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Abstract: Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic mem-
brane, have shown significant potentials in biomedical applications including drug delivery, gene
therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incor-
poration with antibacterial active components like antimicrobial peptides, etc., polymer vesicles
exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Fur-
thermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the
antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of
antimicrobial polymer vesicles, including the design strategies and potential applications in the field
of antibacterial. The structural features of polymer vesicles, preparation methods, and the combi-
nation principles with antimicrobial active components, as well as the advantages of antimicrobial
polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles
such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated
with their structure features are presented. Finally, future perspectives of polymer vesicles in the
field of antibacterial is also proposed.

Keywords: polymer vesicle; self-assembly; polymer conjugates; antimicrobial; anti-biofilm

1. Introduction

Polymer self-assembly is a powerful tool to prepare functional nanomaterials with
diverse morphologies, including micelles, cylinders, vesicles, nanobowls, flowers, and
other highly ordered superstructures [1–7] which have shown great potentials in wide
applications, including drug delivery, catalysis, energy storage, environment, and so
forth [8–15]. Among the polymeric nanostructures, the polymer vesicle is a shining star
due to its unique structure [16,17]. Typically, polymer vesicles are nanoscale hollow spheres
composed of three parts, the interior holes, hydrophobic membranes, and hydrophilic
coronas, which is similar to cell membranes that are composed of lipid bilayers but more
stable and robust. The structural similarity of polymer vesicles and cell membranes
motivates the scientists to reveal the secrets of life and mimic the functions of cells [18,19].
Therefore, the biomedical applications of polymer vesicles, including drug delivery, gene
therapy, antibacterial, and cell mimicking, were of special interest to scientists [20–23].

The most studied building blocks of polymer vesicles are synthetic block copolymers
with hydrophilic segments which form the coronas, and hydrophobic segments which
form the membrane in a bilayer or interdigitated manner [17,24,25]. The manipulation
of the membrane structure and the physiochemical property of the coronas of polymer
vesicles is the focus of current studies [26,27]. For instance, the former determines the
permeability of the membrane, in other words, regulating the load and on demand release
of the cargoes [28,29], while the latter influences many factors in biomedical applications
such as circulation time, cell toxicity, immune response, and so forth [27,30,31]. In addition,

Polymers 2021, 13, 2903. https://doi.org/10.3390/polym13172903 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-4928-9450
https://doi.org/10.3390/polym13172903
https://doi.org/10.3390/polym13172903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13172903
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13172903?type=check_update&version=2


Polymers 2021, 13, 2903 2 of 19

decoration of functional moieties onto the surface of polymer vesicles endowed them
with specific but very important functions, including targeting ability and antibacterial
activity [32,33].

Since the discovery of penicillin in 1928, antibiotics have played an important role in
killing bacteria for decades. However, with the overuse and improper use of antibiotics,
the emergence of bacterial drug resistance is becoming a severe problem. In particular,
the multidrug-resistant (MDR) bacteria such as methicillin-resistant Staphylococcus aureus
(MRSA) has threatened the health of human beings [34]. Non-antibiotic antimicrobial
agents such as antimicrobial peptides (AMPs) have been used for a long time in the history
of humans. AMPs represent a wide range of short, cationic peptides that can kill bacteria,
which have been regarded as a promising solution to combat MDR bacteria [35–37]. Besides,
other non-antibiotic antimicrobial agents, including silver ions and positively charged
polymer-based nanostructures, have also been widely used in antibacterial fields [38–41].
Different from the sterilization mechanism of antibiotics, these non-antibiotic antimicrobial
agents kill bacteria in a physical manner, such as destroying the membrane of bacteria,
not involving the destruction of genetic materials, which avoids the generation of drug
resistance [42–44].

Integrating antimicrobial agents and polymer vesicles can combine the advantages of
both, which brings opportunities and new insights into the field of antimicrobial [45–49].
Though the investigation of antimicrobial polymer vesicles is still in its infancy, the pub-
lications per year have grown fast since 2010, indicating the rapid development of this
field, as shown in Figure 1. We believe that the antimicrobial polymer vesicles will bring
new opportunities in antibacterial and related biomedical applications. Typically, there
are several strategies to integrate different antimicrobial agents with polymer vesicles, as
shown in Scheme 1. For instance, silver nanoparticles (AgNPs) deposited on the membrane
of polymer vesicles can endow the vesicles with excellent antimicrobial activity while
preventing the agglomeration of AgNPs [38,50]. Antibiotics are usually encapsulated in
the interior hole or the membrane of polymer vesicles to achieve the on-demand release at
specific sites [51,52]. There are two strategies to introduce positive charges on the surface of
polymer vesicles: functionalization of antimicrobial peptides and using positively charged
segments with amino groups or quaternary amines as building blocks. The positively
charged polymer vesicles have strong interaction with negatively charged bacterial cell
membrane, which disturbs the local charge density and damages the stability of the cell
membrane, leading to the flow out of the content of bacteria [53–57]. The advantages
of integrating antimicrobial agents and polymer vesicles are as follows: (i) enhanced
charge density on the surface of polymer vesicles, (ii) elongated circulation time in vivo,
(iii) reduced cell toxicity due to the protection of the coronas of polymer vesicles, (iv) to
accomplish on demand on/off of antimicrobial activity, and (v) to achieve antimicrobial
and anticancer simultaneously.
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Figure 1. The publications per year of antibacterial polymer vesicles from 2010 to 2020 downloaded
from Web of Science, searching with antibacterial and polymer vesicle as key words.
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Scheme 1. Design strategies of antimicrobial polymer vesicles.

