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Abstract: Diabetes represents a major health problem, involving a severe imbalance of blood sugar
levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves
several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and
decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects.
Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or
Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also
their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few
natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic
profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that
used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and
quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of
antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes
disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural
(gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds
in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be
helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the
druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.

Keywords: diabetes mellitus; natural compounds; QSAR; molecular docking; molecular dynamics;
blood–brain barrier; in silico

1. Brief Overview of Diabetes Types

Diabetes mellitus (DM) is a metabolic disease defined by a persistently high blood
sugar level. There are numerous kinds of diabetes mellitus, but the two most common are
type 1 (T1DM) and type 2 (T2DM). T1DM is an autoimmune disease; it occurs due to the
destruction of insulin-producing pancreatic β cells, and the patients are entirely reliant
on exogenous insulin injection. T2DM is caused by impaired insulin secretion, which
generally occurs in the context of pre-existing insulin resistance [1,2].
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Specific complications may occur faster and progress with early diagnosis and longer
exposure to T1DM in children. T2DM is a complex disease dependent on a number of
factors such as environmental, metabolic and genetic factors [3]. T2DM affects about 10% of
the population, but diagnosing it and maintaining a controlled blood sugar level helps slow
down the complications of diabetes [4]. The molecular mechanisms involved in T2DM are
incompletely explained, but insulin resistance and defects in insulin secretion are the main
causes of this disease [5]. Insulin resistance may be due to both obesity and neuroendocrine
function [6].

Macrovascular complications (cerebrovascular, coronary and arterial disease) [7] and
microvascular complications (diabetic retinopathy, nephropathy, neuropathy) [8] affect the
nervous system, suggesting an inflammatory process that permeates the BBB, thus leading
to brain dysfunctions such as those in the psychiatric sphere [9].

With disease progression, chronic exposure to hyperglycaemia induces various types
of organ damage [10]. Chronic complications of diabetes are divided into microvascular (i.e.,
retinopathy, neuropathy and nephropathy) and macrovascular (i.e., cardiovascular disease,
mainly as heart failure, coronary heart disease, cerebrovascular and peripheral artery
disease). The most accepted mechanism of the deleterious effects of chronic hyperglycaemia
is the excessive production of superoxide anion by the mitochondrial electron chain, leading
to oxidative stress [11]. Acute complications of T1DM are medical emergencies, consisting
mainly of ketoacidosis and hypoglycaemia [12]. Hyperglycaemic hyperosmolar state is a
common acute complication in elderly people with T2DM [12]. The main pathogenic event
in ketoacidosis is a hormonal disturbance characterized by absolute insulin deficiency in the
presence of a relative excess of counterregulatory hormones (i.e., glucagon, catecholamines,
cortisol and growth hormone) [12].

The BBB is a membrane composed of endothelial cells that protect the central ner-
vous system by preventing the non-selective passage of substances from blood vessels
inside the nervous tissue. Diabetes affects the BBB as well, although in a subtle manner,
resulting in less data about the subject [13]. Hyperglycaemia may increase the level of
pro-inflammatory markers and cell permeability, resulting in decreased efficiency of the
BBB [14]. In mice, the hyperglycaemic conditions associated with diabetes lead to a pro-
inflammatory phenotype in brain microvessels, with decreased pericyte coverage and
increased ICAM-1 expression [15]. The loss of pericytes, doubled by the diminution of
tight junctions, results in a permeable BBB [15,16].

Herbal medicines are still used in current times and are classified as complementary
and alternative medicine. Many plants have anti-diabetic properties via modulating insulin
production, cell insulin sensitivity, or glucose absorption. Additionally, to glycaemic
management, several plants showed promise in preventing other DM-related illnesses such
as cardiovascular problems by lowering cholesterol levels and BMI [17]. Flavanone and
polyphenols, natural chemical groups, were investigated as a possible therapy in T2DM or
adjuvant in DM treatment. Curcumin, resveratrol, and carotenoid were the most commonly
studied substances among these [18].

In the present paper, we reviewed studies on natural compounds acting on DM protein
targets and on BBB. A schematic representation of our study directions is presented in
Figure 1. Initially we discussed the molecular targets in diabetes by considering proteins
involved in the metabolism and uptake of glucose, proteins that control insulin secretion
and proteins involved in pancreatic β cell development. We identified the natural com-
pounds that could modulate these targets, and we presented bioinformatics studies on these
compounds involving the usage of quantitative structure–activity relationships (QSAR),
molecular docking and molecular dynamics methods. We also presented databases and
web servers useful for the identification of antidiabetic compounds. Concerning the BBB,
we identified relevant targets and natural compounds that could prevent BBB dysfunctions.
We also presented some platforms useful for calculating the ability of a compound to cross
the BBB.
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2. Molecular Targets Involved in Diabetes Mellitus

The treatment used in DM aims to prolong life and avoid long-term diabetes-associated
complications. Insulin therapy is the primary treatment for T1DM, whereas T2DM is man-
aged with hypoglycaemic medicines, diet, and lifestyle modifications [19]. DM has several
receptors that are or may become therapeutic targets; these will be discussed below.

