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Automatic stage identification of 
Drosophila egg chamber based on 
DAPI images
Dongyu Jia1,*, Qiuping Xu2,*, Qian Xie3, Washington Mio2 & Wu-Min Deng1

The Drosophila egg chamber, whose development is divided into 14 stages, is a well-established model 
for developmental biology. However, visual stage determination can be a tedious, subjective and time-
consuming task prone to errors. Our study presents an objective, reliable and repeatable automated 
method for quantifying cell features and classifying egg chamber stages based on DAPI images. The 
proposed approach is composed of two steps: 1) a feature extraction step and 2) a statistical modeling 
step. The egg chamber features used are egg chamber size, oocyte size, egg chamber ratio and 
distribution of follicle cells. Methods for determining the on-site of the polytene stage and centripetal 
migration are also discussed. The statistical model uses linear and ordinal regression to explore the 
stage-feature relationships and classify egg chamber stages. Combined with machine learning, our 
method has great potential to enable discovery of hidden developmental mechanisms.

Female Drosophila have two ovaries, each containing around 16 ovarioles. The ovariole is a string of 6 or 7 
sequentially developing egg chambers. Each Drosophila egg chamber is a basic developmental unit of oogenesis. 
Furthermore, the egg chamber comprises 16 germ-line cells, one oocyte and 15 nurse cells, which are surrounded by 
a thin layer of somatic follicle cells1. Research on the egg chamber contributes significantly to scientific knowledge. 
The egg chamber follicle cell epithelium has been a well-established model system to study cell cycle regulation, cell 
differentiation2–16, cell polarity17–20, endocytosis21–23, exocytosis24, morphogenesis19,25–28, and cancer metastasis29,30. 
Germline-soma interactions provide developmental cues, especially for anterior-posterior and dorsal-ventral 
patterning31–36. More interestingly, egg chambers have distinctively separated germline and soma, which provides 
a unique and reliable system to study germline-soma ligand-receptor interaction1,2,31,37.

The development of the egg chamber during Drosophila oogenesis is divided into 14 stages1. Visual identifica-
tion of different stages requires significant training, including a thorough understanding of egg chamber growth 
progression. Even skilled scientists need to cautiously determine the stages based on general features (Fig. 1)1 and 
frequently refer to neighboring egg chambers to doubly confirm the determination of stages. However, in a single 
confocal image of egg chambers, there might be no neighboring egg chambers to help confirm stages. Moreover, 
even an expert sometimes has difficulty assigning correct stages to inter-stage transitional egg chambers. To 
address these problems, and to reduce the bias caused by human perceptual variation, an objective, reliable and 
standardized egg chamber stage identification method is greatly needed.

DAPI (4′ ,6-diamidino-2-phenylindole) is widely used as a cell nucleus staining dye. In this study, we developed 
a toolbox that applies understanding of egg chamber morphology1 extracted automatically from DAPI staining 
to determine egg chamber stages. We collected 172 confocal microscopy images from different stages to train 
and evaluate our automatic stage identification method. Egg chamber areas of DAPI images proved to be a stable 
feature for stage differentiation, while oocyte size played a critical role for late stage differentiation. Integrated with 
machine learning, our approach provides potential to discover hidden developmental mechanisms, and brings 
the Drosophila community tools for standardizing stage identification and objectively comparing results obtained 
from different labs. In this paper, we applied our method to successfully confirm the occasional appearance of 
Broad expression as early as stage 5, and also unambiguously demonstrated that egg chambers with germline 
Delta mutation entered midoogenesis, even though the follicle cells did not show the appropriate biomarker, Br 5.  
Furthermore, we provided support for the previous understanding that follicle cell mitosis ceases at stage 61,38. 
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Our results clearly showed mitosis occurs in follicle cells of stage-5 egg chambers, while not in those of stage-6 
egg chambers. Our findings clarified our understanding that stage 6 should be considered as an entering stage of 
endocycle, and stage 7 completes endocycle entry2–6,9,10.

Results
Egg chamber morphological feature extraction.  The collected DAPI images should be single cross 
sections in the middle plane, and represents the largest area size. Before image processing, particular stages were 
initially assigned to egg chambers by skilled biologists in our team based on standard descriptive guidance1 
(Fig. 1). The morphological features, including egg chamber size, ratio, orientation, oocyte size, follicle cell dis-
tribution, blob-like chromosomes in polytene nuclei at stage 4, centripetal cell migration at stage 10B, were then 
extracted to train our machine learning method.