2. Strategies to Integrate Polymer Vesicles with Antimicrobial Agents
2.1. Deposition of Silver Nanoparticles (AgNPs) onto the Membrane of Polymer Vesicles

AgNPs have been used as effective broad spectrum antibacterial agents to combat both
Gram-positive and Gram-negative bacteria for a long time [58–61]. It is widely accepted
that the silver ions released from the AgNPs are the antimicrobial active agents, which
destroy the activity of proteases by penetrating into the membrane and cell walls of bacteria
to induce the protein denaturation, leading to the death of bacteria [62–65]. It has been
proven that the antimicrobial activity was determined by the diameter of AgNPs due to the
speed of silver ions released from the AgNPs—the smaller the particle size, the stronger
the antibacterial performance [66,67]. Therefore, the size control and stability of ultrathin
AgNPs is the key to improve the antimicrobial activity of AgNPs.

Unfortunately, the ultrathin AgNPs are intended to aggregate to form larger parti-
cles to reduce the surface free energy, which reduced their antimicrobial activity sharply.
Polymer vesicles are potential candidates to support AgNPs due to the facile designing of
the physicochemical property of the coronas [39,68,69]. Traditionally, the silver ions are
adsorbed onto the surface of polymer vesicles, followed by the in situ reduction to generate
AgNPs. Therefore, the key to support AgNPs onto the membrane of polymer vesicles is
to form a negatively charged surface to accumulate the silver ions. The hydrophilic and
negatively charged carboxyl groups were usually introduced to the side chain of polymers,
which were coated on the surface of the formed polymer vesicles [38,50,70]. For instance,
Du and coworkers [38] synthesized an amphiphilic random copolymer poly(ethylene
oxide)-block-poly(2-(dimethylamino)ethyl-stat-t-butyl acrylate) (PEO-b-P(DMA-stat-tBA)).
After hydrolysis of tBA, acrylic acid (AA) segments with carboxyl groups were introduced
to the side chain of the polymer, which then self-assembled into vesicles with a nega-
tively charged surface. Followed by the adsorption and in situ reduction of silver ions,
ultrathin AgNPs with a diameter of 1.9 ± 0.4 nm were deposited on the membrane of
the vesicles, exhibiting excellent antibacterial activity against both Gram-negative and
Gram-positive bacteria with quite low minimum inhibitory concentrations (MICs) of 16.9
and 8.45 µg mL−1, respectively.

Later, the same group [50] prepared biodegradable polymer vesicles, with hydropho-
bic poly(ε-caprolactone) (PCL) forming the membrane and hydrophilic poly(acrylic acid)
(PAA) forming the corona. AgNPs with diameter of 3.4 ± 1.2 nm were deposited on the
membrane of the vesicles, as shown in Figure 2. The AgNPs decorated polymer vesicles dis-
played excellent antibacterial performance against both Gram-negative and Gram-positive
bacteria, with MICs as low as 3.56 and 7.12 µg mL−1, respectively. Surprisingly, the AgNPs
showed low cytotoxicity toward normal human liver L02 cells, and the cell viability main-
tained nearly 100% even after incubation for 48 h with AgNPs concentration of 20 µg mL−1,
which is much higher than the MICs, demonstrating the high selectivity of AgNPs deco-
rated polymer vesicles toward bacteria. The low cytotoxicity of AgNPs decorated polymer
vesicles might be owing to the shield effect of the negative charges provided by PAA
segments. Furthermore, the biocompatible PCL membrane can be biodegraded in the
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presence of Pseudomonas lipase that largely exists in pancreatic tissue, demonstrating the
potential applications of AgNPs deposited biodegradable polymer vesicles in biomedicine.
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2.2. Encapsulation of Antibiotics