Insulin receptors (IR) are receptors activated by insulin that have a role in glucose
homeostasis. Nowadays, in T1DM, the treatment is represented by self-administrated
insulin analogues that activate the IR [20].

Mono-ADP ribosyltransferase-sirtuin-6 (SIRT6) decreased level and function are re-
lated to atypical metabolism of glucose and lipids. Mice studies reveal that hypoglycaemia
occurs in subjects with SIRT6 deficit [21,22]. Overall, SITR6 has roles in several processes
such as regulation of blood glucose, glycolysis, gluconeogenesis, pancreatic β cell function,
inflammation, lipid metabolism, etc., and may represent a therapeutic target in DM [23].

Aldose Reductase (AR) is activated in hyperglycaemic conditions and is linked to
DM and its complications such as myocardial ischemia, atherothrombotic cardiovascular
disease, or diabetes-induced oxidative stress. However, the inhibition of AR may prevent
the complications caused by DM [24].

α-glucosidases are enzymes that cleave the oligosaccharides and disaccharides to
monosaccharides. Pancreatic α-amylase enzymes catalyse the hydrolysis reaction of α-1,4
glycosidic linkages in many polysaccharides [25]. α-glucosidase and α-amylase inhibitors
are used in DM and show better glucose regulation [26,27].

Peroxisome proliferator activated receptor gamma (PPARγ) activity can prevent in-
sulin resistance by increasing glucose uptake in adipocyte and muscle cells, which results
in lowering of blood glucose levels. Moreover, PPARγ agonists reduce the inflammation
mediators that promote insulin resistance and trigger an increase in circulating adiponectin
levels with a positive outcome for insulin sensitivity and a decreasing effect on glucose
production in the liver [28].
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Glucose co-transporter (SGLT) is involved in insulin independent glucose reabsorption
in nephrons. SGLT1 and SGLT2 are the main SGLT types, expressed in kidneys in a ratio of
1:10 [29]. The inhibition of SGLTs by gliflozin drugs reduces glucose reabsorption and the
levels of glycated haemoglobin [30].

11-β hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme that converts
cortisone to cortisol, which increases hepatic glucose output independent of insulin [31].

Glutamine:fructose-6-phosphate aminotransferase 1 (GFPT1) is the rate limiting en-
zyme in glucose metabolism by the hexosamine pathway (associated with impaired insulin
secretion and insulin resistance) [32].

Protein-tyrosine phosphatise 1B (PTP1B) is a protein involved in the insulin signalling
pathway and a negative regulator in metabolic disorders [33].

Dipeptidyl peptidase-4 (DPP-4) acts on incretin hormones that increase insulin secre-
tion and decrease glucagon secretion [34]. DPP-4 inhibitors have been found in animal
research and early clinical trials to considerably decrease fasting and postprandial glucose
levels with no risk of hypoglycaemia [35].

Glucokinase regulatory protein (GKRP) represents the endogenous inhibitor of glu-
cokinase, an enzyme that regulates glucose uptake and glycogen synthesis and suppresses
glucose production [36]. Glucokinase is involved in glucose homeostasis and is found in
pancreatic β-cells and hepatocytes. This kinase stimulates insulin production in pancreatic
cells in response to glucose and glucose absorption, glycogen synthesis, and storage in
hepatocytes [37]. Hepatic glucokinase expression is reduced in insulin resistance but also
T2DM, implying dysregulation of this biomarker [38]. In diet-induced obese mice, the
effect of glucokinase activators reduced blood sugar levels [39].

Histone deacetylases (HDAC) modulation appears as an important direction in di-
abetes therapy, as their inhibition was associated with β cell development, proliferation,
differentiation and function [40]. These can be inhibited by several compounds reviewed
here [41].

Compared to the other PDKs, pyruvate dehydrogenase kinase 2 (PDK2) has the
highest phosphorylation and inactivation of pyruvate dehydrogenase. Since the number of
PDK isoforms is increased in diabetes, upregulated PDK2 might be a target for improving
glucose tolerance [42]. This kinase is also implicated in hypothalamus inflammation and
its consequences (as alteration of feeding behaviour) [43].

GPR40 receptor, also known as free fatty acid receptor 1, is a G-protein-coupled
receptor that binds long-chain free fatty acids to improve glucose-dependent insulin pro-
duction [44]. In a study on diabetic rats, GPR40 activation showed improvements in
hyperglycaemia and insulin response [45].

