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Abstract

We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene
sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this
task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of
different motifs, and new ways to deal with redundancies among significant motif–function associations. This framework is
applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of
motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to
improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore
well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are
not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee,
Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations.
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Introduction

Computational discovery and analysis of gene regulatory

networks begins with the characterization of transcription factor

(TF) motifs, through experimental or computational means. The

next task of characterizing the biological functions regulated by

these motifs is crucial for gaining broad, systems-level insights

about the regulatory network, and has been the subject of several

studies in recent years [1–3]. We present a general framework for

discovering such motif – function associations through genome

sequence analysis, while using evolutionary conservation as a

guide. Evolutionary comparisons in this framework are carried out

without relying upon alignment of non-coding sequences, making

the framework especially well suited for species that are greatly

diverged from their nearest sequenced relatives.

Starting with a list of TF motifs, a researcher is often faced with

the task of annotating putative binding sites matching those motifs,

the so-called ‘‘motif scanning’’ [4] task. The predicted binding sites

may then be used to annotate a set of genes (typically genes that

are proximal to the sites) as being putative regulatory targets of the

motif. Such a set of (predicted) target genes of a TF is called its

‘‘motif module’’ [5]. A motif module is thus a part of the gene

regulatory network, representing the direct regulatory targets of a

TF. Prediction of motif modules has been the focus of numerous

studies in the past [6–8]. In a later section (‘‘Motif scanning

methods’’), we briefly review existing approaches to this problem,

most of which are based on finding sites whose quality of match to

the motif exceeds a threshold, or locations where clusters of above-

threshold matches are found. Each of these approaches has its

merits and problems, and it is not clear which method ought to be

used in practice. We examine this issue systematically, while

proposing a new statistical score for motif scanning, and find

different methods to be most efficacious for predicting the motif

module for different TFs.

A motif module may be tested for statistical enrichment for any

given gene set, such as genes in a Gene Ontology (GO) functional

category [9], a metabolic or signal transduction pathway [10], or

genes coordinately expressed in a particular condition [11–12].

Such statistical enrichment can shed light on possible biological

roles of the motif. A compendium of statistical associations

between motifs and functions is called a ‘‘motif function map’’ [2].

This map is a potential starting point for researchers exploring the

cis-regulatory basis of a particular biological process [5]. It may be

constructed by straight-forward statistical procedures for signifi-

PLoS Computational Biology | www.ploscompbiol.org 1 January 2010 | Volume 6 | Issue 1 | e1000652



cance of overlap between a motif module and a functionally

coherent gene set [1–2]. One problem faced by such a

construction is that of redundant associations, e.g., where two or

more functional sets are minor variants of each other. We present

a new statistical approach to deal with this problem, which

examines the significance of a motif – function association

conditional on another association.

Prior studies have helped lay the informatics foundations of

motif module and motif function map prediction in genomes with

the greatest wealth of molecular data, such as yeast, fruitfly, mouse

and human. Factors facilitating their success have included the

availability of experimentally characterized motifs [13–14], gene

function annotations [9], the opportunity to use alignment-based

comparison among closely related species [15] and other sources

of information such as chromatin immunoprecipitation-based

binding data [16], tissue-specific gene expression data [1,17], etc.

However, to a researcher interested in gene regulatory networks of

a less studied genome, that lacks the wealth of molecular data

listed above, the previously published frameworks for motif

analysis are not directly applicable. A special framework is needed

for motif function map construction in such genomes, that can

exploit useful prior information, such as motifs, genome sequence

and gene function annotation, from a distantly related species. One

such framework is developed and presented here.

An important lesson from recent work on genome-wide cis-

regulatory analysis has been the critical role of comparative

genomics [17–18] in curbing false positive predictions. Cross-

species comparison may be used directly in motif scanning, by

highlighting putative binding sites whose conservation is revealed

by alignments [19]. It is also worthwhile to compare motif modules

across different species, in the hope that evolutionarily conserved

components of a module will represent more reliable motif – target

relationships [20]. Yet another plausible way to exploit compar-

ative genomics, and one that we explore here, is to compare motif

function maps across species. Here, the motif module and motif

function predictions are done separately in each species, and motif

– function associations that are evolutionarily conserved are

highlighted. This approach may have the advantage of detecting

true motif – function relationships even if the underlying motif

module is not found to be sufficiently well conserved evolution-

arily, perhaps due to errors in the its computational prediction.

This is the novel comparative genomics paradigm proposed and

implemented in our framework, which we use to achieve more

specific predictions, without relying on non-coding sequence

alignment or the availability of genome sequences of closely

related species.

We illustrate the use of our new framework by predicting motif

functions in the recently sequenced genome of the jewel wasp,

Nasonia vitripennis (Insecta: Hymenoptera), the first of a parasitoid

species to be sequenced [21]. Even though the evolutionary

divergence of Nasonia from its closest sequenced relative, the

honeybee Apis mellifera (,180 Myrs, [21]), and from the fruitfly,

Drosophila melanogaster (,300 Myrs, [21]), precludes alignment-

based comparison of non-coding sequences, we are able to exploit

these two genomes as well as the vast knowledge base in Drosophila

to make reliable predictions in Nasonia.

Results

Overview
We begin with an outline of the major contributions of this

work, pointing out the specific challenges that needed to be

addressed.

Computational pipeline development and evaluation.

There are two major components here.

1) Motif function prediction in single species: First, we examine

the motif scanning problem, i.e., predicting regulatory targets

of a TF, given its binding specificity (motif). We propose a

new statistical score, based on hidden Markov models, for this

problem. We implement this score, as well as two alternative

scores that capture the gist of existing statistical approaches to

the problem [7,22–24]. Second, the highest scoring target

genes of a motif are tested for association with specific

functions, i.e., Gene Ontology (GO) [9] categories. Since this

step in its conventional form tends to report motif associations

with numerous mutually redundant GO categories [2], we

propose a new statistical approach, based on an extension of

the Hypergeometric test, to trim the list of significant

associations to a non-redundant list. Finally, we apply the

above two steps on a well studied genome (e.g., Drosophila

melanogaster) where motifs have been discovered and genes

have been annotated with GO categories, to choose one of

the three motif scanning scores as the most appropriate one

for each motif. The selected motif scanning score, along with

tools for the first two steps above, can now be used to predict

motif – function associations in any genome, for any given

motif.