Antibiotics have been the most effective antimicrobial agents to kill bacteria for a
long time, which saved millions of people [44,71]. However, the emergence of drug
resistance, especially MDR, has attracted people’s significant concerns [43,72,73]. The
overuse and improper use of antibiotics caused the mutation and evolution of bacteria
accumulated from the drug resistant genes within their plasmids that render drug treatment
ineffective via drug altering enzymes, drug degrading enzymes, or drug efflux pumps [74].
Protection of the antibiotics from the destruction of enzymes pumped out of the cell
membrane might be an effective strategy to reduce the drug resistance. Polymer vesicles
are promising vehicles to deliver functional cargoes such as drugs, genes, DNAs, etc.
to the cell nucleus, and antibiotics could also be directly transported to the nucleus of
bacteria, preventing the destruction of enzymes and pumping out [51,68,75]. For instance,
Battaglia et al. [51] reported the intracellular delivery of metronidazole or doxycycline to
the Porphyromonas gingivalis infected oral epithelial cells by polymer vesicles, which were
disassembled in the early endosomes due to the acidic condition, resulting in the release of
metronidazole and doxycycline. Notably, the metronidazole or doxycycline loaded vesicles
significantly reduced the number of intracellular Porphyromonas gingivalis, much better
than free metronidazole or doxycycline. Besides, the metronidazole or doxycycline loaded
vesicles also showed biocompatibility and low cytotoxicity to oral epithelial cells.

Convertine and coworkers [52] prepared pH responsive polymer vesicles that can
efficiently encapsulate kanamycin to the B. thailandensis (AH183) infected RAW 264.7 cells.
The low level of extracellular bacteria even after 24 h suggests that the polymersomes (also
referred to as polymer vesicles) are able to effectively release the encapsulated antibiotic in
a pH-dependent fashion while localized within intracellular compartments. In contrast
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to the cells treated with free kanamycin, the loaded responsive polymersomes showed
very high levels of bacteria inhibition in both of the RAW cell lysates and the supernatants.
These results suggested that the kanamycin was well encapsulated in the vesicles until the
acid-triggered burst release inside the endosome of RAW cells.

Recently, Liu and coworkers [76] designed enzyme responsive polymer vesicles bear-
ing self-immolative side chains for bacterial strain-selective delivery of antibiotics, as
shown in Figure 3. The vesicles can encapsulate both of hydrophilic antibiotics, includ-
ing vancomycin and gentamicin, and hydrophobic antibiotics such as quinupristin and
dalfopristin, respectively, while the poly(ethylene oxide) (PEO) corona could reduce the
cytotoxicity and improve the biocompatibility of the vesicles. Upon exposure to penicillin
Gamidase (PGA) and β-lactamase (Bla), which are closely associated with drug-resistant
bacterial strains, the self-immolative side chains were degraded, leading to the sustained
release of antibiotics. In addition, considering that the Bla is the main cause of bacterial
resistance to β-lactam antibiotic drugs, MRSA that could overexpress Bla was chosen
to trigger the degradation of the vesicles and release of the encapsulated antibiotics, as
well as evaluate the antimicrobial activity of the antibiotics loaded vesicles. Comparing
with other bacterial stains such as B. longum, L. acidophilus, and E. faecalis, only MRSA
was effectively inhibited due to the release of vancomycin induced by the degradation
of the vesicles triggered by Bla, demonstrating the selective antimicrobial activity of the
antibiotics-loaded vesicles.
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2.3. Introduction of Positively Charged Coronas

The cell membranes of bacteria are negatively charged. Therefore, despite the use of
antibiotics to destroy the genetic materials of bacteria, positively charged nanostructures
usually showed antimicrobial activity due to the strong interaction with the cell membrane
of bacteria [77–81]. Functionalization of positively charged molecules, such as AMPs and
amines to the surface of polymer vesicles or using positively charged polymer chains
as building blocks, are the main strategies to introduce positive charges to the surface
of vesicles [82–87]. In this section, we will discuss the preparation of positively charged
polymer vesicles with amino group contained polymers or functionalization with AMPs.
And the preparation of positively charged vesicles using polymer–polypeptide conjugates
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will be discussed in the next section. Compared to their linear counterparts, polymeric
aggregates including micelles, vesicles, etc. usually exhibited superior antimicrobial activity
due to the enhanced local charge density [88,89].

