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ABSTRACT

Bioinformatic analysis often produces large sets of
genomic ranges that can be difficult to interpret in
the absence of genomic context. Goldmine annotates
genomic ranges from any source with gene model
and feature contexts to facilitate global descriptions
and candidate loci discovery. We demonstrate the
value of genomic context by using Goldmine to elu-
cidate context dynamics in transcription factor bind-
ing and to reveal differentially methylated regions
(DMRs) with context-specific functional correlations.
The open source R package and documentation for
Goldmine are available at http://jeffbhasin.github.io/
goldmine.

INTRODUCTION

Many bioinformatics workflows, especially those that pro-
cess genomic and epigenomic next generation sequencing
(NGS) data, produce expansive data sets in the form of ge-
nomic ranges defined by chromosome, start position and
end position and can represent phenomena such as so-
matic mutations, copy number variations, DNA— or RNA-
protein binding sites and epigenetic state changes. The ob-
jective of Goldmine is to provide biologically-relevant an-
notation to genomic range sets and is motivated by two
characteristics of such data. First, the range sets can be
very large in size and require automated processing. For
example, the number of peaks from a ChIP-seq experi-
ment can range from the 100s to the 100 000s (1) and dif-
ferentially methylated regions (DMRs) among human tis-
sues can number in the 700 000s, even after stringent filter-
ing criteria (2). Second, genomic ranges are not limited to
gene bodies and can overlap with non-gene regulatory ele-
ments distal to genes, such as those established by large scale
reference sequencing efforts (1,3,4). Analyzing how query
genomic ranges from new studies relate to both known
gene models and genomic features present in reference data
can greatly facilitate hypothesis generation (Supplementary

Figure S1A). Goldmine addresses the need to add inter-
pretability, summarization and filtering to large sets of ge-
nomic ranges by annotating user-supplied genomic ranges
with respect to known gene models and putative functional
elements (Supplementary Figure S1B).

Existing tools for the analysis of genomic ranges fall into
three categories. Goldmine belongs to a class of tools that
provide detailed annotation of a query set of ranges to refer-
ence sets of ranges and gene models. Two existing tools with
a similar concept are ChIPpeakAnno (5) and HOMER’s
annotatePeaks.pl (6). While these tools are ChIP-seq cen-
tric and provide nearest gene annotations, Goldmine is de-
signed to accept genomic ranges from any source and also
provides detailed feature annotation (Supplementary Table
S1). A second category links genomic ranges to genes for
the purposes of performing gene ontology enrichment and
includes tools such as GREAT (7) and ChIP-ENRICH (8).
Goldmine complements these tools by providing additional
annotation of non-gene elements from reference data and
can be used as a pre-filter to create query range sets to be
provided to these other tools. For example, Goldmine could
be used to stratify all query ranges that fall into known
exons, and only these ranges are provided to GREAT for
gene ontology analysis. The third category performs sta-
tistical enrichment calculations globally between a query
set of ranges and a reference set of ranges to determine if
range overlaps occur more than expected by chance. These
tools include LOLA (9), GenometriCorr (10) and regioneR
(11). Goldmine can work together with these existing tools
for global enrichment calculations by providing a compan-
ion annotation that details the exact overlap for each in-
dividual range with combinations of reference set ranges,
enabling the next level of candidate filtering and prioriti-
zation after an enrichment has been observed. Addition-
ally, the range set enrichment tools can establish statistical
significance if a frequent overlap is observed from manual
inspection of a Goldmine annotation table. In summary,
Goldmine provides detailed annotations and accountings
of overlaps with both gene models and features, and auto-
mates complex tasks that would otherwise require manual
download of data tables and custom programming.
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MATERIALS AND METHODS