2) Enabling comparative genomics across large divergences:

a) To apply our pipeline to a relatively less studied species

such as Nasonia vitripennis (henceforth called the ‘‘target’’

species or genome), we first need to specify the input set of

TF motifs. We obtain this from the nearest genome (D.

melanogaster in this case) where such a collection exists

[13,25–26]. (Other taxonomical groups with relatively

large collections of experimentally characterized motifs

include yeast [14], mouse [13,27] and human [13,28].)

b) We consider the possibility that a motif characterized in

one species (D. melanogaster) may not be usable in a greatly

diverged target species (N. vitripennis) due to a significant

change in the binding specificity of the TF. We address this

potential problem by using an automated pipeline to align

DNA-binding domains of orthologous TFs in the two

species and exploiting structural information to determine

if DNA-contacting residues have changed, thereby obtain-

ing information on the evolutionary conservation of the

corresponding motifs.

c) The steps outlined thus far (steps 1, 2a, 2b above) are

sufficient to discover motif – function associations in the

target genome. However, with the goal of boosting the

specificity of such predictions, we apply the pipeline

Author Summary

We develop a computational pipeline for predicting the
functions of transcription factor motifs, through DNA
sequence analysis. The pipeline is applied to the newly
sequenced genome of the jewel wasp, Nasonia vitripennis.
It exploits the wealth of molecular data available in
another insect species, the fruitfly Drosophila melanoga-
ster, and uses cross-species comparison to its advantage.
Our main contribution is to show how this can be done
despite the large evolutionary divergence between the
two species. The methodology presented here may be
applied more generally to other scenarios (genomes)
where comparative regulatory genomics must deal with
large evolutionary divergences.

a)

b)

c)

Comparative Genomics across Large Divergences
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separately to the target genome as well as other genomes

where the associations are expected to be conserved by

and large. We then identify associations that are

statistically significant in every species, thus using evolu-

tionary conservation as a ‘‘filter’’. Unlike previous studies

[3,15,29] that used the conservation filter to improve

binding site prediction (by requiring that sequence

alignments reveal the site to be conserved), we use

evolutionary conservation at a higher level that does not

rely upon non-coding sequence alignment.

Furthermore, we systematically assess the effect of using cross-

species comparison on the accuracy of motif function character-

ization. For this purpose, we design benchmarks comprising highly

reliable motif – GO term associations, based on the wealth of

chromatin immunoprecipitation (ChIP)-based and genetics-based

data on TF – DNA binding in Drosophila. We then show that using

the new approach (step 2c above) consistently achieves signifi-

cantly greater precision than the single-species version of the same

pipeline.

Applications of pipeline: We first compile a compendium of

highly significant motif associations with function categories in

GO, through direct application of the above pipeline to Nasonia.

We then present alternative ways in which comparison of motif –

function associations across species can be used to gain biological

insights: (a) associations with social behavior-related gene sets in

the honeybee are compared with the solitary taxa Nasonia and

Drosophila, in search of a cis-regulatory code of sociality, and (b)

motifs with known roles in regulation of oxidative phosphorylation

in Drosophila are tested for associations with this pathway in

Nasonia.

A computational pipeline for charting a ‘‘motif function
map’’

A ‘‘motif module’’ [5] is the set of genes computationally

predicted as being targets of a given motif. A motif module can be

tested for statistical enrichment for any given gene set, typically a

Gene Ontology (GO) functional category, and the full compen-

dium of statistical associations between motifs and functions is

called a ‘‘motif function map’’ [2]. This section describes our new

computational pipeline for charting a motif function map. The

description follows the outline presented above and is illustrated in

Figure 1.

Motif scanning methods. The pipeline implements three

different motif scanning scores, where a motif is represented as a

position weight matrix (PWM) [30].

‘‘site-LLR’’: The traditional approach to motif scanning is to

find strong matches to the PWM using information theoretic

measures of similarity and a high threshold on the similarity

measure. The most popularly used binding site prediction

programs applicable to single species data belong to this genre

(e.g., Patser (http://ural.wustl.edu/software.html) and MATCH

[23]). In some cases, a count of such strong matches in a small

window (,500 bp) has been used [22]. We refer to this approach

as the ‘‘site-LLR’’ method, and implement our own version as

described in Methods.

‘‘Stubb’’: In our previous work [2], we argued for the use of a

new probabilistic score, obtained from the ‘‘Stubb’’ program [24]

based on a hidden Markov model (HMM), that integrates all

potential sites, weak and strong, in a small window (,500 bp),

rather than relying only on strong sites defined by ad hoc

thresholds. The Stubb program computes the likelihood of the

sequence under a ‘‘two-state HMM’’ (Figure S1) parameterized by

the given motif and then uses its ratio to the likelihood under a null

(‘‘background’’) model that does not include the motif. This

approach is similar in spirit to some other available motif scanning

methods, such as ‘‘Clover’’ [7], while substantially different from

the site-LLR approach outlined above.

‘‘SWAN’’: In order to address certain limitations of Stubb and

other existing HMM-based scores (see Discussion), we defined the

following new score for motif scanning:

– In the first step, the two-state HMM (Figure S1) is trained on

the background sequences, which may be the entire genome,

or some selected portion of it. This step learns (via likelihood

maximization) a value for the motif transition probability, also

called ‘‘motif weight’’, that captures the frequency of

occurrence of the motif in background sequences. Note that

‘‘occurrence’’ here refers implicitly to stochastic transitions to

the motif state, rather than to threshold-based matches.

– The second step computes a log likelihood ratio (LLR) score for

the target sequence, where (1) the denominator is the likelihood

of the target sequence under a new background model – a two-

state HMM with motif weight fixed at the value learned in the

previous step, and (2) the numerator, as in Stubb, is the

likelihood under a two-state HMM with motif weight being a

free parameter (constrained to be greater than the motif weight

learned above).

We have implemented this new score that we call ‘‘SWAN’’

(Stubb With Another Null) (see Methods for more details,

especially with respect to the ‘‘background state’’ in the HMM).

Each of the above scores may be used to report the ‘‘motif

module’’ for a given motif, as the genes with the highest scoring

promoter regions in the genome (Figure 1A and Methods).

Motif – function associations. The next step is to search for

statistically significant associations between motifs and GO

function categories, based on the overlap between a motif

module (reported by any of the three scores described above)

and the genes in a GO category, using the Hypergeometric test

(Figure 1A). This step reports the associations in ascending order

of p-values, along with q-values [31] for multiple hypothesis

correction. However, it is common for the set of significant

associations to include multiple GO categories that are highly

overlapping/redundant; e.g., a motif may show strong associations

with ‘‘pattern formation’’, and ‘‘anterior posterior pattern

formation’’, the latter being a strict subset of the former. To

identify such redundancies in the list of associations, we also

produce a reorganized list where, if an association is ‘‘statistically

explained’’ by another association already reported (that has

stronger p-value), the former is grouped with the latter to

distinguish it from a truly distinct association. Figure 1C shows a

snapshot of this reorganized format for reporting associations. We

quantify the notion of one association ‘‘statistically explaining’’

another association by extending the Hypergeometric test to

consider three subsets instead of the usual two, and imposing the

observed overlap structure of these sets as a constraint that the

computed p-value is conditional on (see Methods for details, and

also see Discussion for related work, e.g., Grossmann et al. [32]). A

similar reorganization is also applied to reports of all motif

associations for any particular GO category; this is important since

our motif compendium includes multiple motifs for the same TF,

and also because in some cases different TFs have very similar

binding specificities.

