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Abstract: Deep-level sensors for detecting the local temperatures of inner organs and tissues of
an animal are rarely reported. In this paper, we present a method to fabricate multifunctional
micro-probes with standard cleanroom procedures, using a piece of stainless-steel foil as the substrate.
On each of the as-fabricated micro-probes, arrays of thermocouples made of Pd–Cr thin-film stripes
with reliable thermal sensing functions were built, together with Pd electrode openings for detecting
electrical signals. The as-fabricated sword-shaped freestanding microprobes with length up to
30 mm showed excellent mechanical strength and elastic properties when they were inserted into the
brain and muscle tissues of live rats, as well as suitable electrochemical properties and, therefore,
are promising for potential biological applications.
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1. Introduction

The fabrication of multifunctional smart microprobes is a hot topic and a technical challenge. Smart
microprobes are expected to play increasingly important roles in many fields of fundamental biology
such as neurosciences, brain–computer interfaces, and a variety of clinic applications. Microprobes
could be roughly cataloged into two major classes: flexible probes and rigid probes. In the last two
decades, many kinds of flexible probes made with flexible materials were reported and were applied
to solve many problems in science research and medical application [1–21]. However, in many cases,
such as deep brain stimulation (DBS), rigid and long probes are required.

The development of smart rigid probes could be traced back to the 1970s. Miniature-size neural
microprobes were fabricated by several groups, offering advanced capabilities such as integrated
electronic circuitry, precise control over the spatial distribution of electrode sites, and high density
of electrodes [22–28]. However, most of the devices were designed for intra-cortical applications,
which limited the length of the microprobes to a few millimeters, making them not suitable for detecting
thermal and electrical properties in deep tissues of animals. The encapsulated metal wires introduced
for single-site recording are the simplest and earliest type of devices that can be constructed with lengths
in excess of several centimeters [29]. Carlos M. Florez-Quenguan et al. made a three-dimensional
(3D) microprobe for DBS. The main component of the multisite 3D microprobe is a flexible planar
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microprobe wrapped around or assembled on a cylindrical support structure [30]. In another approach
by G. Stavrinidis et al., based on microfabrication techniques, a thick electroplated film was employed
as the rigid structural layer [31]. Recently, various smart 3D probes were developed [32–39] to detect
stress, stimulate visual neurons, monitor bone disease, and record neuron activities and thermal effects.

In most current rigid 3D microprobes, the substrate materials were Si [28,35,37,40–42],
glass [29,34,35,43,44], or plastic materials such as SU-8 [45–47] and polyethylene glycol (PEG) [48–51].
Current metal-based probes for DBS have diameters of 1.2–2.0 mm. Such a large diameter may cause
severe damage of brain tissues during implantation surgery. The goal of this work was to fabricate
micro-nano-sensors on the body of stainless-steel (s.s.) needles, obtaining a multifunctional smart 3D
microprobe for potential biological applications, with a diameter smaller than that of the current DBS
probes. Compared to plastics, s.s. material has much better mechanical strength and elasticity [52–58].
It has a high modulus of elasticity around 195 GPa, which is higher than that of copper (~100–130 GPa)
and titanium (~100 GPa) and much higher than that of gold (~14 GPa), aluminum (~0.3–70 GPa), silver
(~7 GPa), and plastics (usually <10 GPa, e.g., SU-8, ~5 GPa [57], PEG, ~3 GPa [58]). In addition, s.s. is a
“biocompatible” metal to human beings. For example, we have quite a large amount of iron (Fe) atoms
in our bodies, especially in our red blood cells. In acupuncture therapy, which has been practiced
for thousands of years, steel needles can be inserted into muscle tissues and stay there for a long
time without causing inflammation, poisoning, or rejection reactions. These unique properties make
s.s. a good candidate for supporting the frames of deep probes in clinical practices and fundamental
biological research. In this study, we designed and fabricated a novel freestanding microprobe that we
hope to apply to measure organ temperatures as well as the exact 3D distribution of local temperatures
in a live animal under various conditions.

