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Simple Summary: A high-fat diet is implicated in prostate cancer progression in patients. Prostate-
cancer-associated fibroblasts play an important role in promoting tumor progression and therapeutic
resistance to androgen-receptor-signaling inhibitors, such as enzalutamide. We investigated the
mechanism of saturated fatty acids’ impact on prostate cancer reprogramming. Our work demon-
strates that the tumor microenvironment defines the biology of prostate cancer progression induced
by saturated fatty acids. This study also provides relevant data to potentially improve prognosis for
patients with high fat intake through the inhibition of the identified signaling pathways.

Abstract: Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths
annually. A high-fat diet and obesity are associated with PCa progression and mortality. This
study’s premise was the novel observation of crosstalk between PCa epithelia and cancer-associated
fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol
activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while
palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator
of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in
CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited
Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed
mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor
microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody.
Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated
SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent
diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and
SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat
diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity
reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.

Keywords: cholesterol; free fatty acid; Wnt; hedgehog; cancer associated fibroblast; prostate
cancer; androgen

1. Introduction

Prostate cancer is expected to reach approximately 2 million new cases by 2040,
with the United States (US) having the highest incidence rate of prostate cancer (PCa)
worldwide [1]. A high-fat diet and obesity are identified as important drivers of disease
progression and accelerated patient mortality [2–6]. Since a third of the US population is
categorized as obese [7], the underlying mechanisms of this phenomenon require immediate
attention. The ingestion of a high-fat diet is associated with the elevated circulation of free
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fatty acids [8]. Palmitic acid (palmitate) is a common saturated long-chain fatty acid and a
significant component of the Western-style diet that is metabolized to cholesterol by the
prostate and other organs, including the liver [9]. Liver and breast cancers are among the
many diseases particularly associated with the elevated oxidative stress resulting from
palmitate consumption [10]. We investigated the impact of palmitate and cholesterol
supplementation on the interaction between PCa epithelia and prostate-cancer-associated
fibroblasts (CAF).

Cholesterol signaling has been associated with cancer development, organogenesis,
and progression through the Hedgehog (Hh) signaling pathway [11]. The contribution of
Hh signaling to the regulation of cancer stemness and invasiveness has been demonstrated
in many cancer types, including prostatic, pancreatic, ovarian, and colorectal [12–15]. The
connection of Hh signaling and SOX2 has implications on PCa cell viability and androgen-
independence [16]. Past reports of the regulation of castration-resistant PCa (CRPC) demon-
strated Hh signaling inhibition sensitized CRPC to androgen-targeted therapy [17–20].
Interestingly, Hh signaling target genes are expressed nearly exclusively by colon fibroblast
cells of the colon cancer microenvironment, while cognate ligands were expressed by tumor
cells [21]. Reports have indicated that lipids can regulate Hh signaling at multiple levels,
and that cholesterol modifications needed to support the interactions of Hh with the cell
membrane promote Hh protein stability in the extracellular milieu [11,22,23]. However, the
involvement of Hh signaling in the interactions between PCa epithelium and stroma in the
context of a high-fat diet remains an open question.

Stromal–epithelial interactions play a role in cancer progression, differentiation, and
therapeutic responsiveness [24]. CAF are activated fibroblasts that have an elevated secre-
tion of chemokines, matrix proteins, and immunomodulatory factors compared to normal
fibroblasts [25–29]. The volume of CAF in PCa validated by the tissue microarray of 847 pa-
tients is a suggested prognostic marker for recurrence-free survival [30]. CAF and normal
fibroblasts can be functionally differentiated as benign cells that can induce tumorigenesis
in non-tumorigenic prostatic epithelia, as previously reported [31–33]. The interaction of
cancer and stromal fibroblast cells contribute to PCa progression at both early and late
stages of the disease [34,35]. We have previously published that stromal epigenetic alter-
ations mediate paracrine oncogenic signaling and epithelial metabolic reprogramming,
along with altering sensitivity to androgen-targeted therapy [36–42]. The implications of
lipids in paracrine signaling was demonstrated recently as CAF were found to secrete fatty
acids and phospholipids in potentiating colorectal cancer-cell migration [43]. Further, the
intake of saturated fatty acids has been associated with PCa progression [44]. As with other
cancers, the lineage plasticity of PCa is defined as a morphologic and functional shift from
adenocarcinoma to another differentiation state in response to therapy, often having fea-
tures of a small cell or neuroendocrine phenotype [45]. Here, we examine a mechanism that
explains the observed cooperative signaling of saturated fatty acids and cholesterol in pro-
moting PCa lineage plasticity. SOX2 has emerged as an important mediator of PCa lineage
plasticity, with this differentiative state being associated with androgen-targeted-therapy
resistance [46]. Blocking saturated fatty acid signaling in CAF limited paracrine-mediated
PCa progression in combination with enzalutamide, a widely used second-generation
androgen-receptor-signaling inhibitor (ARSI).