Egg chamber size.  The development of an organism is often accompanied by increase in size, and this is 
also the case in Drosophila egg chamber stage development. Since egg chamber size plays a critical role in stage 
determination, we developed an algorithm for automated egg chamber size measurement, whose workflow is 
described as follows:

Image thresholding: Original images (Fig. 2A) were read into Matlab, and the measurement (μ m) of each pixel 
was recorded. Otsu’s method39 was used to convert the original image into a binary image and initialize the seg-
mentation process. Briefly, Otsu’s method applies a threshold that optimizes the separation of image foreground 
and background. This algorithm has been widely used in image segmentation pre-processing steps40. Conditions 
must be met for Otsu’s method to be effective:1) minimum variability in gray levels of foreground pixels and 
background pixels, respectively; 2) maximum gray level contrast between background and foreground pixels. In 

Figure 1.  Identification of 14 stages of Drosophila egg chamber. Characteristics of different egg chamber 
stages.
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our study, the DAPI-stained images satisfy both conditions, as foreground pixels had much lighter color than the 
background pixels. We set the threshold at 20% of Otsu’s threshold to include all desired foreground objects. This 
percentage value was learned through experimentation with data. The Matlab function, graythresh, was used to 
compute Otsu’s threshold. Another Matlab function, im2bw, applied our threshold and converted the grayscale 
image to a binary image. The output binary image replaced all pixel values in the input image with luminance 
greater than the threshold with the value 1 (white, foreground, Fig. 2B) and the remaining pixels with the value 0 
(black, background, Fig. 2B).

Largest component extraction: Digital images are prone to noise that may originate from different parts of 
the image acquisition process. “Noise” is always a relative term and means “unwanted signals”. In our analysis of 
the binary image obtained in the previous step, we considered any foreground image element other than the egg 
chamber of interest as noise, including portions of other egg chambers and scattered spotty pixels (Fig. 2A). To 
detect these noisy pixels and mitigate their negative effects on our analyses, we applied an adjusted average filter, 
which smoothed the image by replacing each pixel value with the average of the pixel values in its neighborhood. 
The average filter had the effect of changing the binary (Fig. 2B) into a new grayscale image (Fig. 2C), which con-
nected previously disconnected regions of the “true foreground”, whereas the small noisy areas of the foreground 
remained disconnected (Fig. 2C). Otsu’s method was re-applied to convert the image (Fig. 2C) back into binary 
format (Fig. 2D). The Matlab function, regionprops, was then used to identify the pixels in each connected region of 
the foreground by sequentially labeling the pixels in each such region by their unique indexes once the foreground 
pixels were identified, and we only kept those in the largest region in the foreground because the egg chamber 

Figure 2.  Extraction procedure for egg chamber size, egg chamber ratio and egg chamber orientation. 
(A) Original image. (B) First post-thresholding image using Otsu’s method. (C) Image after average filter. 
(D) Second post-thresholding image using Otsu’s method on (C). There were four connected regions in this 
image (red arrows). The largest one occupied the area of the egg chamber. The rest were considered noise in 
the following steps and the noise needed to be removed. (B–D) Pre-processing of image to remove noise and 
identify target area. (E) Image mask for the target egg chamber region. (F) Identified target egg chamber region 
in original image intensity. After this step, most noise (smaller region in Fig. 2D) outside the egg chamber was 
removed. (G,H) Initial and final outlines detected from Chan-Vese algorithm (I) Detected image mask for egg 
chamber nuclei and boundary of convex hull of the nuclei. Boundary of egg chamber was indicated in red.  
(J) The final denoised image. This shows the detected egg chamber region in original intensity with outer 
boundary. User has the flexibility of tuning these parameters based on visual inspection of the final denoised 
image. (K) Shrunken boundary and the major axis of PCA. The outer boundary was shrunk inward to avoid the 
follicle cells (shrunken boundary was indicated as blue curve). The major axis (white arrow) along posterior-
anterior direction was computed based on pixels within the shrunken region. The centroid of the egg chamber 
was shown as the red dot. (M) Detected egg chamber orientation. The green arrow points to the anterior side, 
which contained more nurse cells.
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occupies the largest area. This removed unwanted noisy, scattered pixels. Next, we filled in this largest region, as 
indicated in Fig. 2E, and used it as a mask on the original image to obtain a denoised image of the egg chamber 
(Fig. 2F). In other words, for each foreground pixel of the mask (Fig. 2E), the intensity was set to the value in the 
original image and all other pixels were set to zero (black).