2. Materials and Methods

2.1. Stainless-Steel Substrate

The probes were fabricated on circular SUS 304 s.s. substrates with the diameter of 10.0 cm and
thickness of 150 µm. The substrates were mechanically polished with a shining, plain surface. Each s.s.
substrate was also chemically cleaned in three steps before lithography processes. The first step was an
ultrasonic cleaning in acetone for 15 min followed by washing in ethanol for 15 min and by rinsing in
deionized water; the substrates were then blown dry with a nitrogen gun. Finally, each substrate was
placed on a hot plate and baked at 95 ◦C for 30 min to completely dry its surface.

2.2. Design of 3D Probes

Figure 1a shows the overall design of the s.s.-based multifunctional probes. On each 4 in. s.s.
wafer, seven sword-shaped probes with varied width and length were patterned. Different widths (w)
and lengths (L) were designed to meet different requirements in measuring local temperatures at deep
levels and in tissues with varied toughness in animal experiments. The configurations of the w and L
parameters were 200 µm and 10.0 mm, 300 µm and 15.0 mm, 400 µm and 20.0 mm, and 500 µm and
30.0 mm. L was defined as the length of the probe from tip to handle, and w was defined as the width
close to the probe tip. It should be mentioned that the width of the probe gradually increased from tip
to handle, as shown in Figure 1b.

Figure 1b schematically presents the major structure of a freestanding micro-probe with a built-in
sensor array of thin-film thermocouple (TFTC) for local temperature measurement and electrodes for
electrical signal detection. Each probe consisted of two main parts: a probe body and a connection
plate. To ensure that each probe had sufficient mechanical strength, a sword shape was designed with
triangular tips and a thickness (t) of 150 µm for all probes.

For the 200 µm-wide probe, two TFTCs and two electrodes were designed. For the 500 µm-wide
probes, the number of TFTCs and electrodes was increased to 4–6. To avoid reactions with biological
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tissue fluids, the TFTC array was covered with a thin oxide layer, while the electrodes were left open at
the testing zone.

Figure 1. (a) Overall design of seven 3D micro-probes on a 4 in.-diameter s.s. substrate. (b) Schematic
figure of the structure of a multifunctional 3D micro-probe.

The connection plate consisted of a triangle with a base length of 1.0 cm and a rectangle with a size
of 5.0 mm × 1.0 mm. Its main function was to connect the leads of the TFTC array to the test system.

2.3. Fabrication of Freestanding Microprobes

Figure 2a–h illustrates some major technical processes performed in a standard class-1000
cleanroom for the fabrication of the freestanding microprobes. These complicated processes involved
two main steps: (1) defining the shape and position of the probe and fabricating the TFTC array and
electrodes; (2) obtaining freestanding microprobes through wet etching.

Figure 2. Illustration of the fabrication processes of a multifunctional 3D micro-probe. (a) Cleaned
stainless-steel (s.s.) substrate. (b) Patterns of the probes with SU-8. (c) Ti–Pd patterns on the
probes. (d) Cr patterns added to complete the Pd–Cr thin-film thermocouples (TFTCs) on the probes.
(e) Covering with a HfO2 insulating layer, leaving testing opening windows. (f) Additional SU-8
layer to protect the TFTCs. (g) Coating of a mask layer of SPR-220 for the etching process. (h) The s.s.
substrate was etched thoroughly after 65 min and cut from the substrate, resulting in a freestanding
3D probe.

First, the as-purchased s.s. substrate was cleaned thoroughly as described in Section 2.1 (Figure 2a).
Then the substrate was coated with a 3 µm-thick negative photoresist layer of SU-8 (2005, Microchem,
Westborough, MA, USA) using a benchtop spin coater (CEEVR 200X, Brewer Science, 4000 rpm, 60 s)
and was patterned by photo lithography on a mask aligner (Karl Suss MJB4, Suss, Germany) to
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define the shapes of the microprobe sword and connection plate (Figure 2b). For this step, soft-baking
(95 ◦C 2.0 min), exposure (to a UV dose of 90 mJ/cm2), post-baking (95 ◦C, 1.0 min), developing (SU-8
Developer, Microchem, Westborough, MA, USA, 1.0 min), and hard-baking (150 ◦C, 30 min) were
performed in sequence. These were the standard processing parameters for SU-8 2005 [59].

The SU-8 layer was used as an insulating layer to separate the TFTC array and electrodes from the
s.s. substrate, and it also reduced the surface roughness thus ensuring a much higher yield of good
sensors built on the microprobe.