2. Materials and Methods
2.1. Reagents

Enzalutamide (Pfizer, New York, NY, USA) was given to cells at 5 uM and 5 mg/kg
in mice by oral gavage. CD36 neutralizing antibody, clone: FA6-152 (NB6001423, Fisher
Scientific, Waltham, MA, USA) was administered at 0.1 mg/kg to mice by intraperitoneal
injection, and at 2 µg/mL in cultured cells. Mouse IgG1, clone: NCG01, isotype control
(PIMA514453, Fisher Scientific) was given to mice at 0.1 mg/kg by intraperitoneal injection.
Palmitic acid (P0500, Sigma, Darmstadt, Germany) was given to cells at 50 µM, 100 µM,
150 µM, and 200 µM. Cholesterol (C75209, Sigma, St Louis, MO, USA) was given to cells at
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20 µg/mL. GANT61 (G9048, Sigma) was given to cells at 5 µM. Simvastatin (AC458840010,
Fisher Scientific) was administered to cultured cell at 5 nM. Cells were treated for 48 h for
each drug.

2.2. Cell Lines

Human prostate tumor cell line CW22Rv1 (22Rv1) was purchased from ATCC and
grown in RPMI-1640 supplemented with either 10% fetal bovine serum (FBS) or 3% charcoal-
stripped FBS (for palmitic acid and cholesterol treatment where indicated), and 1% peni-
cillin/streptomycin (all components from Thermo Fisher). Human androgen-refractory
prostate cancer cells of the ARCaPM cell line were gifted to us from Leland Chung (Cedars-
Sinai Medical Center), and grown in DMEM, supplemented with 5% FBS and 1% peni-
cillin/streptomycin [24].

Human primary fibroblasts were grown from prostatectomy specimens at Cedars-
Sinai Medical Center or the Greater Los Angeles Veterans Affairs under their respective
institutional review boards [42]. The tumor-inductive status of fibroblasts was determined
by tissue recombination with BPH1 (a non-tumorigenic human prostate epithelial cell line,
as previously described [32]). CAF was cultured in DMEM/F12 supplemented with 5%
FBS, 5% Nu-Serum, 1% penicillin/streptomycin, 10−9 M testosterone (Sigma-Aldrich),
and 4 µg/mL insulin (12585014, Fisher Scientific). All cells were grown in a humidified
incubator at 37 ◦C with 5% CO2. All cells were tested for mycoplasma (LT07118, Lonza,
Rockland, ME, USA) every 1 month and were negative.

2.3. RNA Preparation, cDNA Synthesis, qPCR

Total RNA was extracted with RNeasy Plus Mini kit (74034, Qiagen, Hilden, Germany)
according to the manufacturer’s recommendations. RNA levels were measured with a
NanoDrop spectrophotometer (Thermo Fisher) at 260 nm. cDNA synthesis was performed
on 1 µg of total RNA using iScript cDNA Synthesis Kit (1708891, Bio-Rad, Hercules, CA,
USA). Quantitative real-time PCR reactions were performed using SYBR Green Mix (Azura
Genomics, Raynham, MA, USA). qPCR reactions were performed on 96 well qPCR plates
using Thermos qPCR systems (Thermo Fisher Quant Studio3) according to manufacturer’s
instructions. Data were calculated as relative mRNA expression to indicated housekeeping
gene (2−∆∆Ct). Results were obtained from at least three independent experiments and are
shown as the mean± SD. Primers were purchased from IDT (Coralville, IA, USA). Please
refer to Supplementary Table S1 for the primers used with sequences.

2.4. Immunofluorescence

A total of 5 × 104 cells were seeded on cover slips overnight, then treated with
20 µg/mL of cholesterol for 48 h. All subsequent steps were performed at room temperature.
Cover slips were then fixed with 4% formaldehyde for 15 min. Following this, cells were
permeabilized with 0.5% Triton-X100/PBS for 5 min. For immunostaining, cover slips were
blocked with 10% serum/PBS for 1 h and washed with PBS. The cells were incubated with
a combination of primary antibody α-acetylated α-tubulin (T7451, Sigma) and ß-catenin
(sc-7199, Santa Cruz, Santa Cruz, CA) overnight at 4 ◦C. After washing twice with PBS
for 5 min, the cover slips were incubated with fluorochrome-coupled secondary antibody
(Alexa Fluor 488, A11034; Alexa Fluor 546, A11030; Fisher Scientific) for 2 h in the dark.
After washing with PBS and rinsing with H2O, the cells were covered with a mounting
medium containing DAPI (H-1200, Vector Laboratories, Burlingame, CA, USA). Stained
cells were imaged on a Leica confocal microscope at 40X magnification (Leica Microsystems,
Wetzlar, Germany).

2.5. Flow Cytometry

A quantity of 2 × 105 cells were seeded in 6-well format overnight, then treated with
20 µg/mL of cholesterol for 48 h. Cells were washed with PBS, detached using Accutase
solution (00455556, Fisher Scientific), fixed with 4% paraformaldehyde (IC fixation buffer,
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eBioscience, San Diego, CA, USA) at room temperature for 15 min on ice. Cells were
permeabilized on ice with 1X permeabilization buffer (eBioscience) for 10 min. Cells were
incubated with primary antibody α-acetylated α-tubulin (T7451, Sigma) for 30 min on ice.
Cells were then washed twice with 1X PBS before 30 min of incubation with Alexa Fluor 488
secondary antibody (A11001, Fisher Scientific) on ice in the dark. Cells were washed twice
with PBS, then resuspended in PBS and analyzed using a BD Accuri C6 flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA). Cells were kept on ice and in the dark until ready
for analysis. FACS data were analyzed using FlowJo software v10.9.