Glucose transporter 2 (GLUT2) may be found in various locations throughout the
body, including pancreatic β cells and neurons. GLUT2 is necessary for glucose-stimulated
insulin release in pancreatic β cells. GLUT2-dependent glucose-sensing regulates eating,
body temperature, and pancreatic β cell mass and function, as well as parasympathetic
and sympathetic functions in the central nervous system [46]. Glycogen synthase kinase
3 (GSK-3) is a serine/threonine kinase involved in various processes such as glycogen
metabolism, regulation of the cell cycle, and cell proliferation. GSK-3 suppresses the activity
of glycogen synthase and insulin receptor substrate-1, two important targets in insulin
action. Its enhanced activity under diabetic conditions makes it a promising druggable
target in T2DM [47].

Glycerol-3-phosphate dehydrogenase (GPDH) is a mitochondrial enzyme whose
inhibition by the antidiabetic drug metformin results in reduced hepatic gluconeogenesis
and reduced conversion of lactate and glycerol to glucose [48].

3. Plants Involved in Diabetes Mellitus Management

At present, several plants have been mentioned in diabetes mellitus management. We
present some of them below.
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Gymnema sylvestre is a plant rich in phytocompounds that is used as an adjunctive
treatment for diabetes and contains, among others, gymnemic acid, gourmarin and gym-
napaponins [48]. They have therapeutic effects in diabetes by regulating blood sugar
levels. Gymnemic acid is a triterpene saponin with possible antidiabetic action given by the
interaction with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in glycolysis [49].
The extracts from Gymnema sylvestre may stimulate insulin secretion and delay glucose
absorption from the blood by attaching to intestinal receptors. This way, they decrease the
absorption of sugars and limit their passage into the blood [50–52]. An interesting study
about phytochemicals and the pharmacological and clinical potential of Gymnema sylvestre
was published by Khan et al. with emphasis on its anti-diabetic activity [53]. The role of
some Gymnema sylvestre constituents, namely gymnemic acids (I-VII) and gymnemasaponia,
in hypoglycaemia has been investigated [51]. These chemicals act by causing the pancreas
to secrete more insulin. These compounds are significant because of their structure, which
is similar to that of sugar molecules. They attach to taste receptors, blocking the binding
site for sugar in food and interfering with the detection of the sweet and bitter taste. These
chemicals have a comparable effect on the taste buds and intestines, resulting in a reduction
in blood sugar absorption [51].

Momordica charantia is a plant used in clinical trials that has a beneficial effect on
T2DM [54]. Although it had no effect in acute episodes of hyperglycaemia, long-term
administration has managed to improve the parameters of patients in clinical trials [55].
The mode of action is not yet fully understood, but studies suggest altered insulin secretion
in patients and improved insulin sensitivity by increasing adenosine monophosphate-
activated protein kinase (AMPK) [56]. The main chemical compounds found in this medic-
inal plant are charantine, cucurbitan glycosides, momordicin and oleanolic acids [57,58].
In addition to the presence of natural compounds, Momordica charantia can synthesize pep-
tides that can bind to the insulin receptor, lowering blood glucose levels. These peptides
may help reduce the need for insulin and limit the side effects of antidiabetic drugs [59].

Trigonella foenum-graecum is a medicinal plant whose seeds contain compounds with
therapeutic effects. The seeds of this compound can lower the rate of glucose absorption.
They help control diabetes, but also reduce cholesterol, cardiovascular risk and other
chronic diseases [60].

Ginseng is considered one of the most widely used medicinal plants, with up to
thirteen species. Most ginseng-based products come from the Panax ginseng and Panax
quinquefolius species [61]. Therapeutic compounds in ginseng are triterpene glycosides
called ginsenosides. Animal studies have shown their involvement in glucose and lipid
metabolism and the improvement of biochemical parameters in animal models [62].

Cinnamon can improve blood sugar control and help reduce the complications of
diabetes [63]. It is used in traditional Chinese medicine for its various hypoglycaemic,
digestive, antispasmodic and antiseptic properties [64].

Angelica decursive is a medicinal plant used in traditional medicine in East Asia, with
many uses including those as an analgesic, antitussive or tumour suppressor [65,66]. This
plant is rich in coumarin compounds, but the most pronounced antidiabetic effect is in
the compounds 4′-methoxy Pd-C-I, decursinol, decursidin, 6-carboxylic umbelliferone,
2′-isopropyl psoralen, and Pd-C-III, which has many therapeutic effects. These present
inhibitory activity on α-glucosidase and PTP1B [67,68]. PTP1B is a tyrosine phosphatase
that regulates the cell cycle and may interfere with the transduction of the insulin stimulus
signal [69]. A molecular docking study identified that coumarin binds strongly at the
PTP1B site. These results support the importance of these compounds in the prevention
and treatment of diabetes [70,71].

Gynura procumbens Merr. belongs to the Asteraceae family, and is a plant found in
tropical countries that is used for the therapeutic treatment of inflammatory diseases (e.g.,
rheumatism), heart disease (e.g., hypertension) and diabetic diseases [72]. Studies on
the solvent fractions of G. procumbens Merr evaluated the antioxidant and antidiabetic
effects of the compounds in this plant. In studies on the HepG2 cell line and insulin
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resistance, G. procumbens fractions obtained with the highest phenol content favoured
insulin absorption. The compounds with the highest activity in G. procumbens were
kaempferol, quercitin, caffeoyl-O-hexoside caffeoylquinic acid, coumaroyl-O-hexoside
and coumaroylquinic acid. Bioinformatics studies have shown strong molecular interac-
tions between natural compounds and digestive enzymes, thus underlining the value of
studying these compounds [73].

