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Abstract: Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-
related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterol-
ogous expression systems and animal models, have revealed the pathophysiology of IASs and enabled,
in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization
of induced pluripotent stem cell (iPSC) technology have provided further insights into the patho-
physiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is
now known that there are atypical clinical phenotypes of IASs associated with specific mutations that
have unique electrophysiological properties, which raises a possibility of mutation-specific precision
medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation
exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of
R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the
use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined.
Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and
paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a
unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to
manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients
with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy.
Further studies using the iPSC technology may provide novel insights into the pathophysiology of
atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.

Keywords: atrial fibrillation; atypical clinical phenotype; Brugada syndrome; early repolarization
syndrome; long QT syndrome; mutation; precision medicine

1. Introduction

Recent advances in molecular genetics have identified many causal genes for in-
herited arrhythmia syndromes (IASs) such as long QT syndrome (LQTS) [1], short QT
syndrome (SQTS) [2], Brugada syndrome (BrS) [3,4] and early repolarization (ER) syndrome
(ERS) [3,5]. Most causal genes for IASs encode cardiac ion channels or their related proteins.
Genotype-phenotype studies and functional analyses of mutant genes, using heterologous
expression systems and experimental animal models, have revealed the pathophysiology
of IASs and enabled the establishment of causal gene-specific precision medicine [6–8].
Furthermore, analyses of patient-specific and/or genome-edited induced pluripotent stem
cell-derived cardiomyocytes (iPSC-CMs) have provided further insights into the patho-
physiology of IASs and novel promising therapeutic strategies for IASs, although there
are still some limitations of using iPSC-CMs, such as immature structure and function and
mixed population of atrial, ventricular, and nodal cells, as a standard technology [9].

The altered function of causal genes that encode cardiac ion channels is caused by
multiple mechanisms, including trafficking defects, producing non-functional channels,
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altered channel gating properties, and a combination thereof. These altered functions of
mutant channels underly the clinical phenotypes of IASs [10–12]. Particularly, unique
electrophysiological properties of mutant channels have been shown to be associated
with the atypical clinical phenotypes of IASs [10,13]. Furthermore, the elucidation of the
mechanisms underlying the atypical clinical phenotypes of IASs has raised the possibility
of mutation-specific precision medicine.

We herein review the current knowledge of genotype-phenotype relationships, un-
derlying molecular and cellular mechanisms, and established pharmacological therapies
of IASs, including LQTS, SQTS, and J wave syndrome (BrS and ERS). Furthermore, we
describe the atypical clinical phenotypes of IASs attributable to unique electrophysiological
properties of mutant channels and the potential mutation-specific precision medicine.

2. LQTS and SQTS
2.1. LQTS

LQTS is a relatively prevalent inherited disorder characterized by an abnormally
prolonged QT interval on an electrocardiogram (ECG) and an increased risk of polymorphic
ventricular tachycardia (VT), torsade de pointes (TdP), and ventricular fibrillation (VF),
leading to syncope or sudden cardiac death (SCD) [14,15]. At least 17 genes have been
reported to be causal for LQTS (LQT1-17) (Table 1) [16–31]. However, reappraisal of these
genes by Adler et al. has shown that more than half have limited or disputed evidence to
support their disease causation [32]. Although KCNQ1, KCNH2, SCN5A, KCNJ2, CACNA1C,
CALM1, CALM2, and CALM3 genes are classified as definitely causal for LQTS [32], further
studies are necessary to conclude the causality of the other genes for LQTS. Notably, it is
also known that a part of LQTS, SQTS, BrS, and ERS share common genetic backgrounds
and that some causal genes are also associated with other cardiac phenotypes, such as
atrial fibrillation (AF) [33–35], and/or extra-cardiac phenotypes as shown in Table 1.

A loss-of-function of outward currents and/or a gain-of-function of inward currents
during the plateau phase of ventricular action potential (AP) cause prolongation of AP
duration (APD), leading to prolongation of QT interval on an ECG. Mutations in genes that
encode these channels/currents have been causal for LQTS (Table 1) [1,8]. Among them,
mutations in the first three identified genes—KCNQ1 for LQT1, KCNH2 for LQT2, and
SCN5A for LQT3—account for approximately 90% of genetically affected LQTS patients,
while those in other causal genes have rarely been identified [1,8].