Chan-Vese segmentation method: The Chan-Vese segmentation algorithm41 has been successfully used in a 
wide range of medical applications in lesion and tumor segmentation42–44.The Chan-Vese algorithm segments an 
image by minimizing an energy function that balances out foreground-background boundary length, foreground 
area, and purity of the foreground and background. We applied the algorithm to segmentation of the gray scale 
image from the previous step (Fig. 2F). In this algorithm, the initialization of the nuclei boundary can be quite 
arbitrary, so we selected a collection of small disjointed circles (Fig. 2G), since a set of small loops comprises the 
nuclei boundary. Figure 2H shows the detected nuclei boundary. Since the egg chamber forms a nearly convex 
structure, the Matlab function, convhull, was applied to identify all the pixels belonging to the convex hull of the 
nuclei. The convex hull was identified as the region inside the red curve in Fig. 2I. Thus, the area of the egg chamber 
was estimated as the area of the convex hull, computed by multiplying the number of pixels in the segmented egg 
chamber by the area of a single pixel. As in Step 2, we used the binary image shown in Fig. 2I to mask the original 
image and the result is shown in Fig. 2J. This final denoised image (Fig. 2J) may be used to assess the quality of the 
denoising process. The default parameter values in the algorithm were chosen based on the superior results that they 
produced on a large set of DAPI images that guided the development of the method. However, the flexibility of the 
technique allows the use to tune these parameters based on visual inspection of the final denoised image (Fig. 2J).

Egg chamber ratio.  In the previous section, the shape of the egg chamber was modeled as the convex hull 
of the cell nuclei, that is, the collection of all pixels within the red curve in Fig. 2I. Thus, the estimation of egg 
chamber ratio was based on properties of the convex hull. Principal component analysis (PCA)45 was applied 
to the coordinates of the pixels within the convex hull to identify the directions of the axes of major and minor 
variation. The egg chamber ratio was measured as the ratio of the standard deviations of the data projected onto 
the major and minor axes, respectively. Since the standard deviation (SD) is a measure that is used to quantify the 
dispersion of a set of data values, the ratio of SDs measures the ratio of the widths spreading along the major and 
minor axes. We used this measurement instead of using the lengths along these two directions because standard 
deviations are much more robust to localized changes in egg chamber shape than absolute lengths. This stability 
property was extremely important in dealing with tilted images.

Egg chamber orientation.  The major axis of the egg chamber calculated with PCA in the section of “egg 
chamber ratio” aligned well with the oriented posterior-anterior axis. The middle axis along the major axis was 
constructed to determine the orientation of egg chamber. However, PCA just gives an axis, not an orientation. To 
decide the orientation, we radially shrank the boundary of the egg chamber inwards about the centroid (red dot 
in the middle of egg chamber in Fig. 2K) of the chamber (blue curve in Fig. 2K) to keep the follicle cells on the 
exterior. The anterior end was characterized as the side of the chamber that contained a larger number of nurse 
cells. Figure 2M indicates the orientation obtained with this method. This equipped the egg-chamber image with 
a posterior-anterior directionality (green arrow in Fig. 2M).

Oocyte size.  The oocyte localizes to the posterior side of the egg chamber and we approximated its boundary 
by a line segment perpendicular to the posterior-anterior axis. To estimate the boundary, we sampled the middle 
axis along the posterior-anterior axis at 30 equally spaced points Q1 , ···, Q30 , starting from the posterior end 
(Fig. 3A). For each i, we constructed a band perpendicular to the posterior-anterior axis bounded by segments 
through Qi and Qi+1 (one such band is shown in Fig. 3B) and counted the fraction of foreground pixels within that 
band. We set the oocyte boundary (yellow line in Fig. 3C) to be determined by the segment perpendicular to the 
axis through the point Qi closest to the posterior end such that the fraction of foreground pixels was at least 10%. 
The portion of egg chamber area that corresponds to the oocyte was computed as the ratio of the number of pixels 
belonging to the oocyte region and the number of pixels belonging to the whole egg chamber. For visualization 
purposes, the blue, green and red lines in Fig. 3C show the segments perpendicular to the posterior-anterior 
axis for which 1/3, 1/2 and 2/3, respectively, of the whole egg chamber area lies on the posterior side. Although 
not used in this study, another measurement that can be derived from this calculation is the proportion of the 
posterior-anterior axis that falls in the oocyte region (Fig. 3D).