Stachys riederi var. japonica is a medicinal plant with an antioxidant and antidiabetic
effect that can inhibit α-amylase and α-glucosidase. The compounds in this plant have im-
proved glucose uptake into insulin-resistant HepG2 cells. Among the isolated compounds,
those with important activity were rosmarinic acid, caffeic acid, oleanolic acid and ursolic
acid [74].

Gardenia jasminoides extract is used both as a natural dye and as a traditional medicine
against various types of diseases such as circulatory diseases. The compounds in this plant
are generally bioactive and can have a beneficial effect on the nervous, cardiovascular, and
digestive systems, but can also have an anti-diabetic effect [75]. Studies on the methanolic
extract from G. jasminoides seeds have suggested high antioxidant activity that can in-
hibit α-amylase and α-glucosidase. The compounds identified with the most promising
antidiabetic activity are chlorogenic acid and jasminozide A [76].

Helianthus tuberosus is a perennial plant with high resistance to stress, nutritional
value and possible antidiabetic effects. This plant is an alternative to classic animal feed; it
can produce a high amount of biomass, and its activity on animal digestion, antibacterial,
anti-inflammatory and antioxidant effect is due to natural compounds [77].

Vitex negundo is a medicinal plant with bioactive properties on glycoprotein metabolism
and antihyperglycemic effects due to its ability to suppress the growth of insulin-resistant
HepG2 cells. The major compounds are viridiflorol, beta-caryophyllene, sabinen, 4-terpineol,
herbacetin rhamnoside, kaempferol, luteolin-7-glucoside, negundoside, p-hydroxybenzoic
acid, protocatecuic acid, quinic acid, vitedoin A and vitexin [78]. The functionality of this
plant is based on the ability of its active compounds to inhibit α-glucosidase and the uptake
of 2,2-diphenyl-1-picryhydrazyl (DPPH) radicals [79].

Eryngium caeruleum has antidiabetic and antioxidant potential. Bioactive constituents
include thymol, tocopherol, phytol, nerolidol, (I)-neophytadiene, linolenic acid and fal-
carinol. Molecular modelling studies have shown that E. caeruleum interacts with active α-
glucosidase sites. Studies in laboratory animals have shown the safety of using E. caeruleum
extracts, as the chances of them causing adverse reactions are relatively low. The bioactive
compounds identified may inhibit α-glucosidase, thus lowering blood glucose [80].

Curculigo latifolia has anti-diabetic properties, modulating glucose and lipid metabolism
in laboratory rats. The most common compounds in the plant are phloridzine, scande-
nine, monobenzone, hydroquinone, dimethylcaffeic acid, and hordatin A, compounds
with a phytotherapeutic role in the plant that confers anti-diabetic properties. A higher
concentration of C. latifolia extract increases the percentage of DPP (IV) inhibition [81].

Limonium axillare may be an antidiabetic remedy that can reduce hyperglycaemia and
restore serum insulin levels by increasing the expression of the glucose transporters GLUT2
and GLUT4. In in vitro studies, L. axillare extract had a strong effect of inhibiting α-amylase
and ameliorating pancreatic tissue. The inhibition of pancreatic enzymes α-amylase and
α-glucosidases may be a mechanism by which the compounds in this plant manifest their
antidiabetic capacity. The compounds isolated from L. axillare are p-sitosterol-3-palmitate,
p-sitosterol, myricetin and gallic acids [82].

4. Natural Compounds Involved in Diabetes Mellitus Management

Curcumin is a natural compound found in high amounts in the plant Curcuma longa
(turmeric) [83]. This compound can relieve symptoms and prolong cell death in T2DM [84].
The effects of this compound have been seen in in vivo, animal and in vitro studies [85].
Curcumin has a molecular mechanism similar to that of thiazolidinedione; an antidiabetic
drug that activates the PPAR-γ activated by the peroxisome proliferator [86].
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Docosanol is a compound that belongs to the class of aliphatic alcohols, with proven
antiviral activity [87]. However, molecular docking studies have shown that it is a candidate
for inhibiting α-glucosidase and α-amylase [88]. In vitro and in vivo studies show that this
compound can lower blood sugar levels [89].

Tetracosanol can also act as an α-glucosidase inhibitor and in combination with a
synthetic drug presents increased effectiveness [67]. Anthroquinonol is a derivative of ubiq-
uitin, extracted from Antrodia cinnamomea [90]. A study on mice shows that anthraquinone
can improve the body’s response to insulin. This compound has an inhibitory effect on
dipeptidyl peptidase IV through the kinase cascade activated by adenosine monophos-
phate [91].