2.6. Chromatin Immunoprecipitation (ChIP) Sequensing

A quantity of 1 × 107 cells were harvested and fixed with 2 mL of 1% paraformalde-
hyde for 10 min at room temperature with gentle rotation. A total of 2 mL of 250 mM of
glycine was then added to terminate the processing. A ChIP experiment for H3K27Ac
(ab4729, Abcam, Cambridge, UK) and a computational analysis of ChIP-seq data were
performed as previously described [47].

2.7. Small-Interfering RNA (siRNA) Transfection

Cells at 70% confluence were transfected with 25 nM Wnt5a siRNA (sc-41112, Santa
Cruz) and control siRNA (sc-37007, Santa Cruz) using Lipofectamine 3000 (Fisher Scientific),
as described by the manufacturer. Twenty-four hours after the addition of the transfection
mix, the liposomes were removed and fresh media was added. The human Wnt5a siRNA
is a pool of 3 different siRNA duplexes:

A: Sense: GCAAGUUGGUACAGGUCAATT,
antisense: UUGACCUGUACCAACUUGCTT;
B: Sense: GACAGACCGUCAUAUUCUATT,
antisense: UAGAAUAUGACGGUCUGUCTT;
C: Sense: CCAGUGUACUUGAACAGUUTT,
antisense: AACUGUUCAAGUACACUGGTT.

2.8. Clonogenic Assays

Cells were seeded in 12-well plates overnight (22Rv1 700 cells/well, ARCaPM 200 cells/well),
then treated with palmitate, cholesterol, or both. Colonies were stained with 5% crystal violet
in methanol for 20 min after 14 days. We then used 30% acetic acid in water solubilizing the
colonies. The quantification of the colonies was shown by optical density 595 (OD595) measured
by spectrophotometer in three independent experiments.

2.9. Animal Studies

All animal procedures were performed according to an approved protocol from the
Institutional Animal Care and Use Committee at Cedars-Sinai Medical Center. Male NSG
mice (Jackson Labs, Bar Harbor, ME, USA), 6–8 weeks old, were used for prostatic ortho-
topic grafting or subcutaneous implantations into the flank, as previously described [41].
For the orthotopic grafting, mice were randomly divided into 3 groups, fed a normal
isocaloric rodent diet, a 40% high-fat diet (F10046, Bio-Serv, Flemington, NJ, USA), and
a 2% high-cholesterol diet (F10036, Bio-Serv), respectively. The formulation of the high-
fat and high-cholesterol diet are in Supplementary Table S2. After 4 weeks of each diet,
2.5 × 105 ARCaPM cells and 7.5 × 105 CAF were engrafted orthotopically into the anterior
lobe of the prostate and harvested after 4 weeks of implantation, as has been described
before [36]. For the subcutaneous implantations, all mice were fed with a 40% high-fat
diet (F10046, Bio-Serv) for 4 weeks, then 2.5 × 105 22Rv1 cells and 7.5 × 105 CAF were
implanted subcutaneously into the flank of the mice. After 4 weeks, mice were randomized
to either be injected intraperitoneally with 0.1 mg/kg of neutralizing anti-CD36 antibody
or corresponding IgG1 control every 3 days for a week. All mice were subsequently treated
daily with enzalutamide for 3 days via oral gavage (5 mg/kg). Following these procedures,
mice were euthanized and tumors were harvested for analyses.
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2.10. Immunohistochemistry

All tissue biopsies were fixed in 4% paraformadehyde, embedded in paraffin, and cut
into 5 µm sections. The tissue sections were deparaffinized and hydrated through xylene
and a graded alcohol series using a standard protocol [42]. Following antigen retrieval,
endogenous peroxidase activity was then quenched with 3% H2O2. Non-specific epitopes
were blocked with blocking buffer for 1 h at room temperature. After washing with PBS,
the sections were stained with anti-SOX2 (14962, Cell Signaling, Danvers, MA, USA) and
anti-phosphorylated histone H3 (PH-H3, 06-570, Sigma) antibodies [48]. Sections were
incubated at 4 ◦C overnight with adequate humidity. Sections were washed with PBS,
then incubated with the appropriate secondary antibody (31460, Fisher Scientific) for 1
h at room temperature in a humidified chamber. Tissues were visualized by DAB (3,3′-
diaminobenzidinetetrahydrochloride substrate, 550880, BD Biosciences). TUNEL staining
was performed according to the manufacturer’s protocol (S7100, Fisher Scientific). Slides
were scanned by Olympus BX51 at 200 x magnification. At least 5 fields per tissue were
quantified with Image J.

2.11. Statistical Analysis

Comparisons between the studied groups were performed by the paired Student’s t-test.
Two-way ANOVA was used to compare variable changes according to the levels of two
categorical variables. Results were expressed as mean ± SD and considered statistically
significant at p < 0.05. All data were calculated from at least 3 separate experiments. Graphs
were prepared using GraphPad Prism 6 software (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Cholesterol and Fatty Acid Signaling in PCa Cells

