Given the lack of human data about combination therapy,
the WHO weakly recommends considering a combination
therapy of adamantanes and NAIs for patients with confirmed
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or high suspicion of H5N1, and only in the context of pro-
spective data collection [60, 61]. Similarly, some experts con-
sider combination therapy as a reasonable option in regions
where H5N1 is likely to be susceptible to amantadine, espe-
cially in critically ill patients [2]. The CDC recommends
against the combination of two NAIs [62•].

Other Agents and Emerging Therapies

Other agents with antiviral properties, such as the novel RNA
polymerase inhibitor, favipiravir (T-705), sialidase fusion con-
struct DAS181, monoclonal antibodies, convalescent plasma,
interferon-gamma, and ribavirin, have been evaluated alone or
in combination with NAIs for H5N1 treatment in animal or
human studies [2, 65–68]. However, there is not enough data
to date to firmly conclude about the usefulness of those agents.
The benefit of adjunctive steroids has not yet been proven
effective in animal models of H5N1 infection [69]; therefore,
WHO and expert groups recommend against its routine ad-
ministration and is therefore not recommended [2, 60].

Avian Influenza A(H7N9)

Adamantanes

Since the first description of human H7N9 infections in 2013,
the virus harbored the S31N mutation conferring resistance to
adamantanes [70, 71]. In a recent report from the WHO, the
resistance to adamantanes was universal, with 100% of the 83
viruses tested carrying this mutation (WHO) [72]. For this
reason, adamantanes have not been evaluated as a potential
treatment for H7N9 infection.

Neuraminidase Inhibitors

Animal models suggest a benefit of oseltamivir treatment in
mice infected with the H7N9 virus [73, 74]. Even if human
data are scarce, it has been shown that delaying antiviral onset
is associated with an increased risk of death [75], which
strongly suggests a benefit of early antiviral treatment. For this
reason, NAIs are the recommended first-line treatments for
H7N9 infection. To date, mutations conferring resistance to
NAIs seem to be relatively rare, with a rate of less than 4%
according to a recent WHO report [76]. Several mutations in
the H7N9 NA gene can confer resistance to one or more NAIs
[77–79]. The R292K mutation is of particular importance be-
cause it is the most frequent mutation in group 2 NAs (includ-
ing N9 but also N2), and it confers high-level resistance to
oseltamivir as well as reduced sensitivity to zanamivir and
peramivir [80]. Moreover, infection with the R292K mutant
has been associated with worse outcome in humans [77].
Fortunately, the R292K mutant showed reduced fitness in an-
imal and human models [14, 78, 81]. Therefore, unlike the

resistance to adamantanes, it is therefore less likely to see a
widespread emergence of R292K mutants in the absence of
antiviral pressure.

Recommendations

The CDC recommendations for treatment of H7N9 infection
are similar as those of H5N1, with oseltamivir 75 mg twice
daily for 5 days as first-line therapy [62•], while further sug-
gesting to consider treating for up to 10 days with 150 mg
twice daily for severely ill patients [62•]. To date, the WHO
has not issued recommendations for H7N9 treatment.

Combination Therapy, Other Agents, and Emerging Therapies

Favipiravir (T-705) seems to be effective against H7N9 in
vitro and in animal models against H7N9, with some data
suggesting it might have a better efficacy than NAIs [82,
83]. Other agents such as DAS181 and human or murine
monoclonal antibodies have been evaluated in vitro and in
animal models [84–86]. Moreover, a case of successful
treatment of an infected human with convalescent plasma
has been reported [87]. These novel treatment options as
well as data about combination therapy are reviewed in
more detail elsewhere [88].

Swine Influenza

Adamantanes

The 2009 A(H1N1) influenza viruses have the genetic marker
(S31N in M2) for resistance to the adamantine antivirals [89].
Most variant viruses are resistant to this class [25••].

Neuraminidase Inhibitors

Variant viruses tested to date are susceptible to the neuramin-
idase inhibitors [25••]. A(H1N1)pdm2009 influenza viruses
are sensitive to oseltamivir and zanamavir in functional assays
[89]. Therefore, recommendations were made for treatment
and chemoprophylaxis using oseltamivir or zanamivir [90].
Resistance to oseltamivir has been reported, as a result of the
development of H275Y mutation during treatment and che-
moprophylaxis [90].