Flavones extracted from Clinacanthus nutans, and Nigella sativa are good candidates as
compounds with anti-diabetic activity [92,93]. Rutin is another flavonoid found in many
herbs, vegetables and dietary supplements and has an antihyperglycemic effect [94,95].
Its mode of action is not fully understood, but this compound may protect pancreatic
cells against apoptosis by decreasing carbohydrate absorption and stimulating insulin
secretion [96].

Berberine is a natural alkaloid used to treat fungal and parasitic infections [97]. In
diabetes, it has shown its effectiveness by regulating lipid metabolism and improving
glycaemic parameters [98,99]. Long-term treatment with berberine can improve insulin
secretion. Nevertheless, the mechanism of action is not clear; berberine stimulates glycol-
ysis but can also act as an α-glucosidase inhibitor [99]. Catechin has anti-inflammatory,
antidiabetic, and neuroprotective activity [100].

Herbacetin has a favourable effect in maintaining blood sugar levels at normal lev-
els. If intervenes in gluconeogenesis, thus mediating the metabolic pathway and pre-
venting the overproduction of glucose [101]. The compound targets liver fructose 1,6-
biophosphatase, and thus studies have shown that it may be a valid alternative in the
treatment of patients [71,102].

Kaempferol is a natural polyphenol studied for its antidiabetic role. Kaempferol
treatment ameliorated histological changes in diabetes-induced renal tissue by inhibiting
Rho-kinase [103,104]. Molecular docking studies have shown that kaempferol targets
α-glucosidase with high-affinity binding, resulting in an inhibitory effect [105] Molecular
docking scores and studies in mice have shown that Leucodelphinidin has an antidiabetic
effect [106].

Isorutarine is linked to the main target of antidiabetic drugs, α-glucosidase and α-
amylase. The same targets are inhibited by actinodafine, a compound with antidiabetic
activity [88]. The proposed molecular mechanism for this compound came from molecular
docking studies, and its effectiveness has been proven by studies in laboratory animals.
Additionally, this compound has high therapeutic potential in lowering blood sugar lev-
els [67]. Nodakenin has an inhibitory effect on α-glucosidase, PTP1B, acetylcholinesterase
and butyrylcholinesterase [107].

In in vitro studies, compounds such as neochlorogenic acid, chlorogenic acid, caffeic
acid, 5-OA-(4-cumaroyl) -quinic acid, feruloylquinic acid, caffeoylquinic acid, isoxazolidine,
and β-D-glucoside of salicylic acid showed antidiabetic activity, acting on α-amylase and
α-glucosidase. Free radical scavenging and inhibition of diabetes-associated enzymes are
dose-dependent, but according to a study by Mariadoss et al., phytocompounds could re-
duce blood sugar levels, triggering glucose uptake into insulin-resistant HepG2 cells [108].

Molecular docking studies on (4Z, 12Z)-cyclopentadeca-4, 12-dienone have shown
that this compound can inhibit the action of enzymes aldose reductase, glucokinase, pyru-
vate dehydrogenase kinase, receptor-gamma, glycogen synthase kinase-3, and fructose-6-
phosphate amidotransferase with a role in diabetes. This compound is a valid candidate
for the development of new antidiabetic drugs due to the various molecular targets to
which it may bind [109].
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5. Quantitative Structure–Activity Relationships (QSAR) Predicted
Anti-Diabetic Activity

Quantitative structure–activity relationships (QSAR) investigations are a fast com-
putational approach for predicting a compound’s biological activity from its chemical
structure. QSAR techniques aid medicinal chemists in comprehending the link between
hypoglycaemic action and molecular characteristics [110–112]. Statistical measures such
as the cross-validated correlation coefficient, fitted correlation coefficient, and standard
deviation of error prediction are commonly used to assess QSAR investigations [113].
The dimensions of QSAR models range from 0 to 6; however, the most common are 2D
QSAR and 3D QSAR. Geometric characteristics, topological indices, and molecular finger-
prints are all considered for 2D QSAR models, but steric properties are not. The spatial
characteristics of the compound are the focus of the 3D QSAR method [114].

In silico methods were applied by Gajjar et al. to a series of 3-aryl-3-ethoxypropanoic
acid derivatives as modulators of GPR40. Two 3D-QSAR models (utilizing CoMFA and
CoMSIA), and a 2D-QSAR model (using HQSAR technique), were used to determine the
connection between the structure and biological activity of these compounds. All QSAR
models have good statistical parameters [44].

The QSAR models analysed contour maps of lipophilic, electrostatic, hydropho-
bic, donor, positive and negative contributions. The findings revealed that 3-aryl-3-
ethoxypropanoic acid derivatives might be effective anti-diabetic medicines that target
the human GPR40 receptor [44]. Izadpanah et al. [115] conducted QSAR and molecular
docking analyses on a set of 35 α-glucosidase inhibiting compounds. Statistical parameters
in the research suggested a successful prediction model. The most active compound on
α-glucosidase showed high inhibitory activity of 9.22, which implies that it might be used
to treat T2DM [115].