The clinical features differ among LQT1, LQT2, and LQT3. Cardiac events are more
often associated with physical activity (β-adrenergic stimulation) in LQT1 than in LQT2 or
LQT3, and those in LQT3 typically occur during sleep or at rest [36]. Regarding pharmaco-
logical therapies, β-blocker therapy has been established in LQT1 and LQT2 but remains
controversial in LQT3 [37], although a recent international multicenter study reported
the efficacy of β-blocker therapy in patients with LQT3, especially female patients with
QTc > 500 ms at baseline [38]. These apparent clinical differences between LQT1 and LQT3
can be explained by the altered cellular electrophysiology of each mutant channel.

KCNQ1 encodes the α-subunits of slowly activating delayed rectifier potassium cur-
rents (IKs) [39,40], and SCN5A encodes Nav1.5, the α-subunits of voltage-gated sodium
channels/currents (INa) [41]. The modulation of each channel function by β-adrenergic
stimulation is known to differ: The KCNQ1-encoding IKs is markedly augmented by
β-adrenergic stimulation [42], while the SCN5A-encoding INa appears to be less modu-
lated by β-adrenergic stimulation than IKs [43–45]. Therefore, an augmentation of IKs by
β-adrenergic stimulation is impaired in LQT1 patients, while it is maintained in LQT3
patients. These findings explain why cardiac events in patients with LQT1 are associ-
ated with physical activity and why β-blocker therapy has been established in LQT1 but
not in LQT3. However, our own group and Chen et al. reported LQT3 patients (with
a SCN5A V1667I or V2016M mutation) exhibiting epinephrine-induced marked QT pro-
longation [11,46]. Electrophysiological experiments revealed that both mutant channels
caused a gain-of-function by β-adrenergic stimulation. In addition, a functional analysis
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of patient-specific iPSC-CMs revealed that propranolol inhibited the late sodium currents
observed in N1774D-Nav1.5 [47]. Therefore, these findings may provide the rationale
supporting the efficacy of β-blocker therapy in some cases of LQT3. In contrast, mexiletine,
which blocks late INa, is effective in LQT3 but not in LQT1 [6,8]. Intriguingly, an analysis
of LQT1 patient-specific iPSC-CMs revealed that a small molecule ML277 could restore
IKs function, which raised a possibility that ML277 can be a therapeutic candidate for
LQT1 patients [48].

In LQT2, emotional stress and sudden auditory stimuli are major triggers for cardiac
events [49,50], which might be explained by the finding that KCNH2, encoding the α-
subunits of rapidly activating delayed rectifier potassium currents (IKr), is expressed in
chromaffin cells and regulates catecholamine release and that blocking KCNH2 channels
leads to hyperexcitability and an increase in catecholamine release [51]. It is also known that
female patients with LQT2 have an increased risk of cardiac events during the postpartum
period, although the mechanisms have not yet been fully elucidated [52]. Therefore, β-
blocker therapy should not be discontinued during this period. Analysis of LQT2 patient-
specific iPSC-CMs revealed that lumacaftor could rescue the pathological phenotype of
LQT2, particularly with KCNH2 mutations that cause a loss-of-function through reduction
of the intracellular transport or trafficking of KCNH2 proteins to the cell membrane [53].

Furthermore, a mutation-specific atypical clinical phenotype has also been reported.
Clinical and experimental data have shown that the APD or QT interval on an ECG is usu-
ally prolonged during hypothermia/low temperature, while shortened during fever/high
temperature [54,55]. However, some KCNH2 mutations (A558P, G584S, and T613M) have
been reported to be associated with the prolongation of the QT interval and the develop-
ment of TdP during fever [8,54]. Notably, these mutations are located at the S5-pore region
of KCNH2 that is related to the inactivation of the channels [56]. Amin et al. reported
the mechanism whereby these mutations are associated with fever-induced QT prolonga-
tion [54]. Wild-type (WT) KCNH2 currents increased when the temperature was elevated,
whereas mutant (A558P and F640V) KCNH2 currents did not markedly increase compared
with WT KCNH2 currents, possibly due to their faster inactivation rate at an elevated tem-
perature. This suggests that the lack of an increase in mutant KCNH2 currents during fever
might lead to QT prolongation and the development of TdP. These findings underscore the
importance of reducing the body temperature by the timely use of antipyretics in patients
with mutations at the S5-pore region of KCNH2.