Obtaining and caching reference genomic and epigenomic
data

In addition to user-supplied genomic ranges, Goldmine
supports the direct loading into R of data from UCSC
Genome Browser tables (12,13). These tables (viewable at
https://genome.ucsc.edu/cgi-bin/hgTables) contain the bulk
of extant annotation available for most species with as-
sembled genomes. In the case of the human genome, the
hgl9 assembly contains data for multiple gene databases
(including RefSeq, UCSC knownGene and ENSEMBL),
non-coding RNA databases, the GWAS catalog, dbSNP, all
data from the ENCODE project and various other feature
sets including repeat elements, CpG islands and conserved
elements. All tables can be loaded directly into R using
the Goldmine function getUCSCTable(). The fread() func-
tion from the data.table package (http://CRAN.R-project.
org/package = data.table) is employed for memory-efficient
storage of large tables. To conserve bandwidth, tables can
be cached and stored in a local repository, and only re-
downloaded if an updated version is available. Each version
downloaded by Goldmine is named with a date stamp cor-
responding to the last modified date on UCSC’s FTP server,
and specific tables can be loaded by date stamp or synchro-
nization can be disabled to ensure reproducibility of results.
Otherwise, the latest available versions of tables are always
obtained. Goldmine is not limited to using feature sets from
UCSC, and any desired range set from other sources can be
utilized. The input features list to Goldmine can be a user-
generated list of GenomicRanges objects from any source.
GenomicRanges objects can be created from BED files us-
ing the included makeGRanges() function.

Annotating sets of genomic ranges

Automated annotation of a set of genomic ranges is per-
formed using the goldmine() function (Supplementary Fig-
ure S1B). Internally, functions and data structures from the
GenomicRanges package are employed for fast overlap op-
erations (14). Goldmine reports quantitative overlap results,
enabling the user to filter the extent of overlap as desired
for downstream analysis. For the analyses presented here,
we have defined overlap as any overlap between a query
range and a range from a reference set (1 bp or more). The
functions getGenes() and getFeatures() can be used to cus-
tomize the gene and feature sets used by goldmine() and al-
low simplified loading of commonly used tables. The gold-
mine() function reports two types of annotation tables. The
‘wide’ format has the same number of rows as the query set.
The much more detailed ‘long’ format reports each pair of
overlapping query range and gene/feature range as a row
(analogous to an inner join in a relational database, keyed
by range overlap). The ‘wide’ format provides an easy to
view summary of contexts, where each query range is anno-
tated with the percent overlap with each gene model compo-
nent or feature set. These percentages can be used to divide
query ranges into categories based on genomic and feature
context. A simple category call is made based on the gene
models automatically, and multiple overlaps are resolved
using the priority order promoter > gene 3’ end > exon >
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intron > intergenic. By default, promoters are defined as
—1000 bp to +500 bp of a transcription start site and gene
3’ ends are defined as 1000 bp flanks both upstream and
downstream of a transcription end site. Both definitions are
user-adjustable. The distance to nearest gene, genes directly
overlapped by the range and the genes that generated the
context call are also reported. The ‘long’ format is useful
for viewing individual overlaps with certain features or gene
isoforms in full detail, as it captures all the complexity of
the overlaps that produced the percentages reported in the
‘wide’ format.

Annotation of ENCODE ChIP-seq peaks using goldmine

The Goldmine function getFeatures() was used to obtain
the ‘wgEncodeRegTfbsClusteredV3’ supertrack table. A
copy of this data was generated and split into a list with
one range set per factor using split(). The list of all sites
was given as the query to goldmine(), and the split list
was given as the features list. The context calls were aggre-
gated to fractions of binding sites called by Goldmine in
each context using data.table and plotted using ggplot2. Be-
cause this run annotated each binding site with the fraction
of overlap with binding sites from each other factor, this
output was also used to analyze co-occurrence biases on a
per-context level. The feature annotation fraction columns
were extracted and made into a matrix. The matrix was
made Boolean by considering any overlap (fraction > 0) as
TRUE, and FALSE otherwise. The fractions of these over-
laps were then aggregated within each context for pairwise
combinations of each factor with each other factor. Frac-
tions were computed as the number of sites where factor A
sites overlap with factor B sites divided by the total number
of factor A sites (1). Experiment-specific peak lists used to
ascertain context changes for the same factor across individ-
ual cells and conditions were created by parsing the super-
track based on the index available in the ‘wgEncodeRegTf-
bsClusteredInputsV3’ table at the UCSC genome browser.
Goldmine was then applied separately for the list of peaks
from each cell line. Results were aggregated by cell line, fac-
tor and context using data.table and plotted using ggplot2.