Selection of motif scanning method for each motif. The

computational pipeline includes three motif scanning methods,

‘‘site-LLR’’, ‘‘Stubb’’, and ‘‘SWAN’’. One of these methods is to

be used to predict the motif module required for detecting motif –

Comparative Genomics across Large Divergences
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Figure 1. Computational pipeline for charting a motif function map. (A) Each motif is scored against each gene’s promoter (‘‘motif
scanning’’). The top scoring target genes of a motif (‘‘motif module’’) are analyzed for enrichment for GO gene sets using the Hypergeometric test,
and statistically significant motif – GO associations (red cells) from the test constitute a ‘‘motif function map’’. (B) Different motif scanning methods
produce different motif function maps by the process in (A). For each motif, the best motif scanning method (score) is selected by evaluating each
motif function map based on the number of associations and a suitable control (see Methods). (C) For each motif, redundant GO associations are
identified by using an extended Hypergeometric test (see Methods) and the motif function map is reorganized. This panel shows GO associations of
the Fushi tarazu (FTZ) motif, with redundant associations being indented. The ‘‘cond-pval’’ column is the conditional p-value of an association given
the stronger association it is redundant with (see Methods). For example, the association with ‘‘sensory perception of smell’’ is highly significant (p-
value,6E-4), but is ‘‘statistically explained’’ by the association with ‘‘odorant binding’’ (conditional p-value,1); the Venn diagram on the right
illustrates why this is the case.
doi:10.1371/journal.pcbi.1000652.g001

Comparative Genomics across Large Divergences
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function associations. However, it is not clear a priori which method

would be most suited to this goal, or whether any one of these

methods would be the best choice for all motifs. The next

component of the pipeline selects the best motif scanning score for

each motif (Figure 1B), by evaluating the motif function map

arising out of each score on a genome that is not the target genome

and where GO annotations for genes are available (Drosophila in

our case). The selected score will now be used in applications of

the pipeline to the target genome.

The evaluation is based on the following simple premise: (1) the

better motif scanning method should lead to more associations (at the

same statistical level of confidence) between motif modules and GO

categories, and (2) if we randomize (shuffle) each gene promoter, the

recomputed motif modules should not have significant associations

with GO categories. While it is clear that the second condition serves

as a form of ‘‘negative control’’, its precise motivation may not be

obvious at first. A significant p-value of association between a motif

module and a biological gene set is a potentially interesting finding,

provided that the motif module consists of sequences specifically

associated with the motif (TF). This requirement may not always be

met, for example if an unusual nucleotide composition (G/C

content) of the promoters of a gene set leads to several false binding

site predictions and therefore to a false motif association. This

phenomenon was widely observed in our previous analysis of the Apis

mellifera genome [33]. The second condition defined above explicitly

tests for such false associations that are artifacts of abnormal G/C

content rather than reflecting enrichment for the motif pattern.

Details of our evaluation scheme are described in Methods (see

Figure 2A for two example evaluations).

Based on evaluations in the Drosophila genome, we found that

different motif scanning programs perform best for different motifs

(Figure 2B). Of the 224 motifs in our compendium, SWAN, Stubb,

and site-LLR were the best method (by the ‘‘AUC’’ criterion, see

Methods) on 102, 66 and 56 motifs respectively (see Figure S2 for

comparisons by other measures). We next asked if certain motif

characteristics (e.g., G/C content, length, information content)

were correlated with amenability to specific methods (Table S1).

The only such correlation observed was that Stubb tended to be

especially suited to motifs with low G/C content (p-value ,0.01).

We also used this evaluation approach to choose important

parameters for the methods (see Methods and Figure 2B).

Extending the pipeline to use information from other
species

Motifs and GO annotations. In order to apply the

computational pipeline to a target genome where motifs and

GO annotations are not available, we propose obtaining such data

from the nearest genome where they are available. The latter is

called the reference genome. (Also see Discussion.) GO

annotations are deduced based on a homology map between the

Figure 2. Comparison of motif scanning methods. (A) Two examples of how different motif scanning methods were compared, corresponding
to two different motifs (‘‘CG33980’’ and ‘‘KNIRPS’’). The y-axis plots the numbers of associations between the motif and the real promoter set, at
different levels of significance (always with p-value,0.05), and the x-axis shows the number of associations with the shuffled promoter set at the
same level of significance. In both examples, there is a method that is superior by all three measures used for comparison: ‘‘strong criterion’’, ‘‘AUC’’
and ‘‘N0’’ (see Methods). For KNIRPS, while site-LLR performs best, Stubb dominates SWAN by the ‘‘AUC’’ measure, SWAN dominates Stubb by the
‘‘N0’’ measure (the value of y at x = 0), and there is ambiguity in terms of the ‘‘strong criterion’’. (B) Comparison of different motif scanning methods,
using the number of motifs for which each method performed best as per the AUC criterion. Left panel: comparison of site-LLR, SWAN, and Stubb.
Right panel: evaluating the effect of ‘‘PGC’’ parameter (see Methods).
doi:10.1371/journal.pcbi.1000652.g002

Comparative Genomics across Large Divergences
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target and reference genomes. Motifs from the reference genome

are used in the target genome ‘‘as is’’ (Figure 3). However, since

the two genomes may be greatly diverged, the pipeline attempts to

determine whether a motif from the reference genome is likely to

represent the binding specificity of the orthologous TF in the

target genome. We used the software of Morozov and Siggia [34]

to compare the relevant DNA binding domain (amino acid

sequence) in the target genome with its ortholog in the reference

genome, employing a structural template (of protein bound to

DNA) to identify DNA-contacting residues as the key residues for

site recognition. (For domains of the zinc finger family ZF-C2H2,

we focused instead on four key residues known to be involved in

binding specificity [35].) We then assigned a ‘‘motif conservation

score (MCS)’’ to the motif based on whether these key residues

were conserved (either identical or changed to a chemically similar

amino acid) or not (see Figure 3 and Methods). The reported motif

function map indicates whether a motif is evolutionarily conserved

in this sense, thereby increasing the reliability of that motif’s

associations. Among 160 Drosophila motifs scored by us, 80%

scored highly (MCS $3 on a scale of 1 to 4) for conservation in

Nasonia. Sixty four (28% of all) motifs could not be evaluated by

our pipeline due to reasons explained in Table S2.

Evolutionarily conserved motif – function associa-

tions. Comparative genomics has played a key role in curbing

false positive errors in cis-regulatory analyses [15–16,36].

However, when the target genome’s non-coding part is not

alignable with any available genome, most of the existing

frameworks for sequence-level comparative genomics are

rendered useless. Alignment-free approaches have been proposed

to address this problem, in the context of ab initio motif discovery

[37–38], as well as motif target prediction [20]. Here, we exploit

the power of comparative genomics by looking for conservation at

a higher level, i.e., by finding motif – function associations that are

statistically significant in multiple species, even though the motif

scanning step is performed independently in the different

genomes. We propose applying the pipeline not only on the

target genome, but also on one or more other genomes

(separately), and reporting motif – function associations that are

statistically significant across genomes, based on a ‘‘combined p-

value’’ (see Methods) computed from the individual p-values in

each genome. For instance, we report below the motif associations

that are conserved in Nasonia and Drosophila (also see Figure 3).