Lowering cholesterol has been shown to limit PCa progression by providing a clinical
benefit to patients [49,50]. Hh signaling in particular has been associated with cholesterol
in PCa cells [11]. We corroborated past findings of Hh downstream gene expression in
PCa cells following 48 h incubation with cholesterol (20 µg/mL). Cholesterol elevated
Gli1 and Gli2 mRNA expression in 22Rv1 PCa cells (p < 0.05; Figure 1a). Cholesterol also
increased Gli1 and PTCH1 mRNA expression in ARCaPM PCa cells (p < 0.01; Figure 1a).
The Hh signaling pathway depends on the secretion of the Hh ligand, Sonic Hh (SHH),
Indian Hh (IHH), and Desert Hh (DHH). We detected these Hh ligands, and found that
IHH was elevated in 22Rv1 (p < 0.01); IHH, SHH, and DHH were also elevated in ARCaPM
(p < 0.01). Two-way ANOVA analysis of these Hh-related genes in 22Rv1 and ARCaPM
treated with cholesterol were significantly increased compared to control cells (p < 10−4;
Figure 1a). Canonical Hh signaling relies on primary cilia and is associated with α-tubulin
expression [51]. We demonstrated for the first time in immunofluorescence studies that
cholesterol-treated cells had greater cell-surface staining for α-tubulin by confocal mi-
croscopy and flow cytometry in 22Rv1 cells (p < 0.001; Figure 1b,c). This was quantified
by quantitative PCR, where cholesterol treatment increased α-tubulin mRNA expression
(p < 0.05; Figure 1d). Canonical Hh signaling involving patched expression-promoted Gli
signaling was enriched at the cilium (Figure 1e).
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Figure 1. Cholesterol induces canonical Hedgehog signaling in PCa cells. (a) mRNA expression of Hh
signaling mediators was measured in 22Rv1 and ARCaPM treated with cholesterol. (b) 22Rv1 treated
with cholesterol for 48 h was imaged by confocal microscopy (40×magnification). ß-catenin and α-
tubulin were visualized by green and red fluorescence, respectively, with DAPI nuclear counter-stain
(blue). (c) Image analysis for α-tubulin expression was performed by determining the percentage of
positively stained cells in >30 field of view (FOV). (d) α-tubulin expression was detected by FACS in
22Rv1 treated with cholesterol. (e) Schematic of Hedgehog signaling at the primary cilium. DHH
binding to PTCH, the inhibitor of Smo along the center of the cilium. For all figure panels, 22Rv1
and ARCaPM cells were treated with 20 µg/mL cholesterol, or vehicle for 48 h. Paired, 2-tailed t test:
* p < 0.05, *** p < 0.001.

Following this, we wanted to determine the role saturated fatty acids play on Hh
signaling in PCa cells independent of cholesterol signaling. We first evaluated the expres-
sion of Hh signaling in 22Rv1 and ARCaPM cells. Both cell lines showed significantly
more PTCH2 and DHH in response to palmitate treatment after 48 h and the absence
of Gli and PTCH1 expression in a dose-dependent manner (100 µM–200 µM, p < 0.001;
Figure 2a). The expression of DHH and PTCH2 was not induced by low-dose (50 µM)
palmitate in either 22Rv1 or ARCaPM (p > 0.05; Supplemental Figure S1a,b). To examine
specific transcriptomic changes due to cholesterol and free fatty acids, we used histone
H3-AcK27 chromatin immunoprecipitation (ChIP) sequencing. Examining known targets
of Hh signaling associated with lineage plasticity, we found enrichment of the SOX2 pro-
moter. Palmitate induced more H3-AcK27 enrichment of SOX2 over either cholesterol or
vehicle (Figure 2b). These findings were consistent with the concomitant induction of SOX2
expression by palmitate (100 µM), but not cholesterol in 22Rv1 (p < 0.001; Figure 2c). The
induction of SOX2 by saturated fatty acids seems to involve autocrine Hh signaling.
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Figure 2. Palmitate induces Gli−independent Hedgehog signaling in prostate cancer cells. (a) Hh
signaling gene mRNA expression in 22Rv1 and ARCaPM treated with indicated palmitate concen-
trations. (b) Genome browser representations of H3K27ac ChIP−seq in 22Rv1 at the SOX2 loci.
(c) SOX2 mRNA expression in 22Rv1 treated with cholesterol or palmitate. (d) 22Rv1 was either
cultured alone or in a transwell with CAF as indicated. SOX2 mRNA expression in 22Rv1 treated with
cholesterol, palmitate, or both in combination. For all figure panels, Hh signaling ligands or SOX2
mRNA expression in 22Rv1 and ARCaP M cells were determined following treatment with 20 µg/mL
cholesterol, 50 µM palmitate, a combination of 100 µM palmitate and 20 µg/mL cholesterol, or vehicle
for 48 h. Results are normalized to 22Rv1 without CAF vehicle control (Veh). Paired, 2-tailed t test:
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Multiple pieces of evidence support the role of stromal fibroblastic cells in PCa pro-
gression and castration resistance [38–42]. Accordingly, we tested the impact of CAF on
SOX2 expression in 22Rv1 cells in response to cholesterol and palmitate. The 100 µM
palmitate concentration previously used seemed to induce CAF cell death; thus, SOX2
expression was tested under 50 µM palmitate, 20 µg/mL cholesterol, or a combination in
cocultures of 22Rv1 and CAF. SOX2 expression in 22Rv1 under a lower palmitate dose
was not observed (Supplemental Figure S1c). However, SOX2 expression in 22Rv1 was
over twentyfold higher when cells were cocultured with CAF compared to the epithelia
alone, under vehicle treatment (p < 0.01; Figure 2d). A further elevation of SOX2 expression
was found with palmitate treatment compared to coculture control (p < 0.05; Figure 2d).
Unexpectedly, the combination of palmitate and cholesterol dramatically promoted the
22Rv1 expression of SOX2, which was increased fourfold over cocultured CAF receiving
no treatment (p < 0.01; Figure 2d). Conditional media collected from CAF treated with
palmitate, in the presence or absence of cholesterol, was added to 22Rv1 cells. SOX2 was
not induced in 22Rv1 under these conditions (Supplemental Figure S1d). This suggested
that SOX2 expression by cancer epithelia was induced by crosstalk with CAF, rather than
secreted factors from these cells. Both fatty acids and cholesterol seem to have independent
roles in promoting Hh signaling. The role of Hh signaling in developmental processes
suggests its potential efficiency in regulating differentiation through SOX2 regulation.
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3.2. Combined Treatment of Palmitate and Cholesterol Induce Lineage Plasticity in PCa Cells by
Cancer-Stroma Interactions