Polymers with quaternary ammonium groups, especially their aggregates, usually
nanoparticles have shown excellent antibacterial performance against both Gram-positive
and Gram-negative bacteria [75,90,91]. However, the strong positive charges may lead
to severe cytotoxicity such as hemolysis, which is a common side-effect of cationic poly-
mers. Therefore, using polymeric building blocks with moderate positive charges to form
nanostructures might be a comprehensive strategy to balance the antimicrobial activity
and cytotoxicity. For instance, Du and coworkers [53] used poly [2-(2-methoxyethoxy)ethyl
methacrylate]-block-poly[2-(tert-butylaminoethyl) methacrylate] (PMEO2MA-b-PTA) as
building block to prepare cationic polymer vesicles, as shown in Figure 4. The water-soluble
polymer could self-assemble into vesicles with PMEO2MA, which forms the membrane,
and cationic PTA, which forms the corona due to the hydrophilic/hydrophobic transition
of PMEO2MA at 37 ◦C. Comparing to the polymer chains, polymer vesicles exhibited
much better antimicrobial efficacy against both Gram-negative and Gram-positive bacte-
ria under physiological conditions due to the enhanced local charge density. Moreover,
this polymer could also self-assemble into high-genus vesicles by solvent switch method,
which exhibited better antibacterial activity than the simple vesicles due to the efficiently
exposed surfaces [92]. It is noteworthy that the high-genus vesicles showed no cytotoxicity
toward L02 liver cells when the concentration was lower than 1.0 mg mL−1. Besides, the
red blood cell hemolysis experiment also indicated a high H50 (hemolysis rate of 50%) of
4.7 mg mL−1, demonstrating the excellent blood compatibility of the high-genus vesicles.
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Decorating AMPs onto the surface of polymer vesicles or liposomes is another ef-
fective strategy to endow the vesicles with antimicrobial activity [75,84,89]. Recently,
Webster et al. [70] prepared polymer vesicles by the self-assembly of PEG-block-poly(D,L-
lactide) [PEG-b-PDLLA], and the linear AMP, cationic proline (49%) and arginine (24%)-
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riched porcine cathelicidin, PR-39 was decorated on the surface of the vesicles. The AMP
PR-39 could not inhibit the proliferation of S. aureus and MRSA independently. However,
after being linked onto the surface of the vesicles and synergized with AgNPs decorated
on the membrane and methicillin antibiotics encapsulated in the cavity, the multifunctional
vesicles displayed excellent inhibition of MRSA over 23 h with AgNPs concentration of
11.6 µg mL−1 and AMP concentration of 14.3 × 10−6 M, demonstrating the multifunction-
ality and potential of polymer vesicles in combating MDR bacteria.

2.4. Using Antibacterial Polypeptides as Building Blocks

Solid-phase synthesis and polymerization of α-amino acid-n-carboxyanhydride (NCA)
monomers (NCA polymerization) were the most widely used methods to synthesize
antimicrobial polypeptides [57,93–95]. The NCA polymerization was conducted in solution
initiated by amino groups, which was facilitated in combination with functional polymers.
The synthetic methods of antimicrobial polypeptide–polymer conjugates were summarized
in our previous review [96]. Typically, a polymer with amino group terminals was used as
macro-initiator to trigger the polymerization of NCA monomers, leading to the formation
of polymer–polypeptide copolymers. The antimicrobial polypeptides segment is usually
formed by the random polymer of positively charged and hydrophobic amino acids, which
formed the corona of the vesicles to enhance the interaction with the cell membrane
of bacteria. For instance, Du and coworkers [97] grafted the random co-polypeptide of
phenylalanine (Phe) and lysine (Lys) onto the backbone of chitosan by NCA polymerization,
as illustrated in Figure 5. The grafted copolymer could self-assemble into polymer vesicles
with positively charged surfaces, which exhibited excellent antimicrobial activity with a
MIC of 16 µg mL−1, much lower than its linear analogue (31 µg mL−1). In addition, the H50
of the vesicle and polymer chains were 700 and 110 µg mL−1, respectively, corresponding
to a selectivity (the value of H50/MIC) toward bacteria and blood cells of 44 and 3.4,
respectively, indicating the high antimicrobial activity and blood compatibility, as well as
the great potential of the vesicles used in drug delivery while eliminating the inflammation
at the focus of infection simultaneously.
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Later, the same group conducted systematic studies using antimicrobial polypeptide–
polymer conjugates as building blocks to prepare antimicrobial vesicles and investigate
their biomedical applications [54,98–101]. For example, a folic acid labeled biodegradable
PCL-polypeptide vesicle was prepared to inhibit bacteria and targeted drug delivery [54].
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Moreover, they prepared penicillin loaded PCL-b-P(Lys-stat-Phe) vesicles embedded in the
PEG/chitosan hydrogels to achieve the rapid and long-term antibacterial simultaneously,
in which the encapsulated penicillin could kill bacteria rapidly while the sustained release
of penicillin and the intrinsic antimicrobial activity of the vesicles could inhibit the growth
of bacteria for a long time [99]. Very recently, they prepared dual corona vesicles by
the co-assembly of two polymers with the same hydrophobic chain, and ciprofloxacin
hydrochloride was encapsulated in the interior of the vesicles. Taking advantage of the
antimicrobial activity of ciprofloxacin hydrochloride and the vesicles, as well as the shield
effect of the dual coronas, the ciprofloxacin hydrochloride loaded dual corona vesicles
exhibited excellent treatment effect to biofilm-induced periodontitis in vivo [102]. Those
results demonstrated the potential of antimicrobial polymer vesicles in diverse applications
in the field of biomedicine.