To assess the advantage of this strategy, we constructed a

benchmark of highly reliable motif – function associations that

Figure 3. Extended computational pipeline to use information from other species. Motifs and GO annotations were collected from
Drosophila (‘‘D.mel. Motifs’’ and ‘‘D.mel. Gene Sets’’), and the best motif scanning score for each motif was obtained as described in Figure 1(C). GO
annotations in Nasonia (‘‘N.vit. Gene Sets’’) were obtained from the Drosophila gene sets using a ‘‘homology map’’ for the two genomes. Motif
scanning was performed using the selected scores, followed by motif function map construction in each genome separately. Motif – GO associations
that were statistically significant in both species were reported, along with information on evolutionary conservation of the motifs. An example of
how motif conservation was investigated is shown in the bottom left panel. The homeobox domain of the transcription factor ABD-A was identified
in Drosophila and Nasonia using HMMER (row 1), the orthologous domains in the two species were aligned (rows 2 and 3), and a similar domain from
the PDB database was added to the alignment (row 4). The positions marked in yellow are where amino acid substitutions were seen, but none of
these coincides with positions of DNA-contact (rows 5 and 6) as revealed by the structural template, suggesting that the DNA-binding specificity of
ABD-A is conserved (‘‘four stars’’, for MCS = 4) between the two species.
doi:10.1371/journal.pcbi.1000652.g003

Comparative Genomics across Large Divergences
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were based on chromatin immunoprecipitation (ChIP)-based TF

occupancy data. We roughly followed the methodology of Boden

and Bailey [39], where a ‘‘gold standard’’ of TF – GO associations

was constructed for yeast and human. We started by compiling 13

data sets of ChIP-based binding data in Drosophila, corresponding

to 10 distinct TFs. We used the respective author-defined TF

target gene sets, and compiled the GO terms enriched in these

target sets at three different levels of significance (E-value 0.05,

0.01, 0.001, see Methods). These TF – GO associations were

treated as the benchmark of ‘‘true’’ motif – function associations

that our pipeline would try to predict, either in its single species

version, or by exploiting cross-species comparison. To examine the

effect of the species with which comparisons are made, we

included the genomes of Apis mellifera, Tribolium castaneum, Anopheles

gambiae, and Drosophila virilis, in addition to Drosophila melanogaster, as

separate evolutionary filters for the Nasonia motif function map.

The performance of these predictions is shown in Figure 4, as the

precision of the top 5 and top 10 predictions per motif (‘‘PrecAt5’’

and ‘‘PrecAt10’’, respectively), the precision at a fixed significance

threshold (p-value of 0.005) (‘‘PrecAtPval0.005’’), and as the point

where precision equals recall (‘‘PrecEqRecall’’). Here, ‘‘precision’’

is the fraction of predicted associations that are ‘‘true’’ and recall is

the fraction of ‘‘true’’ associations that were predicted as being

significant. We note that the performance (by all measures)

improves substantially in going from Nasonia (single species) to

pairwise comparison-based predictions, the only (minor) exception

being the ‘‘PrecAtPval0.005’’ measure for Nasonia – Tribolium

comparisons (Figure 4A–C). The improvement is most pro-

nounced for Nasonia – Drosophila comparisons (e.g., ‘‘PrecAt5’’

improves from 0.2 to 0.36), presumably due to the benchmark

being from Drosophila. We also note that in these large divergence

comparisons, the actual evolutionary distance from Nasonia (e.g.,

,180 Myrs for Apis and ,300 Myrs for Anopheles) does not make a

significant difference in performance, except for the ‘‘PrecAtP-

val0.005’’ measure that is substantially more improved with Apis

comparisons than with Tribolium or Anopheles comparisons. The

effect of cross-species comparison on the Drosophila motif function

map (Figure 4D–F) shows a slightly different trend. The precision

consistently improves in going from Drosophila melanogaster (single

species) to Drosophila melanogaster – Drosophila virilis comparison-

based predictions, although the recall drops (‘‘PrecEqRecall’’

remains at 0.30 in either case). However, comparison with largely

diverged species such as Anopheles, Tribolium, Nasonia and Apis

suffers both in precision and recall, again with the exception of the

‘‘PrecAtPval0.005’’ measure which conveys a mixed message.

Finally, we observe that single species predictions are substantially

better in Drosophila than in Nasonia, which is expected since (a) the

benchmark associations are derived from Drosophila and may not

be biologically ‘‘true’’ in Nasonia, and (b) the pipeline’s application

to Nasonia uses motif and GO data from Drosophila. The above

trends, and particularly the improvement in precision through the

use of cross-species comparison, were also confirmed with a second

benchmark that we constructed based on bona fide TF binding sites

from the REDfly database [25]. (See Methods and Figure S3.)

Applications of computational pipeline
Motif function map in Nasonia, Apis, and Drosophila,

based on Gene Ontology. The pipeline was run on Drosophila

with the score selection component (Figure 1B) activated, and then

run on Nasonia and Apis with the scoring scheme selected for each

motif. We used a collection of experimentally validated motifs in

Drosophila obtained from various sources (see Methods). An online

interface to the motif function map in each of the three species is

available at http://europa.cs.uiuc.edu:8080/nasonia/. For each

species, this provides a ‘‘motif-centric view’’, i.e., all GO

associations for each motif, and a ‘‘function-centric view’’, i.e.,

all motif associations for each GO category.

Motif function associations common to Nasonia and

Drosophila. We looked for motif – function associations that

were statistically significant in both Nasonia and Drosophila based on

combined p-values. Overall, 177 such associations were discovered

at a q-value of less than 0.05, representing evolutionarily

conserved and presumably more reliable associations (Table S3).

(All such associations had uncorrected p-value ,0.004.) 91 of

these 177 associations were non-redundant, 119 (67%) were for

motifs that were scored for evolutionary conservation and 99

(83%) of these were highly conserved (motif conservation score

MCS $3 on a scale of 1 to 4), as reported in Table S3. (MCS of 3

or more implies that every critical residue in the DNA-binding

domain is either exactly conserved or substituted by an amino acid

with a similar biochemical characterization (see Methods).) The

discovered associations included several regulatory interactions

that have already been experimentally characterized, chiefly in

Drosophila. For instance, the motif for Suppressor of Hairless

(SU(H)) is associated with the GO category ‘‘Notch signaling

pathway’’ in both species (combined p-value 5E-9, Drosophila p-

value 4E-6, Nasonia p-value 9E-5); the role of SU(H) in regulation

of this pathway is well known [40] and conserved even in

vertebrates [41]. The motif for Abdominal B (ABD-B) (MCS = 4)

is associated with ‘‘ectoderm development’’ (p-value 1E-5,

supported by [42]) and ‘‘salivary gland development’’ (p-value

7E-5, supported by [43]). The GAGA motif was assigned to

several different biological processes, e.g., ‘‘tracheal system

development’’ (p-value 4E-6) and ‘‘mesoderm development’’ (p-

value 9E-6), consistent with its previous characterization as

potentially regulating a broad range of cellular processes [44].

Some of the other most significant motif – function associations

that are supported by the literature include Hunchback (HB) with

‘‘nervous system development’’ (p-value 5E-7, supported by [45]),

Zerknullt (ZEN) (MCS = 4) with ‘‘ectoderm development’’ (p-

value 3E-5, [46–47]), Mitochondrial transcription factor A

(MTTFA) with ‘‘apoptosis’’ (p-value 3E-5, [48]), Antennapedia

(ANTP) (MCS = 4) with ‘‘antennal morphogenesis’’ (p-value

0.001, [49]) and with ‘‘central nervous system development’’ (p-

value 6E-5, [50]), and Heat shock factor (HSF) (MCS = 2) with

‘‘response to heat’’ (p-value 4E-5, [51]), among others. (The low

MCS of HSF is due to a single substitution (IRM) at a predicted

backbone contact residue, see Table S4.) Figure 5 shows, for four

examples of conserved motif association, the motif targets and

non-targets in both species.

We also found conserved motif – function associations that have

not been previously identified in any species. For example,

Reversed polarity (REPO) (MCS = 4) is associated with ‘‘trans-

mission of nerve impulse’’ (p-value 4E-5). REPO is a major player

in glial differentiation [52] and may be involved in transmission of

signals [53].