LQT7 and LQT8 have initially been thought to have extra-cardiac phenotypes and
have been defined as Andersen-Tawil syndrome (ATS) and Timothy syndrome (TS), respec-
tively. ATS is characterized by periodic paralysis, cardiac arrhythmias: Frequent premature
ventricular contraction, bidirectional or polymorphic VT, with QT or QU prolongation,
and dysmorphic features [22]. However, approximately 30% of KCNJ2 mutation carriers
exhibit only the cardiac phenotype [57]. KCNJ2 encodes inward rectifier potassium currents
(IK1), and a loss-of-function of IK1 by KCNJ2 mutations is associated with ATS [22,58].
Regarding pharmacological therapies for ATS, β-blockers and L-type calcium channel
antagonists have been used to treat ventricular tachyarrhythmias (VTAs) [59,60]. Further-
more, Miyamoto et al. reported that oral flecainide therapy is an effective and safe means
of suppressing VTAs [61].

TS is characterized by multiorgan dysfunction including lethal arrhythmias, webbing
of fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia,
cognitive abnormalities, and autism [23]. CACNA1C encodes Cav1.2, the α-subunits of
voltage-gated L-type calcium channels/currents (ICa), and a gain-of-function of Cav1.2 is
associated with TS [23]. However, CACNA1C gain-of-function mutations have been identi-
fied in patients with LQTS without extra-cardiac phenotypes (non-syndromic LQTS) [62,63].
It is noteworthy that CACNA1C gain-of-function mutations (G406R and G402S) that cause
TS are located at distinct sites, exon 8 or exon 8a, of Cav1.2, while those that cause non-
syndromic LQTS spread throughout the Cav1.2, and that non-syndromic LQTS is the
common phenotype of CACNA1C gain-of-function mutations [23,62–64]. In addition to
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germline mutations, mosaicism also contributes to phenotypic manifestations [63]. Due to
the rarity and high mortality of TS at a relatively young age, no valid drug therapy has yet
been established. Verapamil, an L-type calcium channel antagonist, decreased VTAs in a
patient with TS, but failed to completely eliminate VTAs and shorten the QTc interval [65].
Ranolazine, a multi potent ion-channel blocker, was even more effective in suppressing
VTAs in the patient when it was added to verapamil [66,67]. Mexiletine has been reported
to shorten the QTc interval through the inhibition of late INa [68]. Intriguingly, an analy-
sis of TS patient-specific iPSC-CMs revealed that roscovitine, a cyclin-dependent kinase
(CDK) inhibitor, could rescue the TS phenotypes through in part inhibiting CDK5, which
provides insights into the regulation of ICa and the development of future therapeutics for
TS patients [69].

Calmodulin (CAM) is encoded by three distinct genes, CALM1-3. Regarding CAM mu-
tations, patient-specific iPSC-CMs could recapitulate a disruption of Ca2+/CAM-dependent
inactivation of L-type ICa, and revealed that CAM mutation-induced repolarization ab-
normalities could be reversed by verapamil [70,71]. Furthermore, mutant allele-specific
knockout using a clustered regularly interspaced short palindromic repeats (CRISPR)-
CRISPR associated protein 9 (CRISPR-Cas9) system could rescue the electrophysiological
abnormalities of a CALM2 mutation [70]. Such a latest genome-editing technology may
provide a promising therapeutic approach for IASs.

Although many pathogenic mutations for LQTS have been identified, approximately
20% of LQTS remain genetically elusive. In contrast, many variants of uncertain sig-
nificance (VUS) have been identified. Therefore, technologies that can determine their
pathophysiological roles are desired.

Mutations in ion channel-related genes have also been identified in patients with
acquired LQTS, including drug-induced LQTS (diLQTS), whereas the functional changes
of mutations identified in diLQTS patients were mild compared with those in LQTS pa-
tients [72,73]. However, most diLQTS remain genetically elusive, whereas many VUS have
been identified. It also remains elusive why certain individuals have a higher propensity
to develop QT interval and consequently life-threatening arrhythmias in response to drugs.
An analysis of diLQTS patient-specific iPSC-CMs and application of genome-editing tech-
nologies can reveal the mechanisms of diLQTS, predict the arrhythmogenic risk of drugs,
and determine the pathophysiology of VUS [74]. Genome-edited iPSC-CMs harboring
distinct KCNH2 mutations (A561T within the pore region and N996I within the tail region)
in momolayer cultures displayed prolonged repolarization in the pore mutation larger
than tail mutation, and blocking the KCNH2 channels conferred greater susceptibility to
arrhythmic events in the pore mutation compared with tail mutation [75]. These findings
indicate that evaluating the drug sensitivity of patient-specific iPSC-CMs may facilitate
patient risk stratification.