Flavone compounds exhibited a potential inhibitory effect on the a-glucosidase en-
zyme in a QSAR investigation. The results of 20 flavone derivatives (1–20) were compared
to the α-glucosidase inhibitor acarbose in this study. The IC50 values of the flavone deriva-
tives varied from 1.02 to 38.1 M, according to the findings. These results revealed that
acarbose (IC50 = 39.45 0.11 M) had lower inhibitory activity [116]. Maurya et al. used a
3D-QSAR model to identify positions and types of groups that increased the activity of
116 coumarin derivatives against lysosomal α-glucosidase. The study showed that the
binding affinity of lysosomal α-glucosidase antagonists can be improved by replacing
H-bond donor groups on the coumarin ring moieties at the C3, C5, and C7 positions,
respectively. Additionally, binding an H-bond donor to the attached carbon rings and
oxygen atoms can improve the compound’s activity [117].

Xu et al. built 2D QSAR models to characterize the important fragments of a series of
25 andrographolide derivatives. In addition, 3D QSAR models were created to investigate
the spatial distribution of their main groups. To efficiently detect the fragments and their
spatial distribution, they merged the 2D and 3D QSAR models. Derivatives 20–23 of
the 25 andrographolide compounds had a strong inhibitory effect on the α-glucosidase
receptor, while compounds 3, 4, 13, and 16 had low inhibitory activity [118].

Ghamali et al. used 44 substituted flavonoids with previously experimentally deter-
mined inhibitory activity on AR to develop three QSAR models (a multiple regression
analysis, a nonlinear regression, and an artificial neural network model). The models had
high stability and prediction power for flavonoid derivative inhibitory action against AR.
The artificial neural network model is the best QSAR model, and it may be useful to predict
the inhibitory effects of flavonoid derivatives [119].

6. Molecular Docking and Molecular Dynamics Predicted Anti-Diabetic Activity

Molecular docking simulations usually predict the interaction between a compound
and a specific target protein [120,121]. Flavonoids or other chemical classes of compounds
from traditional medicinal plants are frequently used in molecular docking studies to find
the specific compounds responsible for the positive effect [122].
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Here, we will present several studies that use the molecular docking approach to
predict the binding affinity of compounds from plants that interact with DM-specific targets.
In the case of some promising compounds, the stability of receptor-ligand complexes was
addressed by molecular dynamics (MD) simulations.

Molecular docking studies show that compounds from plants such as Ficus benghelensis,
F. racemosa, F. religiosa, Thespesia populena, and more have the potential to bind to targeted
receptors in DM [67,71,117] (Table 1). For both α-amylase and α-glucosidase targets, cur-
cumin presents the lowest dock-score (Table 1) [67]. A chemical with a low free binding
energy has a better chance of binding to that target. The lower the binding energy, the
greater the chance of binding [123,124]. These simulations from Jhong’s study were experi-
mentally validated (in the same study) and compared with acarbose (α-amylase inhibitor
used in the treatment of DM). Jhong’s study concluded that curcumin and actinodaph-
nine, interacting with α-glucosidase, and curcumin and berberine, interacting with the
α-amylase, present a higher IC50 activity compared with acarbose [67].

Another docking study on α-glucosidase conducted by Maurya concluded that isoru-
tarine, a coumarin analogue, has a good docking score (Table 1) [117]. Singh’s study
used as DM targets the IR, AR and SIRT6 receptors. It showed that kaempferol had the
lowest binding energy (kcal/mol) in interaction with AR, gossypetin in interaction with
IR, and sorbifolin in interaction with the SIRT6 receptor (Table 1) [71]. Sathiyaseelan et al.
evaluated the antidiabetic effect of phytochemicals from Gynura procumbens methanolic
extract and its various solvent fractions on α-amylase and α-glucosidase receptors. They
also predicted the interaction of the main compounds identified in G. procumbens extract
with porcine pancreatic α-amylase and α-glucosidase, using a molecular docking approach
(Table 1) [73].

Stachys riederi var. japonica solvent extract and fractions were analysed on induced
T2DM mice. Saravanakumar et al. study also predicted the binding affinity of identified
compounds from Stachys riederi var. japonica for α-amylase and α -glucosidase receptors
using molecular docking (Table 1) [74]. Anti-diabetic effects of compounds identified from
Gardenia jaminoides and Helianthus tuberosus, were also predicted using molecular docking
(Table 1) [76,108].

The anti-diabetic activity of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from the Grewia
hirsute plant was investigated by Natarajan et al. in a molecular docking study. They
tested the anti-diabetic efficacy of the compound on seven molecular targets, such as AR or
GFPT1 (Table 1) [109]. Vitex negundo leaf constituents were identified through ultra-high-
performance liquid chromatography-quadrupole time of flight/tandem mass spectrometry,
and the anti-diabetic properties were evaluated on α-glucosidase using molecular docking
models (Table 1) [79].