3. Antimicrobial Applications of Polymer Vesicles
3.1. Broad-Spectrum Antibacterial

Typically, Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria
Staphylococcus aureus (S. aureus) were used as representatives to evaluate the broad-spectrum
antimicrobial activity of polymer vesicles. There are two widely used methods to determine
the antimicrobial performance of polymer vesicles. One is to count the number of bacterial
colonies incubated with different concentrations of polymer vesicles for a specific time,
while the other is to monitor the optical density (e.g., at 600 nm) of the bacterial solution
with the addition of vesicles by UV-vis spectrometer at different time. Du and coworkers
reported pioneering studies of polymer vesicles in the application of antibacterial [38,88].
In general, the polymer vesicles with positively charged surface exhibited both Gram-
positive and Gram-negative bacteria inhibition activity due to the non-selectivity of the
physical damage of the cell membrane of bacteria [83,103–105]. Comparing to their linear
counterparts, polymer vesicles usually showed better antimicrobial activity due to the
enhanced local charge density and reduced cytotoxicity toward mammalian cell, owing to
the shield effect of the coronas, which was described in the previous sections.

Loading of bioactive enzymes by vesicles to generate antimicrobial active species is
another effective method to combat bacteria. For example, Stevens and coworkers [105]
prepared dendrimersomes by the co-self-assembly of amphiphilic Janus dendrimer (AJD),
glucose oxidase (GOX), and myeloperoxidase (MPO) (noted as GOX-MPO-DSs), as illus-
trated in Figure 6A. The GOX and MPO were encapsulated in the cavity of the vesicles,
and hypochlorite (−OCl) was produced with the addition of glucose, which is an effective
antimicrobial species to kill both Gram-positive S. aureus and Gram-negative P. aeruginosa.
Considering the high toxicity of −OCl to mammalian cells, they developed a strategy to
activate −OCl production in a localized manner in response to a bacterial stimulus. The
glucose encapsulated giant unilamellar vesicles were mixed with the GOX-MPO-DSs, and
the release of the encapsulated glucose could be triggered by bacterial toxins, leading to
the generation of −OCl. In other words, the −OCl was only generated in the presence of
bacterial growth, as shown in Figure 6B. The antibacterial tests demonstrated the excellent
antimicrobial activity (>99.9% elimination) of GOX-MPO-DSs against both of S. aureus and
P. aeruginosa with a concentration of 1 × 1012 particles mL−1, concentrations of Cl- and
glucose of 137 and 20 mM, respectively. Moreover, the GOX-MPO-DSs exhibited excel-
lent cytocompatibility when incubated with the RAW 264.7 cell line without the trigger
of bacteria.
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(A) Encapsulation of GOX and MPO within a vesicle composed of AJDs to produce the antibacterial
nanoreactor GOX-MPO-DS, which produces −OCl to kill Gram-positive S. aureus and Gram-negative
P. aeruginosa upon addition of glucose and (B) Introduction of a bacterial switch-on mechanism
enabled by the toxin-induced release of glucose from giant unilamellar vesicles [105] (Reprinted with
permission from [105]).

3.2. Selective Antimicrobial and Anti-MDR Bacteria

Selective antibacterial could also be achieved by polymer vesicles [76,85,106]. For
instance, Ghosh et al. synthesized polyurethanes with a primary and secondary amine
group, named PU-1 and PU-2, which could self-assemble into capsules due to the intrachain
hydrogen interaction in acid water [85]. The capsules showed selective interaction with
bacterial cell mimicking liposomes over mammalian cell, mimicking liposomes attributed
to the electrostatic interaction and hydrophobic effect. The antibacterial test demonstrated
the ultralow MICs of 7.8 and 15.6 µg mL−1 for PU-1 and PU-2 against E. coli and over
500 µg mL−1 against S. aureus, respectively, indicating the selective killing of E. coli of
polyurethane capsules. Besides, the H50 of the PU-1 and PU-2 were 453 and 847 µg mL−1,
respectively, over 50 times higher than the MICs, implying the high selectivity of PU-1 and
PU-2 to kill Gram-negative bacteria.