DNA methylation sequencing data processing

Methylated DNA  immunoprecipitation sequencing
(MeDIP-seq) read alignments in BED format were ob-
tained from the Roadmap Epigenomics Projects under
GEO accessions GSM 543025, GSM613913, GSM669607,
GSM 543027, GSM613917 and GSM669609. The samples
used are pairs of ‘CD4, Naive Primary Cells’ and ‘CDS8,
Naive Primary Cells’ from three human donors. The BED
format alignments were converted to BAM format using
the ‘bamtobed’ function of bedtools (15) and were sorted
and indexed using samtools (16). The read depths for both
cell types from one donor (TC009) were nearly twice as
large as the other two donors, and these samples were
downsampled to match the mean of the depth (57 349 008
reads) from the other samples using samtools.


https://genome.ucsc.edu/cgi-bin/hgTables
http://CRAN.R-project.org/package = data.table
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Detection of differentially methylated regions (DMRs)

DMRs were detected using MethylAction (17). A window
size of 50 bp and a fragment size of 266 bp were selected
based on the protocol referenced in the GEO records. A
subject-level effect was added to the testing model to ac-
count for the paired nature of the samples. Chromosome X
and Y were excluded from the analysis. The methylaction()
function was run with all other options as default, and the
resulting DMR list was filtered to retain only those with
ANODEV.padj < 0.01 and llogy(fold change)l > logy(1.5).

Annotation of DMRs

The getGenes() function was used to obtain the ENSEMBL
genes for hgl9 for annotation. The getFeatures() func-
tion was used to obtain the feature sets for annotation
from the tables: ‘wgEncodeRegDnaseClusteredV3’, ‘wgEn-
codeRegTfbsClusteredV3’ and ‘gwasCatalog’. These fea-
tures were concatenated with the output from getCpgFea-
tures() resulting in one feature list with the genomic
ranges each for ENCODE DNasel hypersensitive sites, EN-
CODE ChIP-seq peaks, GWAS catalog SNPs and CpG
islands/shores/shelves. The drawGenomePool() option was
used to draw a length-matched genomic null set of regions
to the DMRs, sampling 100 times more regions than the
query. These ranges were concatenated with the filtered
MethylAction DMR set. The goldmine() function was run
using these gene and feature lists and the GenomicRanges
object containing both the DMRs and null regions as the
query ranges. Resulting annotated data was saved for view-
ing using the gmWrite() function. The frequencies of each
DMR pattern and the null set for overlapping with each
gene model or feature context were aggregated and plotted
using the R packages data.table and ggplot2.

Curation of DMRs with known and potential functions

The ‘call_genes’ column in the ‘context.csv’ file saved by
Goldmine’s gmWrite() function was used to search for
DMRs in the promoters of known lineage factors for the
CD4+ versus CD8+ fate decision. The ‘genes.csv’ file was
filtered for rows with promoter fraction > 0, and a list of all
unique ENSEMBL gene IDs (ENSG numbers) was saved.
This list was provided to GeneMANIA (18) with the set-
ting of zero related genes and attributes. The gene ontology
(GO) term enrichment table was saved and plotted using gg-
plot2 for all terms with FDR < 15%. Plots of DMR regions
were generated using ggbio (19) and the UCSC genome
browser (13). ChromHMM and H3K27ac data for CD4+
and CD8+ T cells were obtained from the ‘Roadmap Epige-
nomics Data Complete Collection at Wash U VizHub’ track
hub available from the UCSC browser.