There are limited studies about the role palmitate and cholesterol play in stromal
fibroblastic cells and how these metabolites affect PCa epithelia. Therefore, cocultures of
PCa cells and primary CAF were incubated with palmitate in the presence or absence of
cholesterol. The expression of Hh ligands in cocultured CAF and 22Rv1 was independently
measured. We found that in CAF, both SHH and DHH were significantly elevated by
the palmitate treatment alone, and the palmitate/cholesterol-combination treatment only
further increased DHH (p < 0.01; Figure 3a). SHH expression was significantly elevated
by the independent cholesterol and palmitate treatments when 22Rv1 and CAF were co-
cultured (p < 0.05; Figure 3a). SHH was further increased by the palmitate/cholesterol
combination treatment (p < 0.001; Figure 3a). However, DHH was not found to be induced
under these conditions in 22Rv1. When the two cell types were cocultured, the Hh signal-
ing mediators GLI1 and PTCH2 were significantly increased by palmitate (p < 0.01) and
palmitate/cholesterol-combination treatments (p < 0.001) as seen in 22Rv1 cells (Figure 3b).
Since downstream SOX2 is reported to play key roles in PCa lineage plasticity, we next
tested for the expression of luminal, basal, and neuroendocrine differentiation markers. The
palmitate/cholesterol combination greatly elevated the expression of neuroendocrine and
basal markers; but reduced the expression of luminal cell markers in 22Rv1 cells cocultured
with CAF, an indicator of lineage plasticity (Figure 3c). Two-way ANOVA analysis of
neuroendocrine-related genes, basal markers in 22Rv1 treated with palmitate/cholesterol
combination, found them to be significantly increased compared to control cells (p < 10−4),
while luminal markers were significantly increased compared to control (p < 10−4). In
palmitate-treated cells, neuroendocrine markers were upregulated (p < 0.001) and luminal
markers were downregulated (p < 0.01). The changes on the same genes were not evident
by cholesterol alone. In testing the potential impact of low-density lipoprotein (LDL)
cholesterol generated by palmitate metabolism, we treated cocultures with palmitate or a
palmitate/cholesterol combination, and blocked HMG-CoA reductase with simvastatin.
We found that these combinations did not decrease SOX2 expression in 22Rv1 cocultured
with CAF (Figure 3d). Simvastatin also failed to reduce PTCH2 and GLI1 under palmitate
treatment conditions (Supplemental Figure S1e). Thus, the upregulation of PTCH2 and
DHH by palmitate was not cholesterol dependent, suggesting some specificity to Hh signal-
ing by fatty acids. On the other hand, the administration of the Gli inhibitor, GANT61, was
able to significantly limit SOX2 induction under either palmitate or palmitate/cholesterol
combination treatments (p > 0.01, Figure 3e). The role of CAF in promoting PCa epithelial
SOX2 expression in response to free fatty acid was dependent on Hh signaling rather than
cholesterol biosynthesis.