Recommendations

Current CDC guidelines recommend early neuraminidase in-
hibitor antiviral treatment for all hospitalized patients, and for
any high-risk patients with suspected or confirmed variant
virus infection. Early antiviral treatment (within 48 h of illness
onset) is generally most effective, though it may still be effec-
tive when administered later in patients with moderate and
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severe illnesses. Antivirals available include oral oseltamivir,
inhaled zanamivir, and IV peramivir [25••].

Prevention Strategies

Control Within Animal Populations Limiting the spread of
zoonotic influenza viruses requires a multipronged ap-
proach to stem transmission within the zoonotic popula-
tion, decrease the transmission from animals to humans,
and limit transmission between humans. Limiting the
spread of zoonotic influenza viruses first begins with de-
creasing the spread within the zoonotic population.
Unfortunately, no universally effective avian or swine in-
fluenza vaccine exists, nor is there a single universal policy
that would fit all situations or geographical regions [91,
92]. Ongoing surveillance and research efforts focused
among countries with the highest ranking for spread and
emergence of novel influenza viruses are prudent [91, 92].
Good animal health management, biosecurity, and hygiene
practices are essential on farms [91]. However, efforts
would also need to be implemented at other points of
human-animal interface, such as live-animal markets, fairs,
exhibits, and petting zoos. Therefore, eradication programs
should also include increased biosecurity, extensive sur-
veillance, and a comprehensive education program for the
public [92]. Ongoing collaborations between organizations
such as the World Organization for Animal Health (OIE),
Food and Agriculture Organization of the United Nations
(FAO), and the WHO are required to share expertise in the
animal health sector with the public health sector [91].

Vaccines

Avian Influenza

The biology of avian influenza viruses presents unique
challenges to the development of vaccines for human use
[93]. Avian influenza viruses contain different subtypes of
HA and NA glycoproteins and the genetic and antigenic
diversity within each subtype resulting from various geo-
graphical lineages present innumerable potential targets for
vaccine development; yet, not all strains may be of pan-
demic potential. In addition, the virulence of avian influ-
enza viruses for chickens has limited the use of conven-
tional methods for the production of vaccines from wild-
type avian influenza viruses in embryonated eggs. In spite
of these challenges, numerous vaccines against avian in-
fluenza viruses had been developed [2, 93]. In 2007, the
US FDA approved the first H5N1 vaccine using the A/
Vietnam/1203/2004 influenza strain. It was not made com-
mercially available; however, it was reserved by the federal
government for use in the event of a pandemic [90].

Subsequently, the US federal government has also main-
tained a stockpile of vaccines against Asian H7N9 viruses.
Due to emergence of a highly pathogenic variant of H7N9
in early 2017, two additional H7N9 candidate virus vac-
cines were recommended for development in March, 2017
[11]. Candidate vaccine viruses continue to be made on an
as-needed basis. These stockpiled vaccines could be used if
similar viruses were to begin transmitting easily from per-
son to person [94••].

Currently, the most effective way to prevent human infec-
tion with avian IAVs is to avoid sources of exposure. Bird flu
viruses can enter a person’s eyes, nose, and mouth or be in-
haled when the virus is in the air (in droplets or possibly dust)
and the person breathes it in, or when the person touches a
fomite that has the virus on it then touches their mouth, eyes,
or nose. Those who work with poultry or who respond to
avian influenza outbreaks are advised to follow recommended
biosecurity and infection control practices. In addition to per-
sonal protective equipment and careful attention to hand hy-
giene, they should be monitored for illness during and after
responding to avian influenza outbreaks among poultry.
Though the seasonal influenza vaccination will not prevent
infection with avian influenza A viruses, these people should
receive a seasonal influenza vaccination every year to reduce
the risk of coinfection with human and avian influenza A
viruses [94••].