Follicle cell distribution.  To estimate the distribution of follicle cells we needed to discern them from the 
nurse cells. To initialize the process, as in the section of “egg chamber orientation”, we shrunk the boundary of the 
egg chamber inward (blue curve in Fig. 3E) by an amount determined by the egg-chamber size. Since the nurse 
cells are much larger than follicle cells, only follicle cells fall completely outside the shrunken boundary, even 
though some nurse cells might intersect the boundary, thus allowing separation of the follicle cells (Fig. 3G). The 
distribution of the follicle cells was quantified as follows. We set a coordinate system based at the centroid of the 
egg chamber using the posterior-anterior axis and an axis perpendicular to it. We then divided the plane into 12 
sectors of equal width. Within each sector we calculated the average follicle cell density, defined as the number of 
foreground pixels within that sector divided by the length of the part of the egg chamber boundary within the 
sector. The distribution of average follicle cell density was depicted as indicated in Fig. 3H. This representation 
gave us a visual tool to inspect the uniformity of the distribution of follicle cells. Circle-like curves (blue in 
Fig. 3H) indicate a more uniform distribution of follicle cells. To quantify the uniformity of the distribution, we 
used the ∆-distance46 between the learned distribution and the uniform distribution defined as ∑
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where  p{ }i , q{ }i ,  = i n1  where p and q are vectors representing two discrete distributions. Follicle cells distribu-
tion of egg chambers in different stages is shown in Supplementary Figs 1, 2 and 3.

Blob-like chromosomes in polytene nuclei at stage 4.  Here we describe a method that was used to 
detect blob-like chromosomes in polytene nuclei for stage-4 egg chambers. For a given image, as shown in Fig. 4A, 
following the previous steps we constructed a binary mask for the nurse cell nuclei (Fig. 4B) that was applied to 
the original image to segment the nuclei of the nurse cells (Fig. 4C). In this way, we extracted the nurse-cell nuclei 
with the original image intensities (Fig. 4C). Then this image was read into a marker-controlled watershed seg-
mentation algorithm47. This algorithm has been used in many applications that require separation of touching 
objects48,49. The watershed transformation found “catchment basins” and “watershed ridge lines” in the image by 
treating it as a topographical relief, where the gray-level of a pixel was treated as its height in the relief. From this 
watershed segmentation result (Fig. 4D), we could see that almost every nurse cell had been further divided into 
several small parts indicated by different colors in Fig. 4D.

Centripetal cell migration at stage 10B.  To differentiate egg-chamber stages 10A and 10B, we used an 
algorithm that detected the centripetal follicle cells. For a given image (Fig. 4E), the previous steps for construct-
ing a mask for the nurse cells were applied. The resulting binary image also includes the nuclei of the centripetal 
follicle cells (Fig. 4F). To remove the nurse cells from the binary mask, we applied the same technique used for 
oocyte size estimation and employed the result from PCA in the section of “egg chamber ratio”. We first identi-
fied a band with adjustable width by detecting the oocyte boundary (Fig. 4G). We set the bandwidth at 0.8 of the 
standard deviation along the major axis, so as to capture all possible migrating cells without including an entire 
nurse cell in the band. We then detected the cells that were close to the egg chamber boundary as the centripetal 
cells (highlighted in Fig. 4H).

Statistical analysis between morphology and stage.  In the statistical analysis section, for modeling 
purposes, we combined specimens of stage 10A and stage 10B as stage 10. Further separation of these two stages 
can be done using the centripetal migration feature.

Boxplot and regression.  To explore the relationship between egg chamber morphological features and 
stages, we first used boxplot to graphically depict groups of numerical data through their quartiles. In biology, 
exponential growth occurs often. Instead of visualizing the size of the egg chamber, we presented the boxplot 
of logarithm of egg chamber size (LS) (Fig. 5A) for stages 2 to 12. This figure showed that the logarithm of 
the egg chamber size increased monotonically with stage. To further assess the relationship, linear regression 

Figure 3.  Determination of oocyte size and follicle cell distribution. (A) Constructed middle axis (green 
curve) in binary image along posterior-anterior direction with each point numerically ordered along P-A 
direction. (B) One example of band (in cyan). The boundaries of this band were perpendicular to the major 
axis and went through two consecutive points on the middle axis. (C) Detected oocyte region boundary (yellow 
line). The oocyte boundary was a line perpendicular to the major axis and passed the point closest to the 
posterior end such that the fraction of foreground pixels in the discrete band was at least 10%. (D) Illustration 
of the length proportion of the oocyte region. This length proportion was defined as the quotient of middle axis 
length within the oocyte region (1) and the whole middle axis length (2). (E) Adjustable shrunken boundary 
(blue curve) which passed follicle cells. (F) Detected mask of nurse cells. (G) Detected follicle cells were divided 
into 12 equal angle sectors (green arrows show posterior-anterior direction and dorsal-ventral direction).  
(H) Visualization of follicle cell distribution. Circle-like blue curves indicate more uniform distribution of 
follicle cells.
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Figure 4.  Detection of blob-like chromosomes in polytene nuclei and centripetal cell migration.  
(A) Original image of a stage-4 egg chamber. (B) Detected mask of nurse cells. (C) Detected nurse cells in 
original intensities. (D) Watershed algorithm output. Each nurse cell had been further divided into several small 
parts denoted by different colors. This varied coloration indicates the existence of blob-like chromosomes in 
polytene nuclei. (E) Original image of a stage-10B egg chamber. (F) Detected mask for inside cells. (G) Possible 
centripetal migration region was highlighted as adjustable black band perpendicular to the major axis. In this 
picture, part of two nurse cells were captured in this band (red arrow), and since they only partially belonged to 
this band, the algorithm excluded those as candidates of centripetal migration cells. (H) Detected centripetal 
cell migration. Centripetal cell migration was identified as whole cells inside the band near the outer boundary.