Polymer vesicles combined with various antimicrobial active species are potential
candidates to combat MDR bacteria [70,107,108]. For example, Webster and coworkers [70]
prepared multifunctional polymer vesicles by decorating AMP, PR-39 on the surface,
encapsulating methicillin in the cavity, and deposition of AgNPs on the membrane to
combat MRSA. Recently, Zhou et al. [107] designed an alternating copolymer bearing
zinc porphyrin pendants, which could self-assemble into polymer vesicles with high
photothermal conversion efficiency up to 54.1%. The vesicle showed distinct antimicrobial
activity to MRSA and extended-spectrum β-lactamases Escherichia coli (ESBL E. coli) upon
laser irradiation. As illustrated in Figure 7a–c, 84.0% of MRSA colonies were inhibited after
the laser irradiation with the temperature elevated to 62 ◦C. Meanwhile, the photothermal
vesicles also revealed distinct inhibition efficiency of 83.7% for ESBL E. coli. In addition,
the authors also investigated the anti-biofilm activity of the photothermal vesicles toward
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MRSA biofilm, as shown in Figure 7d. After treatment for 10 min with photothermal
vesicles and irradiation, most of the MRSA were killed, demonstrating the outstanding
anti-biofilm effect of the photothermal vesicles assisted with irradiation.
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Figure 7. Antibacterial and anti-biofilm effect of photothermal vesicles in vitro. (a) Photographs
of MRSA bacterial colonies treated with vesicles (500 µg mL−1), upon laser irradiation (635 nm,
600 mW cm−2) for 10 min and (b) corresponding SEM images of the MRSA. Scale bar, 1 µm.
(c) Colony-forming unit (CFU) count of MRSA after various treatments. (d) Live/dead fluores-
cence staining merge pictures of the MRSA biofilm after treatment for 10 min. Scale bar, 75 µm [107]
(Reprinted with permission from [107]).

3.3. Antimicrobial Drug Carrier

Considering the unique structure of polymer vesicles with hydrophilic interior cav-
ity and hydrophobic membrane, antimicrobial polymer vesicles are ideal candidates to
encapsulate and deliver functional cargoes such as antibiotics, drugs, and other biomacro-
molecules to realize specific functions while maintaining the antimicrobial activity of the
carriers [109]. The encapsulation of antibiotics to enhance the antimicrobial activity of
polymer vesicles has been discussed in Section 2.2. This section mainly focuses on the
use of antimicrobial polymer vesicles as drug carriers to deliver functional drugs, such
as anticancer drugs. The reduction of the cytotoxicity or improvement of the selectivity
of the antimicrobial vesicles toward bacteria and mammalian cells is the key to design
antimicrobial carriers. Du and coworkers conducted pioneering investigations in this
field and prepared vesicles by using antibacterial polypeptides as building blocks, which
exhibited improved biocompatibility compared with their linear counterparts. Therefore,
they proposed the new concept of an “armed” carrier to achieve the dual functions of
antimicrobial and anticancer, which is described in Section 2.4 [92,97].

In addition, despite the excellent antimicrobial performance, the AMPs functionalized
polymer vesicles also exhibited enhanced cell uptake and tumor accumulation property.
For instance, He and co-workers [89] functionalized a pH-responsive AMP, [D]-H6L9,
on the surface of a polymer vesicle to construct the pH-responsive vesicle. The AMP is
negatively charged at pH 7.4, making the vesicle nontoxic and serum protein resistant with
long-term circulation in blood. When the pH is decreased to 6.3, the vesicle is positively
charged owing to the protonation of histidines in the sequence of [D]-H6L9, leading to the
enhanced cellular uptake and tumor spheroid uptake, as shown in Figure 8. Considering
the acidic microenvironment at tumor sites, the AMP-modified vesicles can be selectively
accumulated in tumors and taken up by cancer cells promoted by the positively charged
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surface. The macropinocytosis and caveolae-mediated endocytosis by tumor cells induced
by the positively charged AMP on the surface of the vesicles facilitate the lysosomes escape
of the AMP modified vesicle, promoting the targeting of anticancer drugs to the nucleus
of cancer cells. Though the antimicrobial performance is not the focus of this study, we
believe that the concept of this study may bring new insights into the field of antimicrobial
and anticancer.
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3.4. Anti-Biofilm, Wound Healing, and Tissue Engineering