In some cases, conserved motif associations could not be

unambiguously assigned to a TF, due to similar binding

specificities of different TFs. The Sex combs reduced (SCR) motif

(MCS = 4) was assigned to the functional category of ‘‘proteolysis’’

in both species; however this association was statistically explained

by associations for similar motifs Empty spiracles (EMS) (in

Drosophila) and Buttonless (BTN) (in Nasonia, MCS = 3), and our

discovery may be pointing to an enrichment for a homeobox motif

[T/C/A]TAAT[G/T][A/G] in the promoters of proteolysis-

related genes, rather than for SCR binding sites in particular.

The CG12361 motif (MCS = 4) was associated with ‘‘cyclic

nucleotide metabolism’’ (p-value 4E-5). This motif targets 7 of the
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26 genes in this GO category in Drosophila and 6 of the 19 genes in

the orthologous set in Nasonia, but the target sets (of size 7 and 6

respectively) are mutually exclusive. This presents an interesting

situation where motif – function associations are conserved but our

procedure does not find the corresponding motif – gene associations

to be evolutionarily conserved. In other words, the association is

discovered only at a higher level of comparative genomics.

The biological process ‘‘ectoderm development’’ was found to

be associated with 15 non-redundant motifs (combined p-

value,0.004, q-value,0.02), indicating that this is in part a

highly conserved transcriptional network. Many of these associ-

ations are for motifs of factors with known roles in this process

(e.g., ABD-B (MCS = 4) [42], ZEN (MCS = 4) [46–47], Abdom-

inal A (ABD-A) (MCS = 4) [54], GAGA factor [55], SCR

(MCS = 4) [56], Odd skipped (ODD) [57], ANTP (MCS = 4)

[58]), while others are (to our knowledge) novel associations not

reported in the literature (Extradenticle (EXD) (MCS = 4), HB,

CG7056 (MCS = 2), PDHP (MCS = 4), Bric a brac 1 (BAB1),

Hairy (H) (MCS = 4), SU(H)). The predicted motif change for

CG7056 was due to two substitutions at key residues, and was

corroborated by a specialized tool (http://ural.wustl.edu/flyhd/)

that predicts the specificity of homeodomains (Figure S4).

The motif for the TF Bicoid (BCD) was found to be associated

with ‘‘posterior head segmentation’’ and ‘‘trunk segmentation’’.

Figure 4. Performance of predicted motif – GO associations using cross-species comparison, evaluated based on ChIP-based
binding data. The prediction performance is shown as the precision of the top 5 and top 10 predictions per motif (‘‘PrecAt5’’ and ‘‘PrecAt10’’,
respectively), the precision at a significance threshold (p-value) of 0.005 (‘‘PrecAtPval0.005’’), and as the point where precision equals recall
(‘‘PrecEqRecall’’). Three different levels of significance (‘‘cutoff E-value’’ 0.001 (A, D), 0.01 (B, E), and 0.05 (C, F)) were used to define the set of true
associations, and the effect of cross-species comparison on the Nasonia (A–C) and Drosophila (D–F) motif function maps were reported separately.
doi:10.1371/journal.pcbi.1000652.g004
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This is interesting because BCD is associated with segmentation in

Drosophila [59], but there is no known ortholog of this factor’s gene

in Nasonia. The apparent conservation of the BCD – segmentation

association may be due to another motif (Orthodenticle (OTD))

that is very similar to the BCD motif and is believed to play an

important role in the above biological functions [60]. We discuss

later the confounding effect of multiple TFs with similar binding

specificity, as in this example, and its implications for our analysis.

Searching for motif associations that are statistically significant

in the target genome (Nasonia) and another genome (Drosophila) is

not the only manner in which evolutionary comparisons can

inform a motif function map. In the following two subsections, we

illustrate alternative ways in which cross-species comparisons may

lead to new biological insights. A third example analysis is

presented in Supplementary Text S1.

Motifs associated with social behavior in honeybee:

Nasonia as an evolutionary filter. First, we present an

example analysis where evolutionarily conserved associations

may be of lesser interest biologically than lineage-specific ones.

The honeybee, Apis mellifera, is a model organism for studying

social behavior, and prior work has identified gene sets whose

expression in the brain responds to social cues during behavioral

maturation (e.g., from nurse to forager bees [61]). Nasonia is a

member of the Hymenoptera order, to which the honeybee also

belongs, but is not a social animal. Therefore, a motif association

that is specific to behavioral gene regulation in Apis should be

absent in Nasonia, when considering Nasonia orthologs of the same

gene sets. Likewise, a conserved motif association undermines the

hypothesis of a social behavior-specific role, and is likely an artifact

of a more basal (not sociality-specific) biological process that these

genes are part of in both species. Working with gene sets analyzed

in [33], we identified significant motif associations in Apis, and

noted also the p-values of association (of the same motifs) from

orthologous sets in Nasonia and Drosophila. Genes up-regulated in

the Apis brain in response to Manganese treatment showed 67

significant motif associations in Apis (Table S5). However, upon

invoking an ‘‘evolutionary filter’’ that requires the p-values in the

other two (asocial) species to be above a threshold, only 27

associations remained. Thus, for this gene set, cross-species

comparison was able to filter out 40 (59%) of the Apis

associations (31 due to the Nasonia filter).

We also found 14 motif associations for other social behavior-

related gene sets from Apis, four of which (including the previously

predicted role of the GAGA factor [33]) do not pass the

evolutionary filter (Table 1). The remaining ten (9 distinct)

associations are potentially involved in the social regulation of gene

expression in honeybee brains. Particularly interesting are the

bee – specific enrichment for Broad (BR), Adh transcription factor

1 (ADF1) and Tramtrack (TTK) motifs in gene sets responding to

Methoprene treatment – Methoprene is a Juvenile Hormone

analog that causes precocious foraging behavior, the TF BR is

known to respond to hormone stimulus [62], ADF1 is known to be

involved in memory, learning and certain behaviors in Drosophila

[63], and TTK is known to have mutant phenotypes affecting

aggressive behavior [64]. (None of these motifs could be scored for

evolutionary conservation.) The association between H (MCS = 4),

a factor involved in sensory organ development (a Juvenile

Hormone dependent process [65]), and a set of genes over-

expressed in foraging bees (also a Juvenile Hormone dependent

condition) [61,66] is also notable (Table 1). The motifs involved in

some of the other bee – specific associations are known to play

important roles in nervous system function and development in

Drosophila, e.g., Mothers against dpp (MAD) (MCS = 4) is known to

regulate synaptic growth [67], and Knirps (KNI) is known to be

involved in dendrite morphogenesis [68].