Figure 5.  Boxplot and regression analysis. Boxplot showed the medians and dispersions of samples within 
each stage group; regression analysis modeled the relationship between stages and feature. (A) Boxplot of 
logarithm of egg chamber size (LS) of stage 2 to 12. (B) Boxplot of oocyte size (OS) of stage 6 to 12. (C) Boxplot 
of egg chamber ratio (CR) of stage 2 to 12. (D) Linear regression of stage (2-12) versus LS, with a coefficient 
of determination as R2 =  0.95. Shaded region represents 95% confidence interval for predicated average LS. 
(E) Linear regression of stage (6–12) versus LS with R2 =  0.836. Shaded region represents 95% confidence 
interval for predicated average OS. (F) Linear regression of stage (2–12) versus LS with R2 =  0.76. Shaded region 
represents 95% confidence interval for predicated average CR.



www.nature.com/scientificreports/

7Scientific Reports | 6:18850 | DOI: 10.1038/srep18850

analysis revealed a strong linear relation between the stage and the logarithm of egg chamber size (Fig. 5D) 
with the coefficient of determination R2 =  0.95. This strong linear relationship indicates egg chamber size has an 
exponential growth pattern with a constant growth rate through the developmental process. The shaded area in 
Fig. 5D showed the 95% confidence interval of the predicated average logarithm size of the egg chambers. The 
two boundary lines of the shaded area were close to the fitted regression line, another indication of the strong 
linear relationship.

Another important egg chamber morphological feature is oocyte size (OS) (measured in terms of percentage of 
egg chamber, for stage 6–12), which showed a similar monotonically increasing pattern (Fig. 5B). The regression 
model (Fig. 5E) gave R2 =  0.84. However, we observed that the OS in late stages (stage 11 and stage 12) increased 
relatively faster than those from previous stages, the timing of change in rate increase was consistent with the start 
of the nurse cell dumping process. Nurse cell dumping is a swift biological process to feed the oocyte by transferring 
materials into it within a short period of time1,50.

The egg chamber ratio (CR) also presented a linear pattern with respect to increasing stage (Fig. 5C, F). This 
quantitative evidence showed that the global shape of the egg chamber elongates from a sphere to an ellipsoid with 
maximal respective ratio around 3.

Stage 8 and stage 9 follicle cell distributions.  At transitional stages 8/9, anterior follicle cells start to 
stretch and migrate away from each other at a wider distance1,51. The onset of anterior follicle cell stretching is 
closely linked to the border cell migration happening in the same period of time, which is a well-established 
model system to study cancer metastasis29,30. However, no one has yet clearly defined the starting point of stage 9. 
Here, we present a method to quantify the uniformity of the follicle cells and approach a clear definition of stage 
9 onset. A two-sample t-test was used to assess the statistical significance of the difference between two group 
means. To evaluate the follicle cell distribution of stage 8 (n =  11) and stage 9 (n =  9), the distance between indi-
vidual distributions of follicle cells to the uniform distribution were used in the test. The boxplot (Fig. 6A) showed 
a clear increase in these distance measurements from stage 8 to stage 9. The t-test confirmed this result with 
p =  3.79*10−6. This p-value indicated the difference between those two stages is statistically significant. The cutoff 
boundary of the two groups was given by ∆-distance =  0.2177, which was the intercept of the fitted Gaussian 
curves as shown in Fig. 6B. This means we can classify an individual egg chamber as stage 9 when the ∆-distance 
of its follicle cells is greater than 0.2177; otherwise, it is classified as stage 8.