Enrichment of consensus ChIP-seq peaks in DMRs

Enrichment was computed as the odds ratio between ob-
served and expected frequencies of per-bp overlap rates be-
tween DMRs and all-methylated regions using a standard
equation (20). The all-methylated regions were defined as
the set of 50 bp windows with 4 or more reads in all 6 sam-
ples. These windows were overlapped with the genome-wide

context GenomicRanges produced by the getGeneModels()
function from Goldmine and categorized using the same
priority order as Goldmine (promoter > gene 3’ end >
exon > intron > intergenic). The ‘wgEncodeRegTfbsClus-
teredV3’ was obtained using getFeatures() and was con-
verted into a list with one range set per factor using the
split() function. For each DMR pattern and for each ChIP-
seq factor, the fraction of bp in the DMR set that overlap
with the given factor was compared to the same fraction in
the all-methylated region set, and the odds ratio was cal-
culated. Therefore, the background set used for each en-
richment calculation is the set of all-methylated regions that
fall in the same genomic context. This comparison is justi-
fied because promoters are compared to promoters, introns
to introns and so forth. In other words, each enrichment
is above that expected for any non-differentially methylated
region in the same genomic context. Enrichments were con-
sidered significant if the lower bound of the 95% confidence
interval (CI) of the odds ratio was >1 and more than 5%
of base pairs in the DMR set were covered by the fac-
tor’s ChIP-seq binding site ranges. The lower bound of the
95% CI was plotted on the heatmap. Non-significant enrich-
ments were excluded from the heatmap (white squares).

RESULTS

Using a reference gene database, Goldmine classifies ge-
nomic ranges as one of promoter, exon, intron, gene 3’ end,
or intergenic (Figure 1A). To illustrate how this classifica-
tion can capture biological information, we annotated a su-
pertrack of cross-cell line ChIP-seq peaks from the EN-
CODE project. This analysis was enabled by Goldmine’s
capability to annotate any set of ranges with the percent
overlap with any set of query ranges. The annotation re-
vealed a spectrum of context-biased binding profiles (Figure
1B and Supplementary Table S2). We also found numerous
examples where genomic contexts shift across cell lines and
cell treatments for a given transcription factor (Supplemen-
tary Figure S2), and these suggest that the DNA-binding
properties of such factors can be dynamic across biological
conditions. For example, the binding sites of RE1-silencing
transcription factor (REST) show a range of context biases
from 15.5% promoter in H1-ESC cells to 50.5% promoter in
HEPG?2 cells, without a substantial change in total binding
site number (Figure 1C). Because REST has known devel-
opmental roles (21), these shifts in context may reveal a bal-
ance between distal regulatory versus promoter regulatory
functions throughout development (22).