The hypoglycaemic activity of insulin-like peptides from Momordica charantia was
determined using a molecular docking approach. The study investigated the activity of
several peptides such as LIVA, EKAI, EALF, DFGAS and EPGGGG on four target proteins,
namely the experimentally determined structures of IR, SGLT1, dipeptidyl peptidase-
IV, and the predicted 3D structure of GLUT2 (Table 1) [59]. In the Sadiq et al. study,
bioactive components in Eryngium caeruleum were discovered using GC-MS and HPLC-
DAD investigations. Several molecular docking models were used to determine the binding
energy of the reported molecule and compared with acarbose. All substances could inhibit
the α -glucosidase receptor, according to the investigations (Table 1) [80].

Zabidi et al. identified the main compounds from Curculigo latifolia and, using molec-
ular docking analyses, they predicted the binding affinity of those compounds for α-
glucosidase, DPP-4 and IR (Table 1). They compared the results with the reference drugs
for each target acarbose (−7.4 kcal/mol, on α-glucosidase), sitagtiptin (−8.8 kcal/mol on
DPP-4), and insulin (−7.9 kcal/mol on IR) [81].

According to the observations of Abdel-Sattar et al., the root extract of Limonium
axillare exhibits anti-diabetic properties such as raising insulin secretion, increasing GLUT2
and GLUT4 expression, and thereby increasing glucose absorption. The root extract’s



Biomolecules 2021, 11, 1692 10 of 31

main ingredients may have a binding affinity for GPDH, according to molecular docking
analyses (Table 1) [82].

Table 1. Target receptors, the natural compounds with the best docking results from each study, docking scores and software
used for prediction.

Target Compounds Predicted Energy of
Binding (kcal/mol) Software Used References

AR (PDB: ID:1US0 [15])
Organism: Homo sapiens

kaempferol −10.034

YASARA [125] [71]herbacetin −9.623

sorbifolin −9.391

IR (PDB: ID:1IR3 [16])
Organism: Homo sapiens

gossypetin −8.429

YASARA [125] [71]herbacetin −8.165

sorbifolin −8.063

SIRT6 (PDB ID: 3K35 [17])
Organism: Homo sapiens

gossypetin −8.569

YASARA [125] [71]
herbacetin −8.632

kaempferol −8.533

sorbifolin −8.697

Target Compound
Dock

Score (-Potential of
Mean Force)

Software Used References

α-glucosidase (PDB 2ZE0 [126])
Organism: Geobacillus sp. HTA-462

curcumin −153 LigandFit implemented
in DS 2.5 (DS, Accelrys

Software, San Diego,
CA, USA)

[67]antroquinonol −180

rutin −159

α-amylase (PDB 1HNY [127])
Organism: Homo sapiens

curcumin −175

LigandFit implemented
in DS 2.5 (DS, Accelrys

Software, San Diego,
CA, USA)

[67]

16-hydroxy-cleroda-
3,13-dine-16,15-olide −155

docosanol −154

berberine −142

catechin −135

quercetin −132

rutin −126

Target Compound Docking Score
(kcal/mol) Software Used References

Lysosomal α-glucosidase (PDB ID: 5KZX
[128])

Organism: Homo sapiens

Isorutarine −7.64
Maestro 12.0 of

Schrödinger LCC, New
York, NY, USA

[117]2′Isopropylpsoralene −6.64

4-hydroxy d-C-III −6.45

Target Compound Predicted Energy of
Binding (kcal/mol) Software Used References

porcine
pancreatic α-amylase (PDB ID: 1OSE

[129])
Organism: Sus scrofa

Caffeoylquinic acid −10.33

Argus lab 4.0.1 [130]

[73]

O-Coumaroylquinic
acid −10.01

Coumaroyl-Ohexoside −9.75

α-glucosidase (PDB ID:
3A4A [131])

Organism: Saccharomyces cerevisiae

Caffeoylquinic acid −10.84

Argus lab 4.0.1 [130]O-Coumaroylquinic
acid −10.65

Coumaroyl-Ohexoside −10.60



Biomolecules 2021, 11, 1692 11 of 31

Table 1. Cont.

Target Compound Binding Affinity
(kcal/mol) Software Used References

human pancreatic α-amylase (PDB ID:
5E0F [132])

Organism: Homo sapiens

Ursolic acid −9.8

Autodock Vina 1.1.2
[133] [74]

Oleanolic acid −8.7

Rosmarinic acid −8.5

human lysosomal acid α-glucosidase
(PDB: 5NN8 [134])

Organism: Homo sapiens

Ursolic acid −8.2

Oleanolic acid −8.2

Rosmarinic acid −8.2

human pancreatic α-amylase (PDB: 5E0F
[132])

Organism: Homo sapiens

Chlorogenic acid −8.7

Autodock Vina 1.1.2.
[133] [76]

Jasminoside A −8.7

Jasminoside F −8.5

human lysosomal acid α-glucosidase
(PDB: 5NN8 [134])