Stage classification (ordinal regression).  An appropriate machine learning algorithm for a given appli-
cation is chosen depending on many factors. Two crucial factors are the given structure of data and the loss func-
tion of interest, as they simultaneously characterize the need for developing specific algorithms. In our case, we 
were interested in classifying the stages of egg chambers based on quantitative morphological features while the 
stages exhibit a natural growth order. Thus, the problem setting fits smoothly in the field of ordinal regression52. 
To apply ordinal regression analysis, we used s to represent the stage. The equation in Supplemental Table 1 was 
used to calculate the value ( )( ≤ )

( > )
log p s k

p s k
, where = , ,k 2 11, and ( > )p s k indicated the probability that a certain 

sample came from a stage later than k. The boundary cutoffs between stages were computed from those formulas, 
and egg chamber size cutoffs were shown in Fig. 1. Some of the values were not available, such as egg chamber size 
cutoff between stages 11 and 12, which was attributed to the indistinguishability in the sizes of stage 11 and 12. 
This was supported by the small differences in the intercepts of the last two egg chamber stages in Supplemental 
Table 1 as compared to other intercept differences between any other egg chamber stages in the first row of 
Supplemental Table 1.

Figure 6.  Analysis of follicle cell distribution distance between stage 8 and 9. (A) Boxplot of follicle cell 
distribution distance of stage 8 and 9. Two-sample t–test gives significant value p <  0.000004. (B) Fitted 
Gaussian curves of follicle cell distribution distance for stage 8 (red) and 9 (green). The data pointed on the 
horizontal axis depicted all follicle cell distribution distances (∆-distance), the range of the ∆-distance is from 
0.0184 to 0.4192. The Gaussian curves were fitted by using Gaussian distribution with computed sample mean 
and sample standard deviation. The cutoff to classify stage 8 from stage 9 was computed as the intercept of two 
fitted curves. The corresponding follicle cell distribution distance of this intercept point is 0.2177.
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Experimental Applications
Stage identification of the appearance of Broad expression.  During egg chamber development, a 
germline ligand, Delta, induces somatic Notch signaling from stage 52, and Notch signaling directly regulates the 
expression of its downstream target, broad (br), in follicle cells. During the process, the Nicd-Su(H)-Mam trimeric 
complex directly binds to the Su(H) binding site located at the br enhancer, brE, region5. Br protein level is highly 
upregulated at stage 6, yet it has been reported that Br could be detected at low dosage as early as stage 5 based on 
egg chamber morphology5. To confirm these findings, we examined some validated stage-5 egg chamber images 
by our feature extraction algorithm, and found that a few egg chambers (20%, n =  10) did not show Br expression 
(Fig. 7A), while a majority (80%, n =  10) had early Br presence (Fig. 7B), confirming the existence of Br from 
stage 5, and suggesting Br is very sensitive to Notch signaling.

Confirmation of egg chambers with germline Delta mutation entering midoogenesis.  The 
expression pattern of Br could be detected as early as stage 5, and later on, and is usable as one marker of 
midoogenesis (post-stage 5). However, in germline Delta clones, Br expression was suppressed5. That the expres-
sion of Br was no longer a reliable marker to label post-stage 5 egg chambers, posed a problem, and this problem 
applies to other cell-stage markers as well. Our toolbox provides an alternative approach to determine accurate 
stages. For instance, in Fig. 7C, while there was no detectable Br in the egg chamber within the germline Delta 
clones, our data extracted from DAPI images based on the computational model successfully predicted that this 
egg chamber was actually in stage 8 (Fig. 7C), which belongs to midoogenesis53, consistent with the general 
germline cell morphology of the egg chamber.

Clarification of the cease of mitosis in stage-6 egg chambers.  During oogenesis, the follicle 
cells sequentially undergo three distinctive cell cycle programs: the mitotic cycle (early oogenesis), endocycle 
(midoogenesis), and gene amplification (late oogenesis)53. Some researchers considered that the mitotic cycle 
includes stages 1–6, endocycle stages 7–10A, and gene amplification stages 10B-133,4,10,34,54, while others believed 
the mitotic cycle only includes stages 1–51,2,38. We applied this computational method to egg chamber images that 
were stained with the mitotic marker, PH3, to detect mitosis in follicle cells. We found that stage-5 egg chambers 
(100%, n =  17) had PH3 staining (Fig. 7D), suggesting follicle cells still underwent the mitotic cycle at that stage. 
Consistently, stage-6 egg chambers (100%, n =  15) showed the absence of PH3 staining (Fig. 7E). It seems clear 
that mitosis ceases from stage 6, and therefore endocycle should be considered to start from stage 6 as well. Notch 
signaling is known to appear from stage 5, and induce the mitotic cycle/endocycle (M/E) switch. However, its 
activation receives gradual response. Some downstream genes like br respond early5, others respond later, includ-
ing Cut3. Egg chambers take time to coordinate signaling output to induce the M/E switch, and the differentiation 
of the follicle cells becomes apparent from stage 72,6. This complex coordination process might start the M/E 
switch in the follicle cells at stage 5, successfully inhibit mitosis at stage 6, and fully enter in endocycle and induce 
differentiation at stage 7. Therefore, we propose the M/E switch occurs at stages 6/7.