DNA binding factors often function in complexes that
can be revealed by ChIP-seq peak co-occurrence modules
(1), and we identified multiple examples of co-binding pref-
erences that are specific to certain genomic contexts using
Goldmine (Supplementary Figure S3). A single command
produced a co-occurrence matrix among all peaks by re-
quiring a simple filter of >1 bp overlap. Because Goldmine
provides detailed raw annotation, users can select custom
thresholds for filtering and analyzing overlaps. One example
of a factor with context-specific co-binding preferences is
CCCTC-Binding Factor (CTCF) (Figure 1D). The genomic
context and binding partners of given CTCF sites can de-
lincate among the multiple transcriptional and structural
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Figure 1. Goldmine automates the annotation of gene model and feature contexts for any set of genomic ranges. (A) Schematic of Goldmine’s annotation
approach. For gene context annotation, promoter and gene 3’ end regions are user-specified flanks surrounding annotated transcription start and end sites
from gene databases that the tool can automatically download and synchronize. In cases of overlapping contexts, regions are classified using the priority
order of promoter > 3’ end > exon > intron > intergenic. For feature contexts, Goldmine can take as input any number of user-specified feature sets of
ranges or automatically download any table from the UCSC genome browser, including the ENCODE supertracks and GWAS catalog, and reports the
percent overlap with these sets. (B) Proportion of ENCODE supertrack ChIP-seq peaks that annotate into the Goldmine gene contexts defined in (A). Each
row is a proportional bar graph for an individual factor. (C) The proportion of REST ChIP-seq peaks across the named cell lines within each Goldmine
gene model context. The total number of peaks for the factor in a cell line is given in the column next to the graph. (D) Each heatmap square is valued with
the fraction of binding sites for CTCF that overlap with each co-binding partner given on the heatmap rows. Fractional overlaps are computed between
the unions of all peaks across all available cell lines in ENCODE for each factor. Each column stratifies this relationship across the Goldmine genomic
contexts.

functions of the protein (23). Using Goldmine, we identified contexts (Figure 2B). While DNA methylation is commonly

that co-binding occurs with transcription factors MAX, studied in a promoter-centric manner, the context analy-
MYC and YY1 highly at promoters but at lower levels in all sis reveals widespread DNA methylation changes outside
other genomic contexts, suggesting promoters may be co- of the promoter. Such revelation can aid in context-specific
regulated by these factors and CTCF acting as a transcrip- hypothesis generation. For example, gene body DMRs may
tion factor (24). CTCF can also function as an insulator ele- be associated with gene activation (29) or alternative splic-
ment at the boundaries of topological domains (25), and in ing (30). Intergenic DMRs may target distal regulatory el-
contrast to the aforementioned transcription factors, Gold- ements, such as enhancers and repressors, that could regu-
mine detected a co-occurrence module with chromatin in- late many genes and be dynamic throughout developmental
teraction regulators ZNF143 (26), RAD21 and SMCI1 (27) processes (31). Goldmine can also annotate input genomic
relatively evenly across all genomic contexts. This demon- ranges with reference feature ranges. Using this functional-

strates how Goldmine can help stratify a set of genomic ity on the T cell DMR data, a bias against CpG islands is ev-
ranges based on co-occurrence with factors associated with ident (Figure 2C), and the DMRs are also enriched for over-
distinct functions. By providing a unified and simple tool for lap with ENCODE ChIP-seq and DNasel-seq data (Fig-

annotating any set of genomic ranges with respect to gene ure 2D). Such feature annotation can be particularly useful

model contexts, Goldmine enables global insights into the for generating functional hypotheses for intergenic genomic

dynamics of phenomena mappable using NGS. ranges, as feature sets that capture regulatory elements and
To further demonstrate how Goldmine’s annotation can variation can be employed.

facilitate biological and functional interpretation of a ge- By sectioning gene models into components (Figure 2B),

nomic range set, we derived DMRs between CD4+ and Goldmine reveals detailed information about the overlap

CD8+ T cells from Roadmap Epigenomic Project MeDIP- of the DMRs with transcription units that could be missed
seq data using MethylAction (17) and annotated the results by simply overlapping with gene bodies as single units. The

using Goldmine (Supplementary Table S3). As the CD4+ annotation immediately revealed the presence of promoter
versus CD8+ lineage decision is a model for bivalent dif- hypermethylation at key lineage genes CD4 (32) (Figure
ferentiation patterns (28), an analysis of this methylome- 2E) and CD8A, which corresponds to the expected expres-
wide data can reveal how epigenetics interacts with both sion patterns of these genes in the two T cell lincages. The
known and novel drivers of this developmental process. promoter-overlapping gene list saved directly from Gold-