2.2. SQTS

SQTS is a very rare inherited disorder characterized by an abnormally short QT
interval on an ECG and an increased risk of life-threatening arrhythmias [2,76]. SQTS is
theoretically caused by an increase of the outward currents or a decrease of the inward
currents during the plateau phase of ventricular AP. Indeed, a gain-of-function of outward
potassium currents, such as IKr, IKs, and IK1, and a loss-of-function of inward currents,
such as ICa, have been associated with SQTS (Table 1) [77–81]. Notably, most of causal
genes (KCNQ1, KCNH2, KCNJ2, CACNA1C, CACNB2, and CACNA2D1) for SQTS are ion
channel-related genes that are also causal for LQTS (Table 1). Furthermore, ICa-related
genes (CACNA1C, CACNB2, and CACNA2D1) are also causal for BrS and ERS (Table 1),
which is consistent with the finding that a short QT interval is often accompanied by BrS
and/or ER pattern [80,82]. The gain- or loss-of-function of the same gene, CACNA1C,
is associated with different disease entities (either TS/LQTS or SQTS, BrS and ERS). In
addition to TS, ICa-related genes are associated with extra-cardiac phenotypes such as
autism spectrum disorder (ASD) [83]. Intriguingly, a CANCA1C loss-of-function mutation
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(K800T) causes a new Cav1.2 channelopathy with a short QT interval and extra-cardiac
phenotypes such as ASD and severe dental enamel defects [84].

KCNH2 is the major causal gene, but its mutations account for only approximately 15%
of SQTS patients [2]. Mutations in KCNQ1 and KCNJ2 have been less frequently identified,
and those of the remaining genes have been rarely identified. Risk stratification and valid
pharmacological therapies have not yet been established due to the low number of patients
with SQTS [2]. Quinidine, which blocks several potassium channels including Ito and
IKr, was reported to prolong the QT interval and reduce the incidence of life-threatening
arrhythmias in patients with SQTS [85,86]. Other antiarrhythmic drugs, such as sotalol,
amiodarone, disopyramide, and β-blockers, failed to show beneficial effects on SQTS [86].

3. J Wave Syndrome (BrS and ERS)
3.1. BrS

BrS is characterized by coved-type ST segment elevations in the right precordial ECG
leads with or without drug (sodium channel blocker) provocation, and is associated with
fatal arrhythmias leading to syncope or SCD [8,87]. Cardiac events of BrS typically begin
to occur in adolescence. Notably, cardiac events occur more often during sleep or at rest
than during vigorous physical activity [88].

To date, more than 20 genes have been reported to be related with BrS (Table 1).
SCN5A was first identified as a causal gene for BrS [89]. Later, over 20 other genes were
identified as causal or modifier genes for BrS [80,82,90–108]. Mutations in SCN5A account
for approximately 20% of BrS cases, while those of other genes rarely do [8]. However,
among the genes reported to be causal or modifier for BrS, reappraisal of these genes
by Hosseini et al. suggested that only SCN5A had definite evidence of being a causal
gene [109]. Therefore, further studies are required to conclude that these reported genes
are indeed causal for BrS.

Regarding the cellular mechanisms underlying BrS, there are two hypotheses: The
repolarization hypothesis and the depolarization hypothesis, which are still in debate [3].
Among those, however, the repolarization hypothesis appears to be supported from the
viewpoint of the abnormal functions of causal genes.