Discussion
The Drosophila egg chamber is a widely used model system in life science. Biologists determine the specific stages 
of the egg chamber mainly based on egg chamber morphology and some stage-specific markers. However, visual 
stage determination can be a very tedious and laborious task. Moreover, it is difficult to reproduce exactly the same 
measurements using manual methods, which is likely due to disparate criteria from one image to another image. 
Our study applies automated stage identification of the egg chambers using DAPI images in order to provide an 
objective and reliable method for quantifying egg chamber features and classifying stages. The method proposed 
here includes the integration of image processing and statistical inference. As yet, there is currently no automated 
method for this task, so this novel approach to stage identification offers significant merits such as objective and 
replicable results with minimum user interaction. Our automated method processes and counts all images using 
set criteria, making it immune to inter-observer and intra-observer errors.

Through linear regression analysis, egg chamber stage has shown strong correlation with all three main mor-
phological features, logarithms of egg chamber size, oocyte size and egg chamber ratio (R2 =  0.95, R2 =  0.84 and 
R2 =  0.76, respectively). Two reasons might explain the relatively low correlation for oocyte size and egg chamber 
ratio. First, the DAPI image is only a cross section of the 3D structure of the egg chamber, and capture of nurse cell 
positions is subject to the orientation of the egg chamber around its anterior-posterior axis. Second, shearing-stress 
during egg chamber slide preparation may distort the egg chamber, and egg chamber ratio is sensitive to resulting 
distortion. These two reasons weaken the stability of egg chamber ratio compared to egg chamber size. The abso-
lute measurements (μ m2) of egg chamber size also bypass the limitation of various resolutions of DAPI images. 
The strong linear relationship between the stages and the logarithm of egg chamber size indicates an exponential 
growth of the egg chamber size with a constant growth rate. A close inspection of Fig. 5D reveals a decrease in 
growth rate from stage 6 to stage 8, thus we hypothesize there might be a growth control mechanism to slow the 
growth. Interestingly, there is a nutrition checkpoint at stages 8/9; if egg chambers lack adequate nutrition at this 
point, they then undergo apoptosis55. Therefore, it is likely that egg chamber growth slows from stage 6 to stage 8 
in order to prepare for the nutrition check.

While our method is exciting and important to the development of standards, we admit it has limits. First, 
since our major goal is to propose image feature extraction methods, the DAPI images used in this study are single 
cross sections in the middle plane which represent the largest egg chamber size, and current code was developed 
on cropped images which contain one single egg chamber of interest. This limitation can be overcome by involv-
ing batch analysis of z-stack images to detect the DAPI images of cross sections with the largest area. Preprocess 
of egg chamber segmentation could further help us to eliminate the cropping. Second, a certain level of image 
quality is required for our image feature extraction process. To accommodate images with different quality levels, 
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Figure 7.  Experimental applications of stage identification. In all panels, DAPI staining (white in A–E) 
marks cell nuclei. (A-A’) Br expression (white in A’) was absent in a stage-5 wildtype egg chamber (egg chamber 
size: 2273.6 μ m2). (B-B’) Br expression (white in B’) was detected in a stage-5 wildtype egg chamber (egg 
chamber size: 2175.4 μ m2). (C-C’) Follicle cells covering the Dl rev10 germline clone in a stage-8 egg chamber 
(egg chamber size: 7908 μ m2) did not show detectable Br expression (white in C’). (D-D’) Mitotic marker PH3 
staining (white in D’) was detected in follicle cells of a stage-5 egg chamber (egg chamber size: 2999.4 μ m2).  
(E-E’) Mitotic marker PH3 staining (white in E’) was absent in follicle cells of a stage-6 egg chamber (egg 
chamber size: 4606.1 μ m2). Anterior is to the left. Bars, 10 μ m.
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we provide visualization aids for results and allow user intervention when the automatically learned parameters 
fail to provide a proper decision. Third, in this study, we only included samples from stage 2 to stage 12. Stage-1 
egg chambers are contained in the germaria, and are not separable for feature extraction. Size variations in stage-
13 egg chambers are larger than the size variance in other stages. However, these problems can be easily solved 
by manual identification due to significantly distinguishable egg chamber morphological features of stage 1 and 
13. In addition, detection of blob-like chromosomes in polytene nuclei and centripetal cell migration currently 
requires the cross section of the DAPI image which clearly showed stage-specific features. We also admit that 
skilled scientists can easily determine the stages, and routinely assign stages when they examine phenotypic or 
gene expression. However, scientists might assign stages differently due to human bias, and our method provides 
an alternative approach to determine the egg chamber stages in a repeatable and standardized way, in addition to 
routine descriptive guidance. Our current method is the beginning step, and we hope to involve more image/shape 
analysis experts and statisticians into basic biology research field. Our long-term goal is to involve the teaching 
process with the computer, which can literally learn from the involvement and improvement of our algorithm, 
and be able to adapt from manual feedback. It is similar to the deep learning concept.