MethylAction provided as output the genomic ranges for mine is enriched for gene ontology terms related to T cell re-
910 CD4+ hypermethylation DMRs and 1005 CD8+ hy- ceptor and immunity (Figure 2F). Additionally, Goldmine’s
permethylation DMRs (Figure 2A), and Goldmine anno- ‘long format’ annotation provides a detailed accounting of
tation showed that the DMRs distributed in all genomic the complex relationships between query regions and gene
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Figure 2. Goldmine gene annotation links genomic ranges to known gene models. (A) DMRs were detected between CD4+ and CD8+ T cells. Each
heatmap row represents a DMR, each column a donor, and each value the fold change between the two cell types for paired samples from a given donor.
(B) Percent of DMRs that fall in gene model contexts as compared to a length-matched random genomic null region set. (C) Proportion of DMRs between
CD4+ and CD8+ T cells that overlap with CpG-island centric features by Goldmine. CpG islands are annotated in the ‘cpglslandExt’ table of the UCSC
genome browser, shores are +2 kb from these islands, and shelves are £2 kb from shores. (D) Proportion of DMRs between CD4+ and CD8+ T cells
that overlap with ENCODE ChIP-seq peaks (‘TFBS’) or DNasel hypersensitive sites (‘DNasel’) as reported by Goldmine. (E) Regional perspective of
a promoter DMR for key lineage factor gene CD4 that was identified using Goldmine’s annotation. (F) GO term enrichment for promoter DMR genes.
ENSEMBL gene IDs were directly copied from Goldmine’s gene-level table and pasted into GeneMANIA (http://www.genemania.org/). (G) An intergenic
CD4+ hypermethylation DMR (chr8:2,162,901-2,163,500) with hypothesized function based on Goldmine annotation. This DMR correlates with the
activity of an enhancer as predicted by ChromHMM segmentation and the presence of H3K27ac (data from the Roadmap Epigenomics Project). A cluster
of ENCODE ChlIP-seq peaks (‘TFBS’) and a DNasel hypersensitive site (‘DNasel’) that overlap with the DMR as reported by Goldmine are shown. (H)
Variable enrichment of ENCODE supertrack ChIP-seq peaks in CD4+ hypermethylation DMRs across the contexts as compared to when the DMR set
is not stratified by context (‘All’). The background set used for the enrichment calculation is the set of all-methylated regions genome-wide that also fall
in the given genomic context. Significance was assigned when > 5% of base pairs in a DMR overlapped with peaks of a given factor, and the lower bound
of the 95% confidence interval (CI) of the odds ratio between the DMRs and all non-DMR methylated regions was above 1. Non-significant comparisons
are plotted as white, and significant comparisons are colored by the value of the lower bound of the 95% CI of the odds ratio.
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models by describing all isoforms, introns, exons, nested and
overlapping genes. This demonstrates how Goldmine’s gene
model annotation streamlines and automates the process of
deriving biologically relevant loci from a large set of anony-
mous genomic ranges.

In addition to summary annotations, Goldmine pro-
vides detailed descriptions for each pair of overlaps between
query ranges and genomic feature sets. This is important
because intergenic regulatory elements often involve mul-
tiple DNA binding factors with side-by-side binding sites.
By filtering the DMR list to those annotated as intergenic
and overlapping with both ChIP-seq and DNasel-seq sites,
we identified an intergenic DMR that correlates with a pu-
tative enhancer (Figure 2G). Goldmine’s gene model and
feature annotations can also function in tandem to provide
information about regions that might otherwise be over-
looked. We computed enrichment of CD4+ hypermethyla-
tion DMRs for consensus ChIP-seq peaks from all of EN-
CODE and found variable enrichment levels across gene
model contexts (Figure 2H). When performing the analy-
sis on all DMRs together, only 3 factors achieve statisti-
cal significance. However, when the analysis is stratified by
context annotations, enrichments unique to each gene con-
text are discovered. Of note, binding sites for RUNX3, a
known master regulator in the CD4+ versus CD8+ fate de-
cision (33,34) were found to be enriched in promoters and
introns. Additionally, RUNX3 expression is known to be
repressed in CD4+ cells, and Goldmine annotation iden-
tified RUNX3 promoter to be hypermethylated in CD4+
cells (Supplementary Table S3). Taken together, these obser-
vations, made possible by Goldmine, suggest that RUNX3
expression may be directly regulated by promoter methyla-
tion and that its transcriptional function may also be mod-
ulated by DNA methylation in CD8+ cells. The application
of Goldmine to the DMR’s between CD4+ and CD8+ T
cells illustrates the usefulness of annotation to divide rele-
vant subsets of genomic ranges into those of biological in-
terest and to work in tandem with existing tools for motif
and gene set enrichment analysis.