Transient outward potassium currents (Ito) are more abundantly expressed in the right
ventricle (RV) than in the left ventricle (LV) and at the epicardium than at the endocardium,
which contributes to the formation of the phase 1 notch and “spike and dome” morphology
at RV epicardium (Figure 1A) [110,111]. The predominance of outward currents over
inward currents at the epicardium in RV outflow tract (RVOT) during the early phase of
ventricular APs, due to a loss-of-function of inward currents (such as INa and ICa) or a gain-
of-function of outward currents (such as Ito and ATP-sensitive inward rectifier potassium
currents [IK-ATP]), can augment the AP notch (Figure 1A), thereby inducing coved-type
ST segment elevations in the right precordial ECG leads (Figure 1B), and result in the
development of fatal arrhythmias through a so-called phase 2 re-entry [3,112]. During
the slower heart rate or lower physical activity, Ito is augmented due to a recovery from
inactivation and ICa is decreased due to a reduced β-adrenergic stimulation, while INa
is minimally affected (Figure 2) [11,113,114]. The decreased heart rate- and reduced β-
adrenergic stimulation-induced predominance of outward currents over inward currents
during the early phase of RVOT APs can explain why cardiac events of BrS tend to occur
during sleep or at rest [3,112]. In cases of electrical storm (ES), the use of isoproterenol,
which increases ICa and decreases Ito due to an increase of heart rate, is recommended
to suppress fatal arrhythmias [3,8]. Drugs that have an inhibitory effect on Ito, such as
quinidine and bepridil, and those that increase the heart rate and ICa, such as cilostazol,
have been shown to be somewhat effective as adjunctive therapy, although implantable
cardioverter defibrillator is the only available therapy for preventing SCD [11,112].

The genotype-phenotype relationships for BrS have been less thoroughly clarified
than those for LQTS. It has long been unclear whether or not the presence of SCN5A
mutations is associated with the severity of BrS. However, Yamagata et al. recently re-
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ported that it can predict the severity of BrS [115]. SCN5A mutations can be associated
with other arrhythmic and cardiomyopathic phenotypes such as sinus node dysfunction
(SND), atrioventricular block, supraventricular tachyarrhythmias (SVT), LQTS, dilated
cardiomyopathy and LV noncompaction (Table 1) [10,116–121]. BrS phenotype can be
aggravated by a fever [122–124], but this phenomenon appears to be restricted to patients
with SCN5A mutations [125]. As mentioned above, mutations in genes that encode ICa are
often accompanied by ER and a relatively short QT interval (Table 1) [80,82].

While cardiac events of BrS typically occur during sleep or at rest, we encountered
a familial case of BrS who exhibited exercise-induced cardiac events, an atypical clinical
phenotype as BrS [10]. In addition to the BrS phenotype, the proband (a 17-year-old male)
had SVT and SND, and his mother also had BrS and SND. Both carried an SCN5A R1632C
mutation, located at domain IV-segment 4 (DIVS4).
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currents, Ito (blue solid line), INa (red solid line), and ICa (purple solid line), during the early phase
of AP are shown. Since the SCN5A R1632C mutation induces a marked activity-dependent loss
of Nav1.5 availability due to a marked delay of recovery from fast inactivation, R1632C-Nav1.5
markedly decreases during tachycardia/exercise (red dotted line). On the other hand, since the
KCND3 V392I and G306A mutations induce an increase of current density and delayed inactivation,
V392I-Kv4.3 and G306A-Kv4.3 markedly increase during bradycardia/rest (blue dotted line), while
since the KCND3 V392I and G306A mutations induce a marked delay of recovery from inactivation,
V392I-Kv4.3 and G306A-Kv4.3 decrease the increased Kv4.3 during tachycardia/exercise (blue dotted
line). WT: Wild-type.

The SCN5A/Nav1.5 is composed of four homologous but non-identical domains
(DI-DIV), and each domain contains an S4 voltage sensor that consists of positively charged
arginine and lysine repeats. The S4 segments in SCN5A have domain-specific functions,
and the DIVS4 plays a key role in the activation and fast inactivation processes through
the coupling of arginine residues in DIVS4 with residues of the putative gating charge
transfer center in DIVS1-3 [126–129]. Thus, the R1632 position in SCN5A was thought
to be an important position in the activation and inactivation processes. A functional
analysis of the SCN5A R1632C mutation revealed that it displayed a marked delay of
recovery from fast inactivation, in other words, an enhanced fast-inactivated state stability
of Nav1.5 [10,130]. Rapid repetitive depolarizing pulses induced a marked reduction of the
current amplitudes in R1632C-Nav1.5 compared with WT-Nav1.5. This means that R1632C-
Nav1.5 will markedly decrease compared with WT-Nav1.5 during higher heart rate or
vigorous physical activity (Figure 2). This unique electrophysiological property, a marked
activity-dependent loss of Nav1.5 availability due to a marked delay of recovery from
fast inactivation, might be associated with the atypical clinical phenotype of this mutation
carriers. Given that isoproterenol infusion increases the heart rate, thereby decreasing
R1632C-Nav1.5, the use of isoproterenol should be avoided in carriers of this mutation in
cases of ES. Conversely, there is a possibility that β-blocker therapy may be effective for
the suppression of ES in carriers of this mutation.