Swine Influenza

At the time of the 2009 pandemic, neither recent seasonal
human nor swine H1N1 vaccines induced complete protec-
tion in animal models [95]. There was a lack of cross-
protective immunity between the pandemic and seasonal
influenza virus strains, rendering the 2009 seasonal influ-
enza vaccine ineffective against the A(H1N1)pdm2009 vi-
rus [28]. The FDA and WHO identified A/California/07/
2009 (H1N1) as the strain to be used for novel influenza A/
H1N1 2009 monovalent vaccine. Manufacturers around
the world developed pandemic vaccines, including
inactivated whole-virion vaccines, split inactivated vac-
cines, subunit vaccines, and live-attenuated vaccines, in-
cluding a novel type of highly attenuated influenza virus
strain that is deletion of the NS1 genomic RNA segment
[28]. It was shown inactivated vaccine containing 3.8 to
15 μg HA (of inactivated A(H1N1)) was able to induce
potentially protective antibody levels within 2 weeks
[28]. In spite of the rapid global response, it took several
months to have the vaccines available. The H1N1pdm09
virus has since replaced the previously circulating human
seasonal H1N1 IAV and is now the only H1N1 virus cir-
culating in the human population. It has become the H1N1
component in the trivalent and subsequent quadrivalent
human seasonal influenza vaccine since 2010 [91, 96].
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Chemoprevention

Avian Influenza H5N1 Pre- and Post-Exposure
Prophylaxis

As for influenza treatment, influenza chemoprevention relies
mostly on NAIs. There is no data about the use of
adamantanes for prophylaxis againstH5N1.However, based
on data extrapolated from seasonal influenza [59],
adamantanes might have a clinical benefit in this setting.
However, given the high rate of H5N1 resistance to
adamantanes, the WHO recommends to use adamantanes
for prophylaxis in high- andmoderate-risk groups onlywhen
NAIs are not available and when the virus is known or likely
to be susceptible [61]. The WHO does not recommend the
use of adamantanes for prophylaxis in low-risk groups, re-
gardless of viral susceptibility [61]. Interestingly,
adamantanes are not mentioned in the CDC recommenda-
tions for prophylaxis [97••]. However, given the fact that
CDC recommends against the use of adamantanes for
H5N1 treatment because of widespread resistance [62•],
one can infer that this antiviral class should not be used for
prophylaxis either. Oseltamivir has been shown to be effec-
tive as a pre- and post-exposure prophylaxis againstH5N1 in
animalmodels [48, 63, 98], but human data are lacking. Data
are even scarcer for zanamivir. Based on the evidence of
efficacy as post-exposure prophylaxis for seasonal influenza
in humans [59], theWHO recommends oseltamivir (or alter-
natively zanamivir) as a first-line prophylaxis; recommenda-
tions were strong in high-risk exposure groups (such as
household or close family contacts of a strongly suspected
or confirmed H5N1 patient), weak in moderate-risk groups
(such as individuals with unprotected, inadequate, or very
close contact with sick or dead H5N1-infected animals and
healthcare workers in close contact with strongly suspected
or confirmed H5N1 patients regardless of adequate protec-
tive personal equipment), and oseltamivir was not recom-
mended in lower risk groups [61]. The more recent CDC
guidance recommends that close contacts of patients infected
with H5N1 should receive oseltamivir or zanamivir if they
belong to high-risk exposure groups, whereas prophylaxis
should be considered for moderate-risk groups and is not
recommended for low-risk groups [97••]. In case of exposure
to birds with avian influenza, the CDC recommends consid-
ering post-exposure prophylaxis in every exposed patient,
based on exposure type and category risk [99]. In the histor-
ical WHO recommendations, prophylaxis dose was 75 mg
once daily—half the treatment dose as soon as exposure is
identified and until 7–10 days after last exposure [61].
However, the more recent CDC recommendations currently
suggest using the treatment dose of 75 mg twice daily for
5 days from the last exposure in case of time-limited expo-
sure, and 10 days in case of ongoing exposure [97••, 99].