Oxidative phosphorylation genes in Nasonia. In this

analysis, we show how predicted motif associations in the target

genome may be substantiated by literature-based evidence from

another species, rather than by statistical significance of the same

association in the other species. The oxidative phosphorylation

(OXPHOS) pathway plays a very important role in the production

of ATP, the principal source of cellular energy. Evolution of

OXPHOS genes, their structure, and regulation, has been studied

previously [69], and annotation of genes from this pathway in the

Figure 5. Example of conserved motif – GO associations between Drosophila and Nasonia. All genes in a GO category in Drosophila are
shown as columns, with grey indicating that the ortholog was not found in Nasonia. Dark red indicates motif presence at the threshold used, light red
indicates medium strength motif presence, white indicates motif absent in the gene’s promoter. The p-value of association between motif and GO
category is shown for each species, at the right end of its row.
doi:10.1371/journal.pcbi.1000652.g005
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Nasonia genome offers the opportunity to extend our

understanding of this key pathway. We analyzed the promoters

of 58 annotated Nasonia OXPHOS genes [70]. We first compiled a

list of ten known motifs from studies of OXPHOS regulation in

fruitfly and mammals (in some cases, the fruitfly homolog of the

mammalian element was used). These are: DNA replication-

related element factor (DREF), Erect wing (EWG) (Drosophila

homolog of NRF-1), Buttonhead (BTD) (Drosophila homolog of

SP1), DATF-2 (Drosophila homolog of CREB/ATF2),

Pleiohomeotic (PHO) (Drosophila homolog of YY1), AP1 (related

to NRF-2), E-BOX, OXBOX, PR1, and the Nuclear Respiratory

Gene element (NRG) [69,71–74]. Significant associations (p-

value,0.05, q-value,0.08) were found for four of these ten motifs:

BTD (10/58 genes targeted), AP1 (9/58 genes targeted), PHO (9/

58 genes targeted), and PR1 element (9/58 genes targeted)

(Table 2). When we repeated the above analysis with all motifs in

our collection (Table S6), these four motifs came out as the four

strongest associations overall. We note that none of the four above-

mentioned motif associations achieved statistical significance with

combined p-values from Nasonia – Drosophila comparisons. Thus,

while this analysis predicts a role for the motifs BTD, AP1, PHO

and PR1 in OXPHOS regulation in Nasonia, it is important here to

evaluate the evidence in light of the literature-based support from

Drosophila.

Discussion

Our work explores the following challenging question related to

comparative regulatory genomics: how can we ‘‘import’’ the wealth of

molecular information in well-studied genomes such as Drosophila to the

regime of a less studied genome such as Nasonia, given that the non-coding

regions of the genomes do not align? We address this question in the

context of characterizing motif functions. We identify several

methodological issues involved here, and present a computational

pipeline that incorporates novel solutions to the issues. Our

approach is expected to become increasingly relevant as hundreds

or even thousands of other metazoan genomes get sequenced in

the future.

Pipeline for motif function map in single genome
We recognize that there are several alternatives to motif

scanning that have not been explored here. Boden and Bailey [39]

point out that most motif-scanning software can be characterized

by two basic ideas: ‘‘maximum-odds and hit count’’ (finding strong

sites and counting them) and ‘‘average odds’’ (summing over all

possible sites, weak or strong). We believe that our choice of the

‘‘site-LLR’’ and the Stubb/SWAN methods capture the essence of

these two popular ideas, and are therefore representative of

existing knowledge on motif scanning. Approaches that use

additional information such as phylogenetic profiles [75] are not

evaluated here, as it is not clear how evolutionary information may

be extracted from a genome whose non-coding part is not

alignable with other species. It will be also be interesting to

examine if more biophysically inspired methods, like TRAP [76],

provide complementary strengths in motif scanning, as suggested

in recent work by Roider et al. [1]; however, here we chose to

operate within the statistical regime of the HMM that has been

studied more extensively in the literature.

The log likelihood ratio (LLR) score computed by Stubb and

other HMM-based methods [24,77–78] asks the statistical

question: does the motif help ‘‘explain’’ the data (sequence) significantly

better than the background model can? In some cases, this may not be the

right statistical question to ask. We illustrate this issue with the

example of the ‘‘HB’’ motif (consensus: TTTTTTGTT). This

motif has a high match score to the poly-T string (TTTTTTTTT),

but this is not only because the motif roughly matches the string, it

is also in part because poly-T substrings happen to be more

common in the genome than the simple background model can

capture. A low order Markov chain that is typically used as

Table 1. Motif associations with gene sets implicated in social behavior in honeybees.

Gene set Motif MCSa Motifsource A.mel N.vit D.mel

Pre-foraging maturationq (top 100) Trl ? F 0.001* 0.066*** 0.254

MethopreneQ I_ADF1_Q6 ? T 0.001* 0.155 0.569

Foragerq hairy.new.6 4 B 0.003* 0.650 0.870

Pre-foraging maturationq (top 100) I_GAGAFACTOR_Q6 ? T 0.004* 0.039** 0.654

cGMPq Kruppel 2 T 0.005* 0.217 0.046**

Methopreneq Ubx.txt 4 F 0.008* 0.767 0.855

MethopreneQ Adf1 ? F 0.008* 0.604 0.951

cGMPq Kr 2 F 0.008* 0.304 0.016**

cGMPq kni 4 F 0.008* 0.922 0.107

MethopreneQ br-Z3 ? F 0.008* 0.286 0.895

Hive bee to forager transitionQ (top 100) CG11085.new.7 ? B 0.009* 0.397 0.577

Pre-foraging maturationq (top 100) CG7056.new.7 2 B 0.009* 0.905 0.643

Hive bee to forager transitionQ (top 100) Mad 4 F 0.010* 0.701 0.561

Methopreneq ttk.new.6 ? B 0.010* 0.733 0.742

Gene sets (column 1) are from [33], associated motifs are listed in column 2, and the p-value of association in Apis, Nasonia and Drosophila are listed in columns labeled
‘‘A.mel’’, ‘‘N.vit’’ and ‘‘D.mel’’ respectively.
aMotif conservation score.
*p-value,0.01.
**0.01# p-value ,0.05.
***0.05# p-value ,0.1.
Motif source: B, B1H; F, flyreg.org data; T, Transfac.
doi:10.1371/journal.pcbi.1000652.t001
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background model may be inadequate to capture frequencies of

certain patterns (such as the poly-T substring) in the background

sequences; if such patterns happen to be similar to a motif, the

inadequacy of the background model will adversely affect the LLR

statistic used for motif scanning. To address this, the newly defined

SWAN method asks the following, different question: ‘‘given that

we must use a two-state HMM to explain/parse a sequence, are we

significantly better off using a higher motif weight than the value learned from

background sequences?’’ (Also see [79–80] for similar ideas.)

To our knowledge it has never been tested systematically

whether some TFs tend to operate mostly through strong binding

sites while others frequently make use of strong as well as weak

sites and their clustering. Existing work on motif function maps

(e.g., [1–2,39]) have each shown that clustering of strong and weak

sites is more efficacious than using strong sites alone, when testing

with entire compendia of motifs. Surprisingly, past work has not

considered the possibility that the choice of motif-scanning method

may need to be motif dependent. We examined this issue, and

found that each of the three statistical approaches evaluated is

clearly the better choice for a sizeable set of motifs.

In the type of analysis presented here, one must keep in mind

that the statistical associations are for motifs, and not for TFs per se.

Different TFs may have very similar binding specificities (motifs)

and an association with the motif for TF A may in fact be due to

TF B with similar binding affinity. As such, claims about motif

associations may or may not be valid when extrapolated to

corresponding TFs. Another limitation of our analysis (and one

that is unfortunately common to most genomic studies today) is

that multiple hypothesis correction, performed here through the

use of q-values, does not account for the fact that the underlying

association tests are statistically dependent, often being for highly

similar motifs or GO sets. Also, our choice of searching only the

5 Kbp upstream regions of genes may lead to missed sites, but we

believe that it results in an overall increase in the signal to noise

ratio. Other possibilities, such as including all of a gene’s

surrounding region up to the neighboring genes on either side,

or including intronic regions, provide avenues for future research.