DISCUSSION

Compared with other tools for genomic range annotation, a
key distinction of Goldmine is that it enables real-time syn-
chronization with the latest annotation tables, so gene mod-
els can be used from the latest builds of reference databases.
While this automation applies to any tables available from
the UCSC Genome Browser, the user has complete flexi-
bility to use any set of genomic ranges as a reference. Any
ranges that can be input to R and stored as GenomicRanges
(14) can be used, enabling Goldmine to annotate with re-
spect to any reference range sets of interest that can be de-
rived from existing Bioconductor (35) annotation packages
or generated from external file formats such as BED files.
In Figure 2G, we used the ChromHMM (3) calls derived
from a BED file available from the Roadmap Epigenomics
Project (4). Another unique feature is that Goldmine pro-
vides annotation on the level of transcripts in the format
of a detailed table with a list of the specific introns and ex-
ons overlapped by a genomic range. To our knowledge, no
existing tool provides this level of detail. Transcript-level
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annotation can be valuable, such as in the case of linking
epigenetic phenomena to co-transcriptional RNA process-
ing (30,36). Additionally, RNA-centric techniques such as
HITS-CLIP can map RNA-protein binding, and Goldmine
can be a valuable tool to examine the diversity of transcripts
produced by each peak event. While we note the limita-
tion of this analysis is that the results are correlative, can-
didate selection is a requisite step before embarking on de-
tailed experimental studies of novel mechanisms at specific
loci. Goldmine should be considered as a tool to establish
and prioritize these candidate sets. Moreover, Goldmine’s
detailed annotation complements existing genomic range
analysis tools focused on global gene set and region set en-
richment.

As demonstrated in Figure 2G, Goldmine is also distin-
guished by the fact that it is not limited to gene-centric an-
notation. In this example, Goldmine was used to identify an
epigenetic change that directly overlaps with an annotated
enhancer and correlates with the activity of this enhancer
as derived from reference histone modification data in the
relevant cell types. Not only can Goldmine detect individ-
ual loci with such specific overlaps of interest to the biolo-
gist, it can comprehensively catalog sites with desired over-
lap characteristics, whether they involve gene models or not.
Thus, Goldmine is an information integration tool that can
narrow large sets of genomic ranges into those that match
specific configurations in relationship to reference data, and
can be used to derive comprehensive lists of candidate loci
for further experimental testing.

In summary, because Goldmine is designed to work for
any set of genomic ranges, regardless of source or type, it
is widely applicable to genomic ranges produced from ge-
netic mutation data, RNA-focused assays such as Ribo-
seq and HITS-CLIP, and many epigenome-wide sequencing
data including DMRs, ChIP-seq peaks, differential histone
modification/positioning, and DNasel hypersensitive sites.
Goldmine also simultaneously provides feature-level anno-
tations that can be used to leverage recent epigenome-wide
data sets, which are of particular utility in describing inter-
genic genomic ranges that may co-occur with functional el-
ements. As a result, Goldmine reduces the complexity of the
extant genomic and epigenomic annotation to aid in the pri-
oritization of candidate loci for experimental testing.
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Supplementary Data are available at NAR Online.
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