Next, positive photoresist AR-P 5350 (Allresist, Strausberg, Germany) was used to make TFTC
patterns, following our previous procedures [60–64]. A 2 µm-thick AR-R 5350 was spin-coated on top
of the front surface at 4000 rpm for 60 s and dried at 110 ◦C for 3 min. Patterns of TFTC array were
carefully aligned with the Karl Suss MJB4 mask aligner to ensure they were located in the center of the
probes defined with SU-8 patterns.

After an open window for the deposition of Pd (or Cr) film was created, an oxygen plasma
process was performed to remove residual photoresist (Ion Wave 10, PVA TePLa) before thin-film
deposition. To improve the bonding strength of the Pd film on the SU-8 layer, a 5 nm-thick Ti thin
film was deposited as an adhesion layer. Both Ti layer (5 nm) and Pd layer (thickness 90 nm) were
deposited with an electron-beam evaporator (DE400, DE Tec, CN). The Ti–Pd stripe pattern appeared
after the lift-off process in acetone (Figure 2c). The circular micro-electrodes for potential electrical
measurements were also formed in this layer. A TFTC sensor was made of two different metals, i.e.,
palladium (Pd) and chromium (Cr) thin films, so the processes for alignment and formation of Pd
and Cr patterns and deposition of Pd and Cr thin films were repeated twice. The Cr layer (120 nm)
was deposited with a magnetron sputtering system (PVD75, Kurt J. Lesker, USA) in Ar. After lift-off,
the TFTC arrays were completely built on the probes (Figure 2d). Then, a thin layer of HfO2 film (20 nm)
was sputtered on the TFTC arrays for insulation, while still leaving the circular micro-electrodes testing
regions (Figure 1b) open (Figure 2e). Finally, a 3 µm-thick SU-8 layer was patterned on the HfO2 layer
to protect the devices from damage. Similarly, a SU-8 layer was spin-coated over the back side of the
substrate for protection during etching (Figure 2f).

The wet-etching process was performed after the TFTC arrays and micro-electrodes were fabricated.
The s.s. substrates were etched in an acidic solution of FeCl3, HCl, and HNO3, with a mixture of
40.0 g of FeCl3 powder, 16.0 mL of 37.0% HCl, and 16.0 mL of 97.2% HNO3 in 160 mL deionized H2O.
A 10 µm-thick positive photoresist (SPR-220, Dow, USA) was used as the mask layer on the SU-8 layer
to protect the existing TFTC devices in the wet-etching process. This mask layer was aligned and
patterned on the device with standard photolithography processes. Soft-baking of the SPR-220 was
done at 115 ◦C for 90 s (Figure 2g).

The etching was performed at 40 ◦C in a water bath via the floating technique [65,66]. The total
etching period took around 65 min for the sword-shaped probes to thoroughly separate from the
substrate. After several thin connecting bridges between each probe and the substrate base were cut
with a sharp knife, a 3D freestanding microprobe was ready (Figure 2h).

It should be mentioned that the 150 µm-thick s.s. substrate was not etched through a single process
of 65 min. In order to ensure that the device structures of the TFTC and electrodes were not damaged in
the etching process (due to over etching in the horizontal direction), after every 5–10 min, the wafer was
taken out of the etchant, the SPR-220 photoresist was removed with acetone, and the wafer was rinsed
and dried and then covered again with a new layer of SPR-220 photoresist. Alternately, the wafer
could be processed after slightly longer time intervals (i.e., 10 min or more), but this increased the risk
of breaking the TFTC patterns close to the sides of the probe.

2.4. Device Testing

We calibrated the TFTC arrays on freestanding microprobes in an oil bath through a homemade
calibration platform [63,66,67]. During the calibration process, we controlled the oil temperature by
heating the hot plate and inserted the sword of the probe into the oil to reach the same temperature.
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The cold ends of the device were kept at room temperature. The difference in temperature between
the hot end and cold end regions was recorded by two identical standard K-type thermocouples.
The thermopower outputs of the TFTCs on the probe were measured with one nano-voltmeter (Keithley
2182A) via a multiplexer. The stress–strain measurements were performed on an Instron universal
testing machine (Instron, USA). The electrochemical impedance spectroscopy (EIS) was measured with
an electrochemical workstation (CHI660e, CH Instruments, USA) in 1x phosphate-buffered saline (PBS,
pH 7.4) at room temperature with a three-electrode configuration, where the tested electrodes were
working electrodes, while an Ag/AgCl electrode and a large-surface-area platinum wire served as
reference and counter electrodes, respectively. During the test, frequency varied from 10 to 100 kHz.