In order to determine the mechanism of the elevated Hh-mediated SOX2 expression
promoted by the CAF, compared to the PCa cells alone, we examined some putative mediators
based on past reports suggesting the expression of Wnt ligands by CAF [40,42,52]. CAF cocul-
tured with 22Rv1 treated with palmitate or a palmitate/cholesterol combination demonstrated
significant Wnt5a expression by the CAF (p < 0.0001; Figure 4a). Similarly, the CAF demon-
strated significant Wnt5a upregulation by palmitate alone and the palmitate/cholesterol
combination over the untreated control when cocultured with ARCaPM (p < 0.05; Figure 4a).
Induction of Wnt2 and Wnt3a was not observed under the same conditions (Supplemental
Figure S1f). To directly interrogate the role of Wnt5a, it was knocked down in CAF. Compared
to the scrambled siRNA-control-transfected CAF, knocking down Wnt5a eliminated SOX2
induction in 22Rv1, otherwise stimulated by palmitate or the palmitate/cholesterol combina-
tion (p < 0.001; Figure 4b). In addition, knocking down Wnt5a expression in CAF significantly
limited the 22Rv1 expression of Gli1 and PTCH2 under palmitate and palmitate/cholesterol-
combination conditions (Figure 4c). The observed cooperativity of prostatic epithelia and CAF
in response to palmitate was lost when Wnt5a signaling was limited.
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Figure 3. SOX2 expression in PCa cells is regulated by Hedgehog signaling. (a) SHH and DHH
mRNA expression in CAF (cocultured with 22Rv1) or 22Rv1 (cocultured with CAF) was determined
following treatment with palmitate, cholesterol, or both combined. (b) Gli1, PTCH1, and PTCH2
mRNA expression in 22Rv1 cocultured with CAF and treated with cholesterol, palmitate, or both
in combination. (c) mRNA expression of lineage plasticity panel of genes in 22Rv1 treated with
palmitate, cholesterol, or both in combination. (d) SOX2 mRNA expression in 22Rv1 cocultured
with CAF and treated with palmitate or palmitate combined with cholesterol. These treatments
were further supplemented with or without 5 nM simvastatin. (e) SOX2 mRNA expression in 22Rv1
cocultured with CAF treated with palmitate, palmitate combined with cholesterol, supplemented
with or without 5 µM GANT61, Gli inhibitor. For all figure panels, mRNA expression in 22Rv1 cells
was determined following treatment with 50 µM palmitate, combination of 50 µM palmitate and
20 µg/mL cholesterol, or vehicle for 48 h. Paired, 2-tailed t test: * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001.
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Figure 4. SOX2 expression in PCa cells is induced by CAF. (a) CAF-derived Wnt5a mRNA expression
was determined following coculture with 22Rv1 or ARCaPM, having been treated with cholesterol,
palmitate, and both in combination. (b) SOX2 mRNA expression in 22Rv1 cocultured with CAF
following treatment with palmitate or palmitate and cholesterol in combination. CAF was subjected
to transfection with either scrambled siRNA or Wnt5a siRNA. (c) Gli1 and PTCH2 mRNA expression
in 22Rv1 was measured following coculture with CAF and treated with palmitate or palmitate
and cholesterol. For all figure panels, mRNA expression in CAF and 22Rv1 cells were determined
following treatment with 50 µM palmitate, combination of 50 µM palmitate and 20 µg/mL cholesterol,
or vehicle for 48 h. Paired, 2-tailed t test: * p < 0.05, *** p < 0.001, and **** p < 0.0001.

3.3. Free Fatty Acid Signaling Mediates PCa Androgen Targeted Therapy Sensitivity

In light of previous studies examining the role of cholesterol and fatty acids on PCa
tumor growth, we tested the role of high-fat versus high-cholesterol isocaloric diets in
prostatic orthotopic mouse models engrafted with ARCaPM and CAF cells. The mouse
weight did not differ among the control, high-fat, and high-cholesterol conditions (n = 3,
Supplemental Figure S2a). There was no statistical difference in tumor weight among
the groups, although the tumor weight was somewhat greater in the mice given a high
cholesterol diet, compared to the control or high-fat diet (Figure 5a). These findings were
corroborated using colony-forming assays of both 22Rv1 and ARCaPM cells grown with
palmitate, cholesterol, or a combination thereof. Cholesterol promoted greater colony
formation compared to the control in both cell types (p < 0.0001; Supplemental Figure
S2b,c). Strikingly, the RNA expression of SOX2 was about twentyfold greater in the tumors
of the high-fat-diet-fed mice compared to cholesterol or control (p < 0.0001; Figure 5a).
Further induction of the lineage plasticity markers of neuroendocrine and basal differen-
tiation was greatest under high-fat diet condition (p < 10−4, p < 0.01, respectively), while
luminal markers were significantly decreased (p < 10−4, Figure 5b). SOX2 histochemical
staining was much greater in tumor tissues from mice on the high-fat diet than those on the
control isocaloric diet (Figure 5c). While changes in mouse diet did not appreciably effect
tumor growth, the high-fat diet potentiated SOX2 expression and the downstream lineage
plasticity of the tumors.
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Figure 5. SOX2 expression is promoted under high-fat diet in tumors xenografted in mice. (a) NSG
mice were randomly divided into 3 groups, pretreated with isocaloric, high-fat (40%), high-cholesterol
(2%), or isocaloric rodent diet as vehicle control (Veh) for one month (n = 3). Cell recombinants were
prepared by mixing 2.5 × 105 epithelial (ARCaPM) cells with 7.5 × 105 CAF in collagen. Orthotopic
grafting was constituted by placing the collagen plugs in the 2 anterior lobes of the prostate. Mice
were sacrificed 1 month later, and tumors were excised. Tumor weight of each group was measured
(ns = not significant). SOX2 mRNA expression in tissues from mice treated with vehicle, cholesterol,
or high-fat diet was detected by qPCR. (b) Lineage plasticity gene-panel expression was tested in
tissues in mice from the indicated treatment conditions. (c) SOX2 expression in tumor tissues was
determined by immunohistochemistry (magnification × 200). (d) The bar graph shows quantification
of the percentage of SOX2-positive cells per field by immunohistochemical staining based on at least
5 fields from each of the 3 specimens per treatment group. Paired, 2-tailed t test: **** p < 0.0001.