The task of finding statistical associations between gene sets and

annotations has itself been a topic of much research, as reviewed in

[81]. In particular, several ideas have been presented to deal with

redundancies between GO categories. Grossmann et al. [32] deal

with ‘‘parent-child’’ relationships present in the GO hierarchy, by

modifying the Hypergeometric test. This is closest in spirit to how

we handle redundancies among gene sets, except that our

approach is designed to work for any pair of gene sets (E and

O, following terminology introduced in Methods), and not only for

‘‘parent-child’’ pairs. This is useful not only to deal with redundant

pairs of GO categories (such as ‘‘odorant binding’’ and ‘‘sensory

perception of smell’’, with an overlap of 62/69), but also to deal

with pairs of motif modules that are largely overlapping.

Extending the pipeline to use information from other
species

We have demonstrated, on benchmarks constructed from ChIP-

based and genetics-based data, that requiring cross-species

conservation of motif – function associations leads to significantly

higher specificity. While Nasonia – Drosophila comparison clearly

improved specificity compared to single species analysis on Nasonia,

we did not see a clear effect of varying evolutionary divergence

from the compared species. However, we believe that the

reference genome, i.e., where the motif and GO data are

‘‘imported’’ from, is the most judicious choice for cross-species

comparison. We also note that our approach is distinct from

imposing the conservation requirement at the motif scanning

stage, as was done in the alignment-free method of [20]. Our

reasoning was that motif – function associations may be

‘‘evolutionary robust’’, i.e., detectable even though the motif –

gene relationships are not detected as being conserved, as

illustrated by the discovered association of CG12361 with cyclic

nucleotide metabolism.

The choice of the reference genome, for a particular target

genome under study, will generally be clear, since the kind of

comprehensive molecular data that is required of the reference

species is available for only a handful of species. However, we note

Table 2. Enrichment p-values for the oxidative phosphorylation gene set in Nasonia, shown here for ten motifs implicated in the
literature as having a regulatory role in this pathway.

Motif MCSa Motif source p-value q-value #commonb #motif targetsc #genes in gene setd #totale

btd.new.6 ? B 0.0117 0.0776 10 696 58 9097

V_AP1_C 4 T 0.0322 0.0776 9 701 58 9097

pho 4 F 0.0362 0.0776 9 716 58 9097

PR1 ? L 0.0461 0.0776 9 749 58 9097

nrg ? L 0.2491 0.3355 6 666 58 9097

dATF2 ? L 0.3744 0.4202 5 630 58 9097

Ewg ? L 0.4557 0.4323 5 693 58 9097

I_DREF_Q3 ? T 0.5135 0.4323 5 739 58 9097

OXBOX ? L 0.6496 0.4861 3 518 58 9097

Dref ? F 0.8672 0.5316 3 749 58 9097

E-box ? L 0.8684 0.5316 3 751 58 9097

Motif source: B, B1H; F, flyreg.org data; T, Transfac; L, literature.
aMotif conservation score.
bNumber of genes common in motif target and oxidative phosphorylation genes.
cNumber of motif target genes.
dNumber of genes in oxidative phosphorylation gene set.
eTotal number of genes in the analysis.
doi:10.1371/journal.pcbi.1000652.t002
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that the motifs and GO annotations that are ‘‘imported’’ from the

reference to the target genome need to be by and large conserved:

if the divergence is too great, (a) most motifs will receive low

conservation scores and hence be unreliable, and (b) GO gene sets

inferred in the target genome will be highly erroneous, leading to

very few significant motif associations.

Our approach to characterizing motif conservation levels is only

a first step to solve an important problem in comparative

regulatory genomics – to use motifs characterized in one species

for analyzing the genome of a highly diverged species. Morozov

and Siggia [34] have considered this problem for yeast TFs, and

have attempted to model the impact of key residue changes on

binding specificity. Similar goals have been pursued by Noyes

et al. [82] for homeodomain factors in Drosophila. For now, our

pipeline only uses information on conservation (or substitution to a

similar amino acid) to roughly estimate the impact on binding

specificity, but future versions will attempt to do this in a more

quantitative and sensitive manner.

We also note that functional characterization of a transcription

factor may be undertaken in a more direct manner through ChIP-

chip or ChIP-seq assays for the factor’s binding locations, and may

even be coupled with cross species comparison to achieve high

specificity. Given the current technology, this approach is clearly

more expensive than computational frameworks such as ours,

although it can serve as a follow-up to specific motif associations

identified computationally.

Methods

Sequence data
5 Kbp promoters of D. melanogaster (Release 5) and D. virilis

(Release 1.2) were obtained from FlyBase [83]. A. gambiae (Feb.

2003) promoters were downloaded from UCSC Genome Browser

Database [84]. Promoters of A. mellifera (Amel_2.0), N. vitripennis

(Nvit_1.0, RefSeq set only – 9163 genes), and T. castaneum

(Tcas_1.0) were taken from HGSC (http://www.hgsc.bcm.tmc.

edu/).

Motif compendium
A total of 224 motifs were obtained from Transfac [13] (40

motifs), FlyReg [85] (52 motifs), the literature [69,72,74] (7 motifs),

and from [26] (125 motifs) (Supplementary Text S2).

Details of SWAN and Stubb motif scanning methods
(a) Raw score of each window was computed as the LLR

described in Results. (b) P-value of the window’s raw score was

computed empirically based on 1000 genomic windows with the

same G/C content as the original window. This is referred to as

the ‘‘PGC’’ technique below. (c) A gene was declared as a motif

target if any window in its 5 Kbp promoter had a p-value below

0.005. ‘‘Stubb’’ scores were computed using the SWAN program

and a motif weight of 0. Other details are identical to SWAN. The

‘‘background state’’ in the two-state HMM used by Stubb and

SWAN (to score a sequence as well as in learning the motif weight)

was set to emit according to single nucleotide frequencies in the

sequence under consideration (i.e., a ‘‘local background’’).

Details of ‘‘site-LLR’’ motif scanning method
The log-likelihood ratio (LLR) score of a string s, given a motif

W, is defined as log [Pr(s | W)/Pr(s | Bkg)], where ‘‘Bkg’’ refers to

the background model (same as for SWAN above). Given a motif,

we computed the maximum possible LLR score of a site (over all

possible sites), and using a threshold equal to 0.9 times this

maximum LLR, we marked all sites that were above the threshold.

Empirical p-value of a sequence window was computed as per the

following ordering: (i) a window with more marked sites scores

higher; (ii) if two windows have the same number of sites, the

window with the stronger individual site scores higher.

Defining GO gene sets
The homology map among Anopheles, Apis, Drosophila, Nasonia,

and Tribolium was obtained from http://cegg.unige.ch/. For each

Drosophila gene in a GO category (from association files published

at http://genemerge.cbcb.umd.edu/associationfiles/ in Novem-

ber 2005), all its orthologs in the second species were included in

the GO category definition for that species. Thus, a GO category’s

cardinality may be different in different species.

Evaluation of methods
For a given motif, its target sequences were determined in the

set of real Drosophila promoters and in the set of shuffled promoters.