Surface smoothness was investigated with an atomic force microscope (AFM, Dimension Icon,
Bruker, Billerica, MA, USA). The morphology of probe and TFTCs was characterized with an optical
camera (Axio Scope A1, Carl Zeiss, Oberkochen, Germany) and a scanning electron microscope (SEM,
Quanta 600FEG, FEI, Brno, Czech Republic). Elastic measurement of the probes was performed with
several pieces of silicon rubber. The sword tip of each probe being tested was mechanically pushed
against the rubber surface. The sword part of the probe was bent, and the pushing force was then
reduced to check recovery of the sword shape.

In addition, experiments on live animals were performed. Adult male Sprague–Dawley rats
(300–350 g) were provided by the Department of Laboratory Animal Sciences, Peking University
Health Science Center (Beijing, China). All experimental procedures were approved by the Animal
Care and Use Committee of Peking University Health Science Center (LA2017131, approved on March
1, 2017) and were in accordance with the rules of the Declaration of Helsinki of 1975, revised in 2008.
Details are given in Supplementary Materials.

3. Results and Discussions

3.1. Improvement of Surface Smoothness after Coating SU-8

The surface of the as-purchased s.s. substrate, although mechanically polished, was rough.
Figure 3a–c present typical AFM micrographs of three different regions of an s.s. substrate which
underwent the cleaning processes and was ready for the lithography process. The surface was covered
with scratch marks resulting from the polishing process with sandpaper. The absolute up and down
fluctuation in the Z direction (perpendicular to the surface) was around 380–460 nm. For a scanning
area of 50 µm × 50 µm, the root-mean-square roughness was around 40–44 nm.

Figure 3. AFM micrographs of the substrate surfaces. (a)–(c) Results taken from a cleaned bare SUS 304
s.s. surface. (d)–(f) Results taken from the s.s. substrate covered with a 3 µm-thick SU-8 resist layer.

After being coated with a 3 µm-thick layer of SU-8, surface smoothness improved remarkably.
As typically shown in Figure 3d–f, the absolute surface roughness was around 50–70 nm, a sevenfold
improvement over the bare s.s. substrate. The root-mean-square roughness was around 4–6 nm for
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a scanning area of 50 µm × 50 µm, which was a 7–10-times improvement. This SU-8 buffer layer,
therefore, not only served as a good insulating layer for the TFTC and micro-electrodes built on the
probe but also ensured a better substrate for the following complicated lithography and thin-film
deposition processes.

3.2. Lithography and Etching Results

Figure 4 presents optical photographs of two devices. One was a whole 4 in. s.s. wafer before the
etching process, where Pd–Cr TFTC arrays were fabricated, and the other was a whole wafer after
the etching process, where seven microprobes were clearly defined. The narrow bonding bridges
that connected the substrate wafer and the 3D probes are locally shown in the magnified images
in Figure 4c,d. These connection bridges helped the probes maintain their original positions on
the substrate throughout the fabrication process. After the bridges were cut away from the wafer,
we obtained individual freestanding microprobes that were ready for testing.

Figure 4. Optical photographs of the devices during the fabrication process. (a) A whole 4 in. substrate
with fabricated TFTC arrays. (b) A whole substrate after the etching process. (c) An enlarged local area
showing a narrow bonding bridge connecting the substrate and the 3D probe. (d) A close look at a
bonding bridge after the etching process was completed, showing the probes still fixed in their original
positions on the substrate.