We next used anti-CD36 neutralizing antibody to inhibit fatty acid signaling under
palmitate treatment. Mice were treated with anti-CD36 antibody for one week, since
neutralizing antibodies generally take one week to achieve a dose that reaches biologic
efficacy. It is reported that maximal apoptosis following castration in mice occurred on
day four [53–56]. Thus, we treated mice with anti-CD36 for one week to limit free fatty
acid signaling, then administered enzalutamide for three days and harvested the next day.
We found that anti-CD36 antibody treatment limited the expression of Wnt5a by CAF
and SOX2 expression by PCa epithelia (p < 0.001; Figure 6a). In addition, a cell-counting
study revealed that inhibiting CD36 alone had little effect on cell proliferation, while
the combination of anti-CD36 and enzalutamide resulted in fewer PCa cells compared
to enzalutamide alone (p < 0.05; Figure 6b). We tested the role of anti-CD36 in mice
subcutaneously implanted with 22Rv1 and CAF under high-fat diet conditions. A mouse
study was designed based on the findings of the coculture experiments where all mice
were given a high-fat diet and xenografted with 22Rv1 and CAF cells. When the tumors
reached approximately 1 cm3, the mice were randomized to receive anti-CD36 neutralizing
antibody or IgG followed by enzalutamide (Figure 6c). Consistent with the coculture
studies, SOX2 expression was inhibited. We also found phosphorylated-histone H3 was
inhibited, while TUNEL staining was elevated by anti-CD36 antibody in the context of
enzalutamide, compared to the IgG control.
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mRNA expression in CAF cocultured with 22Rv1 and treated with palmitate or palmitate and CD36
neutralizing antibody. SOX2 mRNA expression in 22Rv1 cocultured with CAF and treated with
palmitate or palmitate and CD36 neutralizing antibody. (b) Cell counts of 22Rv1 cocultured with CAF
and treated with palmitate, CD36 neutralizing antibody, enzalutamide and combinations of each.
(c) Hematoxylin and eosin (H&E) staining of tumor tissues was followed by IHC for SOX2, TUNEL,
or phosphorylated histone H3 (magnification × 200).(d) The bar graph shows quantification of the
number of phosphorylated histone H3− and TUNEL−positive nuclei per field, and the percentage of
SOX2-positive cells per field by immunohistochemical staining, n > 5. For all figure panels, mRNA
expression in CAF and 22Rv1 cells was determined following treatment with 50 µM palmitate,
combination of 50 µM palmitate and 20 µg/mL cholesterol, or vehicle for 48 h. N = 4. Paired, 2-tailed
t test: * p < 0.05, *** p < 0.001, and **** p < 0.0001.

4. Discussion

We identified the role of saturated fatty acids in PCa-cell lineage plasticity repro-
gramming via paracrine interactions with CAF. Initially, our data confirmed that exoge-
nously added cholesterol could activate canonical Hh signaling associated with the cilium
(Figure 1). Interestingly, we found the ARCaPM cells to be more sensitive to palmitate
compared to the 22Rv1 cell line. We initiated this study with 22Rv1 and ARCaPM, because
these two cell lines maintain some level of sensitivity to androgen-targeted therapy and can
be demonstrated to be more resistant or sensitive to androgen-targeted therapy. Palmitate
induced a Gli-independent Hh signaling pathway (Figure 2). This finding represented an
observed effect of non-canonical signaling in PCa cells. When PCa cells were cocultured
with CAF, we found Hh signaling was induced more by palmitate, in the presence or
absence of cholesterol, compared to the cholesterol-treated group (Figure 3). Palmitate-
induced Hh signaling was found to promote SOX2 in PCa epithelia in the context of CAF
as a master regulator of lineage plasticity [16]. SOX2 is also known to promote cell transi-
tion from AR-dependent luminal epithelial cells to AR-independent basal-like cells [46].
Previous reports have demonstrated that reduced expression of the luminal phenotype
correlates with poor survival prognosis in PCa patients [42,57,58].

Our findings support these studies, as the enhanced SOX2 expression seen during
palmitate and cholesterol treatments also contributed to increased basal and neuroen-
docrine gene expression. Palmitate, alone or in combination with cholesterol, elevated
the expression of basal and neuroendocrine markers, while downregulating the expres-
sion of luminal cell markers. The translational implications of PCa lineage plasticity are
well described as a means of therapy-resistance development. However, the upstream
mediators for this differentiative state are less understood. Although Hh signaling is a
viable upstream mediator of SOX2 expression, the observation that CAF can further pro-
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mote SOX2 expression and lineage plasticity was an important finding in revealing a new
interventional target mitigating the response to a high-fat diet.

The combination of palmitate and cholesterol induced the highest levels of SOX2 in
the context of CAF. This indicated that CAF plays an important role in the expression of
SOX2 in epithelia cancer cells. Our previous research found that prostate stroma could
induce PCa-cell proliferation and tumorigenesis by CAF-derived Wnt ligands [40]. Many
studies have demonstrated that the non-canonical Wnt pathway plays an important role
in PCa metastasis [59–61]. Androgen-signaling inhibition elevated Wnt2, Wnt3a, and
Wnt5a expression in CAF, and enhanced tumor epithelial cell survival [62]. Other studies
indicated that Wnt5a expression in the circulating tumor cells of patients with metastatic
castration-resistant PCa was a negative indicator of overall survival [63]. In addition,
Wnt5a expression by bone-marrow fibroblasts is found to promote PCa bone metastasis [64].
Antagonizing Wnt5a in CAF can inhibit gastric-cancer-cell growth and migration [65]. Our
studies here support Wnt5a as a potential paracrine driver of tumor progression in response
to a high-fat diet (Figure 4). We found that Wnt5a from CAF can drive Hh-mediated SOX2
expression in PCa cells to promote lineage plasticity. Knowing the prevalence of PCa
and the consumption of high-fat diets in the western world, our present findings warrant
further clinical validation.