Patient-specific iPSC-CMs harboring other SCN5A mutations have been reported to
be able to recapitulate cellular phenotypic features of BrS, such as reduced INa, reduced
maximal upstroke velocity of AP, increased burden of triggered activity, and abnormal
Ca2+ transients. [9,131]. For the SCN5A R1632C mutation carriers, in addition to clinical
studies, an analysis of iPSC-CMs may promote the development of mutation-specific
precision medicine.
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3.2. ERS

ER (or J wave) is generally defined as J-point elevation (≥0.1 mV) in ≥2 inferior
and/or lateral ECG leads [3]. ER is a common ECG finding that affects 1% to 5% of people,
and was long considered “benign”. However, several reports suggested its potential ar-
rhythmogenicity [132,133], and in 2008, a multicenter study by Haissaguerre et al. revealed
an obvious association of ER and arrhythmogenicity [134]. Thereafter, ER began to attract
the attention of many cardiologists and researchers.

ERS is now generally diagnosed in patients who display ER in the inferior and/or
lateral ECG leads presenting with aborted cardiac arrest, documented VF or polymorphic
VT [3]. As with BrS, although both the repolarization and depolarization hypotheses have
been proposed as the cause of ER, the repolarization hypothesis is prevailing as a cause
of “malignant” ER, recognized in ERS [3]. Regarding the cellular mechanisms, a marked
increase of AP notch in the epicardium compared with the endocardium in the LV underlies
the generation of ER in the inferior and lateral ECG leads (Figure 1A,B). An abundance of Ito
in the epicardium relative to the endocardium in the LV largely contributes to the formation
of the AP notch in the epicardium (Figure 1A,B) [135]. In addition, the predominance
of outward currents over inward currents in the LV epicardium during the early phase
of ventricular AP, due to a loss-of-function of inward currents (such as INa and ICa) or a
gain-of-function of outward currents (such as Ito and IK-ATP), can theoretically augment the
AP notch, thereby leading to the generation of an ER pattern (Figure 1A,B) [5,135].

Indeed, all causal genes for ERS that have been identified encode ion channel-related
proteins and mutations in these genes cause either a loss-of-function of inward currents
(INa and ICa) or a gain-of-function of outward currents (Ito and IK-ATP) during the early
phase of ventricular AP (Table 1) [82,95,100,136–138]. Of note, the genetic backgrounds of
ERS share similarities with those of BrS (Table 1), although the association of ERS with
these genes should also be reappraised, as with BrS. ERS with ICa-related genes tends to be
accompanied by BrS and/or a relatively short QT interval [82]. The clinical characteristics
of ERS also share some similarities with those of BrS: Male predominance, cardiac events
in adolescence, and effective pharmacological therapies such as isoproterenol, quinidine,
bepridil, and cilostazol [3,139].

Among causal genes for ERS, KCND3 mutations were recently identified [13,138].
KCND3 encodes Kv4.3 composing transient outward potassium currents (Ito or IA), and
it is expressed in both the heart and brain [140]. In the brain, KCND3 plays a particularly
important role in the development of the cerebellum [141,142], while it affects cardiac APs
in both the atrium and ventricle [111]. Therefore, an altered Kv4.3 function can theoretically
be associated with both cardiac and cerebral phenotypes. Indeed, a decreased Kv4.3
function caused by KCND3 mutations has been shown to be associated with spinocerebellar
ataxia (SCA)19/22 phenotype [143,144]. In contrast, an increased Kv4.3 function caused
by KCND3 mutations has been associated with cardiac phenotypes, such as BrS and
AF [96,145]. Takayama et al. recently reported a 12-year-old boy with ERS associated
with a KCND3 G306A mutation [138]. In addition to the ERS phenotype, the patient had
paroxysmal AF (PAF), refractory epilepsy, and intellectual disability (ID) from 2 years of
age. They also reported the electrophysiological properties of the mutation: An increase of
Kv4.3 (due to an increased current density and delayed inactivation) and a decrease of the
increased Kv4.3 (due to a delayed recovery from inactivation) (Figure 2). Thus, an increase
of Kv4.3 is thought to be associated with ERS.