Figure 5 presents more details of the probes during and after the fabrication process. On each
probe, the measurement zones were defined as a circular window in the SU-8 layer. Figure 5a shows
optical images of the measurement zones and their locations on the probe. Figure 5b is a photo of a
freestanding microprobe assembled in an electrical connection socket. Such a device was ready for
practical measurements. Figure 5c is a SEM image of the measurement zone, where the junction of a
Pd–Cr TFTC is seen in a circular window of SU-8. Figure 5d is a SEM image for the front part of a
freestanding microprobe, where the sensors are seen in the middle of the probe, and the two sides
are the etched edges of the s.s. substrate. Figure 5e,f presents SEM micrographs showing the tip and
side-view of the sword-like s.s-based microprobes, including the corrosion profiles.
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Figure 5. Optical images and scanning electron microscopy images of the as-fabricated device and
assembled device. (a) Measurement zones on the probe before the etching process. (b) A microprobe
assembled in an electrical connection socket. (c) SEM image of a measurement zone. (d) SEM image of
the front part of a microprobe. (e) SEM micrograph of a probe tip. (f) SEM side-view of a probe tip.

3.3. Sensor Calibration

The TFTCs on freestanding microprobes were calibrated in an oil bath. The outputs of thermopower
for each individual Pd–Cr TFTC were measured first at varied temperature differences between its
hot and cold ends. The sensitivity of the device was obtained from the slope of a linear fitting of the
measured data. Figure 6 shows a typical set of calibration data and the linear fitting. For this device,
the sensitivity was approximately 5.24 ± 0.15 µv/k.

Figure 6. Calibration results for the Pd–Cr TFTC on a 3D microprobe.

3.4. A. C. Impedance

The interface impedance of the electrode–electrolyte system influenced the ability to record neural
signals. Figure 7 shows one set of the obtained data. For a typical electrode with 1256 µm2 opening
area, the measured low impedance was around 520 kΩ, and the phase was −79.9◦ at 1 kHz. At higher
frequency, the impedance decreased gradually because of the capacitor effect.
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Figure 7. A typical electrochemical impedance spectroscopy of a Pd electrode.

3.5. Testing of Mechanical Strength

The as-fabricated 150 µm-thick freestanding microprobes showed excellent elasticity and
mechanical strength. The stress required to bend the stainless-steel probe at 90◦ was found to
be 8.2–95 Mpa, with a standard deviation of 10 MPa, for probes with different lengths. Figure 8 shows
one set of the measurement results. The sword part of the probe could be repeatedly bent hundreds of
times and still recover to its original shape. Figure 9 shows a testing case, where a probe mounted
in its electrical connection socket was pushed against a piece of hard rubber, then the pushing force
was released, and the probe returned to the initial straight shape (Video S1). This case proved that
stainless-steel probes have better elasticity than silicon-based [35] and glass-based [34] probes.

Figure 8. A typical stress–strain curve under compression for an as-fabricated 20 mm-long freestanding
probe (shown in the inset).

Figure 9. Photographs for the elasticity test of an as-fabricated microprobe with a hard rubber.
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The mechanical strength of the freestanding microprobes was also tested in live animals. They could
be mechanically inserted into tissues of brain, abdomen, and thigh muscles to deep levels at 5–20 mm
without causing the probe sword and the sensors on them to break. Moreover, the probes remained
straight when they were pulled out of the tough muscle and skin tissues (Figure S1, Video S2).
These tests showed that our s.s. probes had excellent mechanical strength with such a thin thickness
and performed better than any plastic-based probe [48].

4. Conclusions

In summary, we presented detailed procedures for the fabrication of a freestanding, multifunctional
micro-probe made from 150 µm-thick s.s. sheets by using standard cleanroom techniques of
photolithography, spin-coating, thin-film deposition, and wet-etching. An array of Pd–Cr TFTCs for
temperature measurement and Pd electrodes for electrical measurement were fabricated on top of
the sword-shaped s.s. substrate. The probes with length up to 30 mm showed excellent mechanical
strength and elastic properties when they were inserted in brain, skin, and muscle tissues of live
rats. Calibrations showed that the TFTCs worked well on freestanding microprobes. These novel
probes are promising for the deep-level detection of 3D temperature distribution in organs and tissues
of live animals and may also serve as deep-level sensors for recording electrical signals in neurons
and muscles.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/10/2328/s1,
Figure S1: Testing of the freestanding 3D microprobes on live rats, where the probe swards were inserted into
tissues of (a) brain, (b) abdomen, and (c) thigh muscles, to deep levels of 5–20 mm. Video S1: Video for the elasticity
test of an as-fabricated microprobe with a hard rubber. Video S2: Testing of the freestanding 3D microprobes on
live rats, where the probe swards were inserted into and pulled out of the rat brain.
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