A commercially available Gli inhibitor, GANT61, was able to inhibit SOX2 induction
in PCa epithelia when cocultured with CAF treated with palmitate. However, in the same
context, there was no difference in the expression of SOX2 when simvastatin was given
instead. This indicates that the role of CAF in promoting PCa epithelial SOX2 expression in
response to free fatty acid is associated with Hedgehog signaling rather than cholesterol
biosynthesis. A recent study showed that SOX2 expression correlated with a shorter time
to metastasis and decreased survival after biochemical recurrence in a case-control cohort
study of 1028 annotated tumor specimens [66]. They also demonstrated that SOX2 mediates
metabolic reprogramming of prostate cancer cells by inducing increased glycolysis and
glycolytic capacity, as well as increased numbers of mitochondria [66].

CD36 plays an important role in the process of metastasis and correlates with poor
prognosis in oral cancer, lung squamous cancer, bladder cancer, and breast cancer [67].
Inhibiting CD36 in PCa could reduce the uptake of fatty acids, cell proliferation, and
cancer aggressiveness [68]. Our data suggest that CD36 inhibition could further reduce
Wnt5a expression by CAF, inhibit SOX2 expression in PCa, inhibit proliferation, and induce
apoptosis in mice receiving a high-fat diet and treated with enzalutamide (Figures 6 and 7).
Thus, targeting CD36 might be an effective strategy for treating PCa patients.
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Figure 7. SOX2 expression and lineage plasticity of PCa epithelia supports resistance to androgen-
targeted therapy. SOX2 expression in PCa cells is regulated by Hedgehog signaling. Knockdown
Wnt5a in CAF could inhibit Hedgehog signaling and SOX2 expression in PCa epithelia. The inhibition
of palmitate signaling by anti-CD36 antibody limits the Wnt5a expression in CAF, inhibiting SOX2
expression in PCa treated with both palmitate and enzaltamide.

Obesity in PCa patients, associated with excessive white adipose tissue, contributes
to the population of CAF and promotes cancer progression [69]. Interestingly, our studies
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involving NSG (NOD SCID gamma) mouse xenograft models have a limited capacity to
become obese. We are aware that the results of a high-fat diet on the mouse models may
need to be further studied in immunocompetent models. Insulin insensitivity associated
with obesity downstream of PI3K-mTOR signaling promotes lipogenesis [70–72]. It may
play a role in remodeling the tumor microenvironment as well as support anti-apoptotic
signals in the cancer cells. NSG mice are known to exhibit insulin-dependent diabetes and
the high-fat diet prevents the mice from developing autoimmune diabetes [73]. As such, the
standard elevation of insulin associated with a high-fat diet is not observed in NSG mice.
Thus, the observations in our work are likely due to a more direct result of circulating fat
(and cholesterol), akin to that observed in cell culture. Under the high-fat diet, the elevated
circulating fatty acids likely supported CD36 signaling of paracrine initiators such as Wnt5a
by stromal fibroblasts. While further exploration will be necessary, our data indicate that
palmitate promotes paracrine Wnt5a secretion from CAF to induce PCa lineage plasticity
and therapy resistance.

5. Conclusions

The present study indicates that palmitate and cholesterol induce lineage plasticity
in prostate cancer by cancer–stroma interactions through Hedgehog and non-canonical
Wnt signaling. We found that a high-fat diet induces lineage plasticity in prostate cancer
epithelial cells by increasing SOX2 expression in both coculture and xenograft models.
The resulting palmitate signaling promotes lineage plasticity culminating in resistance
to androgen-targeted therapy. Understanding paracrine and autocrine interactions of
Hedgehog and androgen signaling will enable the restoration of treatment responsiveness.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14143449/s1, Figure S1. (a,b) The expression of Dhh and
PTCH2 in 22Rv1 and ARCaPM were measured by rtPCR following palmitate treatment. (c) SOX2
mRNA expression in 22Rv1 were treated with palmitate (50 µM), cholesterol (20 µg/mL), palmitate
and cholesterol combination treatment, or NT. (d) SOX2 mRNA expression in 22Rv1 treated with
CAF-conditioned media alone (NT), supplemented with palmitate, cholesterol, or palmitate and
cholesterol combination treatment. (e) Gli1 and PTCH2 mRNA expression in 22Rv1 cocultured with
CAF and treated as indicated inclusive of simvastatin. (f) Wnt2 and Wnt3a mRNA expression by
CAF cocultured with 22Rv1 following indicated treatments. Cells were treated for 48 h in complete
media, unless noted. Figure S2. (a) NSG mice were randomly divided into three groups, pretreated
with an isocaloric high-fat (40%) diet, high-cholesterol (2%) diet, and rodent diet for one month.
Cell recombinants were prepared by mixing 2.5 × 105 epithelial (ARCaPM) cells with 7.5 × 105

cancer-associated fibroblasts in collagen. Orthotopic grafting constituted the placing of the collagen
plugs in the two anterior lobes of the prostate. Mice were sacrificed 1 month later, and tumors were
excised. Bar graphs show mouse weight (a). (b,c) 22Rv1 and ARCaPM were plated in a clonogenic
survival assay, treated with 50 µM palmitate, 20 µg/mL cholesterol, and the combination of both.
Colonies were stained with crystal violet 2 weeks later. Quantification of colonies were shown
by optical density 595 (OD595) measured by spectrophotometer in three independent experiments.
Paired, two-tailed t test: **** p < 0.0001. Table S1. Real-time PCR Oligonucleotide Sequence. Table S2.
Formulation of high fat diet and high cholesterol diet.
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