Biofilms are aggregates of microorganisms, in which cells are frequently embedded
in a self-produced matrix of extracellular polymeric substances (EPS) that are adherent
to each other [110–112]. The bacteria density is very high in the biofilm and protected
by the EPS from the destruction of external antimicrobial agents. Antimicrobial poly-
mer vesicles have shown significant potentials in anti-biofilm, wound healing, and tissue
engineering due to their enhanced antimicrobial activity, penetration capability, and multi-
functionality [70,107,113]. For instance, Blackman and co-workers [86] prepared glucose
oxidase-loaded poly(ethylene glycol)-block-poly(2-hydroxypropyl methacrylate) (PEG-b-
PHPMA) vesicles by polymerization-induced self-assembly (PISA) and demonstrated
that the vesicles can “switch on” their antimicrobial activity under the stimuli of glucose.
Upon exposure to the circumstance with glucose, hydrogen peroxide was produced by the
catalysis of glucose oxidase, which was highly toxic to bacteria. The polymer vesicles ex-
hibited excellent antibacterial activity toward a range of Gram-negative and Gram-positive
bacterial pathogens, including MRSA at high glucose concentrations, and comparable
anti-biofilm activity against S. aureus clinical isolate biofilms.

Webster et al. [111] prepared a biocompatible multi-compartment polymer vesicle with
superparamagnetic iron oxide particles (IOPs) embedded in the membrane and methicillin
encapsulated in the cavity to destroy biofilms. With the assistance of an external magnetic
field, the IOPs-encapsulated vesicles could efficiently penetrate Staphylococcus epidermidis
biofilms with a thickness of 20 µm. Laser scanning confocal microscopy revealed differential
bacteria death as a function of drug and IONs loading, as shown in Figure 9a. The distinct
boundaries pointed by the dash line indicated the importance of magnetic field to promote
the anti-biofilm activity of the polymer vesicles. When the concentrations of IOP and
methicillin were 40 and 20 µg mL−1, respectively, all of the bacteria were eliminated
throughout the biofilm thickness, as illustrated in Figure 9b,c. Importantly, this formulation
was selectively toxic towards methicillin-resistant biofilm cells rather than mammalian
cells, demonstrating the high selectivity of the multi-compartment vesicles.
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function of biofilm depth (0 µm = bottom) [111] (Reprinted with permission from [111]).

Recently, Du and coworkers [102] prepared dual corona polymer vesicles by the
co-assembly of PEO-b-PCL and PCL-b-P(Lys-stat-Phe), which could efficiently deliver
antibiotics to biofilms and treat biofilm-induced periodontitis at a much lower concentration
of antibiotics due to the synergy of the intrinsic antimicrobial activity of the polymer vesicles
and antibiotics. The dual corona was formed by PEO and P(Lys-stat-Phe) chains, and the
former provided protein-repelling capability to penetrate the EPS, while the latter endowed
the vesicles with positively charged surface and broad-spectrum antimicrobial activity. The
dual corona polymer vesicles exhibited very high selectivity to kill bacteria with MICs
of 128 µg mL−1 against both E. coli and S. aureus. However, the cell viability was still
as high as 80% at a concentration of 100 µg mL−1. The dual corona vesicles could also
deliver ciprofloxacin to the depth of E. coli and S. aureus biofilm efficiently, leading to a 50%
reduction of the dosage of ciprofloxacin to inhibit the biofilm. Besides, in vivo experiments
demonstrated that the ciprofloxacin-loaded dual corona vesicles could effectively alleviate
inflammation and reduce dental plaque of a rat periodontitis model.

Taking advantage of the unique structural property of vesicles in drug delivery sys-
tems, the antimicrobial polymer vesicles also showed potential in tissue engineering and
wound healing with the encapsulation of functional molecules [107,114,115]. For instance,
Du and coworkers [114] designed a series of antibacterial peptide–mimetic alternating
copolymers (PMACs) with different repeating units, and the PMAC with repeating unit of
14 exhibited the best antibacterial activity against both of E. coli and S. aureus with ultralow
MICs of 8.0 µg mL−1. Notably, the PMACs could self-assemble into polymer vesicles in
pure water while maintained the excellent antimicrobial activity. Growth factors could be
encapsulated in the antimicrobial vesicles and released during the long-term antibacterial
process to promote the repair of bones. In vivo experiments demonstrated the promoted
bone repair capability of the growth factors-loaded vesicles in rabbit models compared
with the control groups.

Very recently, the same group [115] designed antioxidant–antibiotic co-loaded poly-
mer vesicle to cure the infected diabetic wounds, which usually caused a diabetic ulcer
due to the high local concentration of reactive oxygen species (ROS). As illustrated in
Figure 10, a biodegradable polymer PCL-b-PGA was designed to self-assemble into vesi-
cles and encapsulate ciprofloxacin into the hydrophilic cavity. Ceria nanoparticles could be
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deposited on the corona of the vesicles due to the electrostatic interaction between Ce3+