Motif modules thus determined were tested for association with

GO categories, and a ‘‘true positive versus false positive curve’’

was drawn to plot the number of associations in the real set and in

the shuffled set, at different thresholds of significance (see Figure 2A

for two example plots). Any two motif scanning methods were

compared in the following three ways: (a) ‘‘Strong criterion’’: the

curve of one method completely dominates the plot for the other

method. (b) ‘‘AUC’’: the area under one curve is greater than that

under the other curve. (c) ‘‘N0’’: the number of associations in the

real set at a significance threshold where the number of

associations in the shuffled set is 0. The following methods and

techniques were evaluated:

(a) Scanning method (site-LLR, Stubb, SWAN).

(b) ‘‘PGC’’ technique: as mentioned above, the raw score of a

particular method on a given sequence window was

converted into an empirical p-value of motif occurrence by

comparing with scores of 1000 randomly selected windows.

We evaluated two different ways to choose these windows: (i)

from all non-coding sequence windows with the same G/C-

content (‘‘PGC’’ technique), and (ii) from all non-coding

sequence (non-PGC technique). Figure 2B shows that the

former was superior on the majority of motifs.

Multiple hypothesis corrections
Q-values [31] are calculated for each motif, correcting for all

GO association tests, as well as for each GO category, correcting

for all motif association tests.

Dealing with redundant associations
Let M be a set of interest in the universe U, and let E and O be

two other subsets of U, with the cardinality of U, M, E and O
being N, m, n1 and n2 respectively. Let | M > E | = c, | M >
O | = l and | E > O | = a. Typically, E and O will be two sets

whose associations with M are both statistically significant, and we

are interested in asking: Does the association between M and E
statistically explain the association between M and O in some sense? The

unconditional (traditional) p-value of association between M and

O is given by the probability that a random set of size | O | = n2

has an overlap of size greater than or equal to | M > O | = l
with M. We answer the above question by calculating the

probability of this event conditional on the observed overlap cardinality

between M and E and that between E and O. In other words, if R is a

random subset of U, with cardinality n2, we calculate the

probability Pr (jM\Rj§l) conditional on |R| = n2 and |R >
E| = a, where E is a fixed subset of cardinality n1 and |M >
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E| = c. This is computed as:

Pmin (m,n2)

k~l

Pk
b~0

c

b

� �
m{c

k{b

� �
n1{c

a{b

� �
N{m{n1zc

n2{a{kzb

� �

n1

a

� �
N{n1

n2{a

� �

We note that this is an example of the multivariate hypergeometric

distribution.

Combined p-values
A motif was tested for consistent association with a gene set

in multiple species as follows. Let p1,p2,…,pk be the p-values of a

motif – function association in k different species. We first compute

the combined statistic:

pc~1{ P
k

i~1
(1{pi)

We denote this random variable as pc and its observed value as

p(o)
c . Under the null hypothesis that each pi is uniformly

distributed, we computed the probability pc that the combined

statistic pc has a value less than or equal to the observed value p(o)
c ,

i.e., p-value for the combined statistic pc, as follows:

pc(x)~ Pr (pcv~x)~ Pr (P
j

(1{pj)w~1{x)

~1{ Pr (P
j

(1{pj)v~1{x)

~1{(1{x)
Xk{1

i~0

({1)i ( ln (1{x))i

i!

where the last step is due to the fact that 12pj is uniformly

distributed in [0,1] under the null hypothesis. The random

variable pc has the desirable property that it is low only if each pi is

low, and thus captures consistent motif association (low p-value) in

all species. (Contrast this with the product of the pj’s, which may be

low even if one or more of the pj’s is close to 1.) Note however, the

p-value pc computed above corresponds to the strong null

hypothesis that every individual pj is uniformly distributed.

Assessing motif conservation between Drosophila and
Nasonia

We used an offline version of the tool described in [34]. Starting

with the full complement of protein sequences in either genome, this

tool first uses the HMMER software version 2.3.2 (http://hmmer.

janelia.org/) to scan for matches to DNA-binding domains

catalogued in the PFam database [86]. For each TF in Drosophila,

it then aligns each of its DNA-binding domains to the most similar

domain match in Nasonia. It then adds to this pairwise alignment a

third domain that belongs to the same family and corresponds to a

protein whose structure (in DNA-bound state) is available from PDB

[87]. By using this (aligned) domain with structural information, the

tool identifies DNA-contacting residues (that make either backbone

or side-chain contacts) based on a distance threshold. We consider

these DNA-contacting residues as the ‘‘key’’ residues. For matches

to the zinc finger family (ZF-C2H2), we define key residues to be the

four residues identified previously as imparting DNA-recognition

capability to this family [35]. Limiting our attention to the key

residues only, we then determine if the orthologs from the two

species have undergone an amino-acid substitution, and if so,

whether the substitution has been to a similar amino acid, as defined

by grouping amino acids into one of the following seven classes [88]:

(i) amino acids (aa’s) with aliphatic R-groups (G,A,V,L,I), (ii) non-

aromatic aa’s with hydroxyl R-groups (S,T), (iii) aa’s with sulfur-

containing R-groups (C,M), (iv) acidic aa’s and their amides

(D,N,E,Q), (v) basic aa’s (R,K,H), (vi) aa’s with aromatic rings

(F,Y,W), and (vii) amino acids (P). Finally, each motif was assigned a

conservation score that could take the value ‘‘?’’ or an integer

between 1 and 4 (4 for strongest conservation), as per criteria

defined in Table S2. The alignments of DNA-binding domains are

available in Table S4. Of the 160 motifs that received a motif

conservation score (not ‘‘?’’), 114 (71%) had the highest score of 4,

8% were scored at 3, and 20% received the low score of 2,

indicating greater potential for evolutionary change.

Assessing cross-species comparison
To construct benchmarks based on ChIP data, we collected

published target genes for 10 TFs: BCD, Caudal (CAD), Giant

(GT), HB, and Kruppel (KR) from [89], Dorsal (DL), Snail (SNA),

and Twist (TWI) from [90], gaga factor (GAF) from http://

intermine.modencode.org/, and PHO from [91]. Statistically

significant motif – GO function associations were identified using

the Hypergeometric test and E-value cutoffs (0.001, 0.01, and

0.05). (E-value here is the product of the p-value from the

Hypergeometric test and the number of GO terms tested for.)

These were treated as the ‘‘true’’ associations, and the associations

predicted by the motif function map were evaluated against this

benchmark. The following four measures were calculated for each

TF and an average over all TFs was computed: (a) ‘‘PrecAt5’’:

precision (number of correct predictions, divided by total number

of predictions) when considering the top 5 predicted associations,

(b) ‘‘PrecAt10’’: precision in the top 10 predictions, (c) ‘‘Pre-

cAtPval0.005’’: precision in the associations with p-value less than

0.005, and (d) ‘‘PrecEqRecall’’: precision when the number of

predicted associations is equal to the number of true associations.

The benchmark based on genetics data was constructed similarly

with published target genes from the REDfly database [25] except

that we used less stringent E-value cutoffs (1, 10, and 50) since the

target gene sets here are smaller but more reliable than in the

ChIP-based benchmark.

Supplementary website
5 Kbp promoter sequences, promoter and gene mapping

information, motifs, GO gene sets, source code for SWAN, and

a link to web interface for a motif function map are available at

our site http://europa.cs.uiuc.edu/CompGenomics09/.
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