We recently identified a KCND3 V392I mutation in a familial case (mid to late teen
sisters) with both cardiac (ERS, PAF) and cerebral (epilepsy, which manifested in early child-
hood, and ID) phenotypes [13]. Giudicessi et al. reported that the KCND3 V392I mutation
displayed a unique mixed electrophysiological property: An increase of Kv4.3 (due to an
increased current density and delayed inactivation) and a decrease of the increased Kv4.3
(due to a delayed recovery from inactivation) [146], which resemble those of the KCND3
G306A mutation [138]. As shown in Figure 2, these two mutations increase Kv4.3/Ito
during bradycardia, thereby leading to J wave augmentation and shortening of the QTc
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interval, while it decreases the increased Kv4.3/Ito during tachycardia, thereby leading to
the decrease/disappearance of the J wave and normalization of the QTc interval in both
the ventricle and atrium. An increase of J wave amplitude during bradycardia may be
consistent with the fact that one patient with this mutation suddenly died at midnight [13].
Regarding PAF, a shortening of the APD in the atrium during bradycardia may contribute
to the occurrence of AF, possibly consistent with the fact that PAF predominantly occurs at
night or in the early morning [13]. On the other hand, the mechanisms by which the KCND3
V392I mutation causes epilepsy and ID remain unclear. An increase of Kv4.3/IA in the brain
may be associated with epilepsy, as with a KCND2 V404M mutation [147]. Alternatively, it
is also conceivable that a unique mixed electrophysiological property of Kv4.3/IA may be
associated with epilepsy, as cerebral cells may be able to become excited frequently enough
to decrease Kv4.3/IA due to a marked delay of recovery from inactivation.

Given that the KCND3 G306A mutation associated with both cardiac (ERS and PAF)
and cerebral (epilepsy and ID) phenotypes also displays a unique mixed electrophysiologi-
cal property, we have proposed a link between KCND3 mutations with a unique mixed
electrophysiological property and cardiocerebral phenotypes, which may be defined as a
novel cardiocerebral channelopathy [13]. The oral administration of quinidine appeared to
be effective for ERS and PAF in patients with these KCND3 mutations [13,138]. Since the
epileptic phenotype appears to manifest prior to VTAs or PAF in patients with this novel
cardiocerebral channelopathy [13,138], identifying KCND3 mutations with a unique mixed
electrophysiological property in patients with epilepsy of unknown etiology and providing
optimal therapy to these patients will help prevent sudden unexpected death in epilepsy.
The utilization of iPSC technology may provide further insights into the pathophysiology
of this novel cardiocerebral channelopathy and novel therapeutic strategies.

Table 1. Cardiac and extra-cardiac phenotypes associated with causal or modifier genes for long QT syndrome (LQTS),
short QT syndrome (SQTS), Brugada syndrome (BrS) [3,4], and early repolarization syndrome (ERS).

Gene Cardiac Phenotype/Extra-Cardiac
Phenotype (Function) [Reference] Gene Cardiac Phenotype/Extra-Cardiac

Phenotype (Function) [Reference]

ABCC9 BrS (IK-ATP↑) [100], ERS (IK-ATP↑) [100],
AF (IK-ATP↓) [33] KCNH2 LQTS (IKr↓) [17,53,75],

SQTS (IKr↑) [78], AF (IKr↓, IKr↑) [33]

AKAP9 LQTS (IKs↓) [26] KCNJ2 LQTS (IK1↓) [57], SQTS (IK1↑) [79],
AF (IK1↑) [33]/ATS (IK1↓) [22,58]

ANK2 LQTS (NCX/NKA/IP3R↓) [19] KCNJ5 LQTS (IK-Ach↓) [28], AF (IK-Ach↑) [35],
SND (IK-Ach↑) [35]

CACNA1C

LQTS (ICa↑) [62,63], SQTS (ICa↓) [80],
BrS (ICa↓) [80],

ERS (ICa↓) [82]/TS (ICa↑) [23,64,69],
ASD (ICa↓) [83,84]

KCNJ8 BrS (IK-ATP↑) [95], ERS (IK-ATP↑) [95],
AF (IK-ATP↑) [33]

CACNA2D1 SQTS (ICa↓) [80], BrS (ICa↓) [82],
ERS (ICa↓) [82] KCNQ1 LQTS (IKs↓) [16,48], SQTS (IKs↑) [77],

AF (IKs↑) [33]