The image analysis technique can be applied to other biological problems. Quantitative analysis of this type 
would provide objective judgment of a variety of biological phenomena. When combined with advanced machine 
learning and data mining techniques, quantitative measurements may further encourage discovery of complex 
relationships within biological events. More importantly, our image analysis toolbox provides a reliable way to 
standardize identification of egg chamber stages, which can integrate results across different laboratories and build 
up new findings on organized data. Considering these advantages, we believe the versatile utility of our algorithm 
outweighs its limitations.

Materials and Methods
Fly strains and genetics.  The following fly strains were used: hsFLP;;FRT82Bubi- RFP, FRT82BDlrev10/
TM6B (amorphic allele)5. w1118 was used as a wild-type control, cultured with standard Bloomington medium, 
and fed with yeast paste two days before dissection. For FLP/FRT clone induction56,57 and slide preparation, pre-
viously described procedures were followed3,58.

Immunohistochemistry and image acquirement.  Immunohistochemistry and image acquisition 
were carried out as previously described3. The following primary and secondary antibodies were used: mouse 
anti-Br-Core (25E9) (1:30; Development Studies Hybridoma Bank, USA), rabbit anti-PH3 (1:200; Millipore), 
Alexa Fluor secondary antibodies (1:400; Invotrogen). DAPI (1:500; Invitrogen) was applied to stain nuclei. 
Images were acquired with a Zeiss LSM 510 confocal microscope. The DAPI images should be single cross sec-
tions in the middle plane, and represents the largest area size. Cropping of a single egg chamber was processed 
in Image J.

Image processing methods.  Quantitative features were extracted from DAPI images using scripts writ-
ten in MATLAB (MathWorks, MA, USA). The egg chamber area was measured as the convex hull of the cells 
belonging to that sample. Principle component analysis on the pixel locations within the egg chamber was used to 
identify the P-A axis. Egg chamber ratio was quantified by the ratio of the deviation along major and minor axes. 
We used this measurement instead of the absolute height and width of the egg chamber to accommodate possible 
distortion of the egg chamber during image preparation and processing. For late stages, oocyte size boundary was 
identified along the middle axis passing through the midsagittal plane image of the egg chamber by aligning with 
the direction of P-A axis. The follicle cells and nurse cells were separated by the combination procedure of using 
egg chamber boundary and connected regions in the image. The distribution of the follicle cells was measured by 
12 dimensional vectors representing the quantity of follicle cells within 12 equally-spaced sectors along the 360 
whole circle discretization started from the anterior end. Uniformity was measured by ∆-distance between the 
learned distribution and uniform distribution. A watershed algorithm was applied on the separated nurse cells to 
detect blob-like chromosomes during the late S phases at stage 4. Detection of possible centripetal cell migration 
was focused on the nurse cell/oocyte boundary region. The feature extraction algorithm has been implemented 
and tested on Matlab 2013b and newer. This toolbox is deposited at Github for free download (https://github.
com/qx0731/Morphological-features-from-DAPI-image-for-egg-chamber-stage-identification).

Quantitative methods.  The egg chamber size was measured in μ m2. Oocyte size was measured in relative 
area as a percentage of the whole egg chamber size. To explore the relationship between the egg chamber features 
of different stages, we examined three features: egg chamber size, oocyte size and egg chamber ratio. Boxplot 
and linear regression were conducted on egg chamber stage and the three features, respectively. DAPI images 
(n =  172) ranging from stage 2 to stage 12 were used in the experiments. Ordinal regression was applied to predict 
an ordinal dependent variable given one or more independent variables. In this paper, we conducted three ordinal 
regressions, each addressing one feature with respect to egg chamber stage. Classification boundaries were com-
puted for each feature respectively. To evaluate the follicle cell distribution of stage 8 and stage 9, a two-samples 
t-test was used to show the significant difference between these two stages, and one follicle cell classification cutoff 
for stage 8 and 9 was also learned by finding the intercept of two fitted Gaussian models.
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