ions and carboxyl groups. The ciprofloxacin and ceria nanoparticles co-loaded vesicle
(CIP-Ceria-V) showed excellent antioxidant capability, in which 50% inhibition rate of
superoxide free radicals was obtained at a very low concentration of ceria (1.25 µg mL−1).
With the concentration of ceria increased to the range of 5 to 20 µg mL−1, the CIP-Ceria-V
exhibited the best protective effect toward normal L02 cells, demonstrating the entirely
elimination of superoxide free radicals. Besides, the CIP-Ceria-V also showed synergetic
antimicrobial activity between ciprofloxacin and ceria nanoparticles, giving MICs of 0.0375
and 0.10 µg mL−1 against E. coli and S. aureus, only half of the free ciprofloxacin. In vivo
experiments on diabetic mice further demonstrated the excellent antioxidant and antimi-
crobial activity of CIP-Ceria-V to promote the healing of the S. aureus infected diabetic
wounds with 14 days.
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4. Conclusions and Future Perspectives

In summary, the preparation strategies and wide applications, as well as the ad-
vantages of polymer vesicles in the antimicrobial field, have been concluded. Typically,
polymer vesicles usually exhibited superior antimicrobial activity compared with their
linear counterparts or free antibiotics due to the enhanced local charge density or high
delivery efficiency. Specific functionalities could be achieved by encapsulating functional
cargoes while maintaining the antimicrobial activity of polymer vesicles, which is of great
significance since bacterial infections are often generated accompanied by different diseases.

To summarize the design strategies and preparation methods of antibacterial vesicles,
using positively charged polymers or polypeptides as building blocks is a promising
method to endow the polymer vesicles with intrinsic antimicrobial activity and reduced
cytotoxicity. However, the mechanism of the high selectivity of antimicrobial vesicles
toward bacteria and mammalian cells is still unclear. Moreover, the efficient delivery of
antimicrobial agents such as AMPs, antibiotics, and silver nanoparticles is another effective
strategy to combat bacteria, taking advantage of the hydrophilic and hydrophobic domains



Polymers 2021, 13, 2903 14 of 19

of polymer vesicles. Compared with the unloaded analogs, the use of polymer vesicles as
carriers ensure the transportation of those antimicrobial agents to the targeting sites and
prevents the reduction of effective dosage due to the defense mechanism of bacteria, such
as efflux pump and hydrolysis enzymes. Benefiting from the synergy effect of different
antimicrobial agents, the multi-components antimicrobial polymer vesicle systems have
shown potentials in combating MDR bacteria. However, despite the significant potentials
of antimicrobial polymer vesicles in wide applications including anti-biofilms, wound
healing, and tissue engineering, this field is still in a phase of rapid growth and discovery.
Therefore, we believe that there are many challenges we should be concerned with in
the future.

(1) How to improve the loading content of antimicrobial active components? The an-
timicrobial agents such as antibiotics are encapsulated in the cavity or membrane
of polymer vesicles during self-assembly. This method limits the loading content of
antibiotics. To improve the concentration of antibiotics is very important to ensure
the entire elimination of bacteria, preventing the generation of drug resistance. Intro-
duction of non-covalent interactions such as π−π interaction, hydrogen bonding, etc.
between antibiotics and polymer vesicles might be an effective method to significantly
improve the loading content of antibiotics.

(2) How to unleash the advantages of polymer vesicles in combating MDR bacteria?
MDR bacteria such as MRSA have threatened the life safety of human beings. Taking
advantage of the multifunctional regions of polymer vesicles, different antimicro-
bial agents including antibiotics, silver nanoparticles, and AMPs could be loaded
simultaneously. The synergy effect between those antimicrobial agents might exhibit
unexpected antimicrobial activity to MDR bacteria.

(3) How to increase the selectivity toward bacteria and mammalian cells? Antimicrobial
agents to kill bacteria by physical interactions with the cell membrane of bacteria
such as AMPs and positively charged polymeric nanostructure often show high
cytotoxicity to mammalian cells. Shielding of the positive charges before targeting
bacteria is the key to increase selectivity. The on-demand release of antimicrobial
agents or exposure of the positively charged surfaces of polymer vesicles in response
to the bacterial stimulus, such as bacterial toxins or external environmental changes
such as pH, concentration of glucose, and so forth is believed to be a feasible strategy.
Besides, the decoration of signal molecules on the surface of vesicles to target the cell
membrane of bacteria is another alternative.

(4) How to achieve antibacterial and anticancer simultaneously? Considering that the
tumor site is commonly accompanied with the bacterial infections due to the decrease
of resistance of patients, the simultaneous realization of antibacterial and anticancer is
of special significance. One option is to use polymer vesicles with intrinsic antimicro-
bial activity as “armed” drug carriers, while the other is to take advantage of the high
cytotoxicity of antimicrobial agents such as AMPs to kill cancer cells. The synergy
between antimicrobial agents and anticancer drugs may bring new insight into the
field of cancer treatment.
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