Avian Influenza H7N9 Pre- and Post-Exposure
Prophylaxis

Adamantanes should not be used as prophylaxis because
of universal resistance [72]. For NAIs, data are even
scarcer for prophylaxis than for treatment. Public Health
England (PHE) recommends prophylaxis for close con-
tacts of confirmed H7N9 cases [100]; whereas, the CDC
advises that prophylaxis should be administered for high-
risk exposure groups (household/close family member
contact of a confirmed/probable case), considered for
moderate-risk (healthcare personnel with unprotected
close contact with a confirmed/probable case), and should
not be recommended for low-risk groups [97••]. In case of
exposure to infected birds, the CDC recommends consid-
ering post-exposure prophylaxis in every exposed patient,
based on exposure type and category risk [99].
Interestingly, the WHO does not recommend routine
post-exposure prophylaxis after exposure to a patient with
confirmed H7N9 infection or infected poultry [101]. It
recommends considering prophylaxis in high-risk expo-
sures and to empirically treat if an exposed person de-
velops respiratory symptoms, pending investigations re-
sults. Regardless of the eligibility criteria for prophylaxis,
PHE, WHO, and CDC recommend that oseltamivir pro-
phylaxis be given at a dose of 75 mg twice daily for 5 days
[97••, 100, 101], although the CDC recommends a 10-day
course in the case of ongoing exposure [97••].

Swine Influenza Pre-Exposure Prophylaxis

Current CDC guidelines do not recommend the use of antivi-
ral chemoprophylaxis before or after swine exposure, includ-
ing for persons who are at high risk for influenza complica-
tions. Given most cases of variant influenza are sporadic and
without sustainable person-to-person spread, the use of anti-
virals for chemoprophylaxis follows recommendations for
seasonal influenza [25••].

Infection Control for Zoonotic Influenza
Infections

Avian Influenza

Current infection control recommendations for avian in-
fluenza A (H7N9), H5N1, and newly detected avian in-
fluenza H5 viruses (H5N2, H5N8, and the reassortant
H5N1 virus) are encompassed in guidelines for initial in-
fection control in healthcare settings for patients who may
be infected with a novel influenza A virus associated with
severe disease. Due to a lack of a widely available safe
and effective vaccine and the suspected high rate of
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morbidity and mortality among infected patients, a higher
level of infection control measures is undertaken com-
pared to seasonal influenza. These include the addition
of airborne precautions to standard and droplet/contact
precautions, such as the expanded use of respirators for
all patient-care activities [102, 103].

Swine Influenza

Given the assumption that swine influenza viruses can be
transmitted from person-to-person and cause disease of
similar severity to seasonal IAV, infection control recom-
mendations in healthcare settings would be the same as
those for seasonal influenza. These would include stan-
dard and droplet/contact precautions [25••, 104].
Additionally, for aerosol-generating procedures, the use
of a fit-tested N95 respiratory or equivalent has been ad-
vocated [25••].

Summary

In summary, illness caused by zoonotic influenza viruses
can range from a minor illness with primarily respiratory
manifestations to severe multiorgan dysfunction resulting
in death. The case fatality rates can be as high as 60%, as
observed in avian influenza A (H5N1) infections. While
the two classes of drugs approved for influenza infections,
the adamantanes and the NAIs, are available to potentially
combat these threats, several of the novel viruses may be
intrinsically resistant to these drugs, especially the
adamantanes. For most zoonotic influenza viruses, neur-
aminidase inhibitors comprise the backbone of antiviral
treatment, which is complemented by supportive care.
Because influenza A viruses contain different subtypes of
HA and NA glycoproteins, and further possess great genet-
ic and antigenic diversity within each subtype, they present
numerous challenges for vaccine development. Recent fo-
cus has shifted to development of universal influenza vac-
cines, with the aim to provide protection regardless of in-
fluenza A subtype by targeting the HA stalk which is com-
mon to multiple subtypes. The most effective way to pre-
vent human infection with zoonotic influenza viruses is the
avoidance of sources of exposure. Containing the spread of
these viruses requires a multipronged approach to stem the
spread within the zoonotic populations, decrease the trans-
mission from animals to humans, and limit transmission
between humans. Although today we are better prepared
to face a new influenza pandemic and to limit the burden of
zoonotic, pandemic, and seasonal influenza than ever be-
fore, continued effort is warranted to build on this knowl-
edge such that we can efficiently combat the constant
threat these viruses pose.
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