CACNB2 SQTS (ICa↓) [80], BrS (ICa↓) [80],
ERS (ICa↓) [82]/ASD [83] PKP2 BrS (INa↓) [105]

CALM1 LQTS (ICa↑) [29,71] RANGRF/MOG1 BrS (INa↓) [97]

CALM2 LQTS (ICa↑) [29,70] SCN10A BrS (INa↓) [107], AF (INa↑, INa↓) [33]

CALM3 LQTS (ICa↑) [30] SCN1B BrS (INa↓) [92], AF (INa↓) [33]

CAV3 LQTS (INa↑) [24] SCN2B BrS (INa↓) [101], AF (INa↓) [33]

FGF12 BrS (INa↓) [102] SCN3B BrS (INa↓) [94], AF (INa↓) [33]

GPD1L BrS (INa↓) [90,91] SCN4B LQTS (INa↑) [25], AF (INa↓) [33]
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Table 1. Cont.

Gene Cardiac Phenotype/Extra-Cardiac
Phenotype (Function) [Reference] Gene Cardiac Phenotype/Extra-Cardiac

Phenotype (Function) [Reference]

HCN4 BrS (Ih↓) [108], SND (Ih↓) [33], AF (Ih↓) [33] SCN5A

LQTS (INa↑) [18], BrS (INa↓) [89,131],
ERS (INa↓) [136], SND (INa↓) [116],

AVB (INa↓) [121], AF (INa↑, INa↓) [33],
SVT (INa↓) [10],

DCM (ω-currents↑) [129], LVNC [120]

HEY2 BrS (INa↓) [103] SEMA3A BrS (INa↓) [106]

KCND2
ERS (Ito↑) [137],

AF (Ito↑) [34]/Epilepsy (IA↑) [147],
ASD (IA↑) [147]

SLC4A3 SQTS (AE3↓) [81]

KCND3
BrS (Ito↑) [96], ERS (Ito↑) [138],

AF (Ito↑) [145]/SCA (IA↓) [143,144],
Epilepsy (IA↑↓) [13,138]

SLMAP BrS (INa↓) [99]

KCNE1 LQTS (IKs↓) [20], AF (IKs↑) [33] SNTA1 LQTS (INa↑) [27]

KCNE2 LQTS (IKr↓) [21], AF (IKs↑) [33] TRDN LQTS (ECC↓) [31]

KCNE3 BrS (Ito↑) [93], AF (IKs↑) [33] TRPM4 BrS (INa↓) [104]

KCNE5 BrS (Ito↑) [98], AF (IKs↑) [33]

AE3: Anion exchanger 3; AF: Atrial fibrillation; ASD: Autism spectrum disorder; AVB: Atrioventricular block; BrS: Brugada syndrome;
DCM: Dilated cardiomyopathy; ECC: Excitation-contraction coupling; ERS: Early repolarization syndrome; ICa: Voltage-gated calcium
channels/currents; Ih: Hyperpolarization-activated non-selective cation channels/currents; IK: Delayed rectifier potassium currents;
IKr: Rapidly activating IK; IKs: Slowly activating IK; IK-Ach: Acetylcholine-activated inward rectifier potassium currents; IK-ATP: ATP-
sensitive inward rectifier potassium currents; IK1: Inward rectifier potassium currents; INa: Voltage-gated sodium channels/currents; IP3R:
Inositol 1,4,5-trisphosphate receptor; Ito or IA: Transient outward potassium currents; LQTS: Long QT syndrome; LVNC: Left ventricular
noncompaction; NCX: Na/Ca exchanger; NKA: Na/K ATPase; SCA: Spinocerebellar ataxia; SND: Sinus node dysfunction; SQTS: Short QT
syndrome; SVT: Supraventricular tachyarrhythmia; ↑: Gain-of-function; ↓: Loss-of-function.

4. Conclusions

The combination of a thorough investigation of the clinical phenotypes of IASs and
elucidation of the electrophysiological properties of mutant channels can reveal the patho-
physiology of IASs. Particularly, the unique electrophysiological properties of mutant
channels can be responsible for the atypical clinical phenotypes of IASs, raising the pos-
sibility of mutation-specific precision medicine in IASs. Further studies using the iPSC
technology may provide further insights into the pathophysiology of atypical clinical
phenotypes of IASs and the development of mutation-specific precision medicine.
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