Organism: Homo sapiens

Acarbose derived
trisaccharide −8.7

Acarbose −8.7

Chlorogenic acid −8.2

Target Compound Predicted Energy of
Binding (kcal/mol) Software Used References

porcine
pancreatic α-amylase (PDB ID: 1OSE

[129])
Organism: Sus scrofa

cryptochlorogenic acid −9.860

ArgusLab 4.0.1 [130] [108]

feruloylquinic acid −8.613

neochlorogenic acid −7.452

α-glucosidase (PDB ID:
3A4A [131])

Organism: Saccharomyces cerevisiae

caffeoylquinic acid −10.737

neochlorogenic acid −10.732

cryptochlorogenic acid −10.632

Target Compound Docking Score Software Used References

AR (PDB ID: 3G5E [135])
Organism: Homo sapiens

(4Z,12Z)-
cyclopentadeca-4,

12-dienone

−7.61

GLIDE 5.0 of
Schrödinger LCC, New

York, NY, USA [136]
[109]

glucokinase (PDB ID: 4IXC [137])
Organism: Homo sapiens −6.18

PDK2 (PDB ID: 4MP2 [138])
Organism: Homo sapiens −5.21

PPARγ (PDB ID: 3DZY [139])
Organism: Homo sapiens −7.57

GSK-3 (PDB ID: 3F7Z [140])
Organism: Homo sapiens −6.01

11β-HSD1 (PDB ID: 4K1L [141])
Organism: Homo sapiens −7.85

GFPT1 (PDB ID: 2ZJ4 [142])
Organism: Homo sapiens −5.57

Target Compound Docking Score
(kcal/mol) Software Used References

α-glucosidase (predicted 3D structure)
Organism: Saccharomyces cerevisiae

casticin −8.452
MOE, Chemical

Computing Group,
Monreal, Canada

[79]negundoside −7.923

herbacetin rhamnoside −7.369
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Table 1. Cont.

Target Compound S-Score Software Used References

IR (PDB: ID:1IR3 [16])
Organism: Homo sapiens

KDDGHL −18.56

MOE, Chemical
Computing Group,
Monreal, Canada

[59]

EPGGGG −16.71

TSEP −15.66

SGLT1 (PDB ID: 3DH4 [143])
Organism: Vibrio parahaemolyticus

ESIRD −23.81

DSRHR −23.64

RRKKV −20.64

dipeptidyl peptidase-IV (DPP (IV))(PDB
ID: 4A5S [144])

Organism: Homo sapiens

PTRHM −10.1067

RRKKV −9.9189

KDDGHL −9.4991

GLUT2 (predicted 3D structure)

RRKKV −10.5970

RSIHEP −10.5171

ERFDSG −9.6986

Target Compound Binding Energy Software Used References

α-glucosidase (predicted 3D structure)

tocopherol −7.7008
MOE, Chemical

Computing Group,
Monreal, Canada

[80]linoleic acid −7.1746

phytol −7.0629

Target Compound Binding Affinity
(kcal/mol) Software Used References

α-glucosidase (PDB ID: 4J5T [145])
Organism: Saccharomyces cerevisiae

S288C

phlorizin −8.2

AutoDock [133] [81]

scandenin −8.0

pomiferin −8.0

DPP-4 (PDB ID: 2P8S [146])
Organism: Homo sapiens

phlorizin −10.9

pomiferin −9.6

mundulone and
scandenin −9.3

IR (PDB: ID:1IR3 [16])
Organism: Homo sapiens

phlorizin −7.0

mundulone −6.9

pomiferin −6.6

Target Compound Docking Score
(kcal/mol) Software Used References

GPDH (PDB ID: 1WPQ [147])
Organism: Homo sapiens

2′,4′ dihydroxychalcone −6.2652
MOE, Chemical

Computing Group,
Monreal, Canada

[82]compound 4 −5.7992

compound 3 −5.6075

Arif et al. [59] also evaluated the complex binding energies of peptides to selected
targets by applying the molecular mechanics generalized born surface area (MM-GBSA)
method on 50 ns trajectories obtained by MD simulations of LIVA-IR and DFGAS-SGLT1
complexes. MD simulations revealed the stability of complexes, and calculated binding
energies showed significantly favourable interactions between ligands and targets. The
ligands appear to be stabilized at the binding sites by van der Waals energy, the nonpolar
energy term being the most important for complex formation [59].

An extensive screening study performed on a library of 257 compounds from medici-
nal plants with antidiabetic activity identified 79 potential inhibitors of α-amylase [148].
Six phytochemicals (shahidine, epicatechin, quercetin, isocolumbin, ellagic acid, lutolin)
were selected by re-scoring, ADMET and drug-likeness analysis. MD simulations (30 ns
long simulations) confirmed the stability of complexes formed by α-amylase (PDB ID:
3BAJ [149]) and these compounds, supporting their potential to inhibit the enzyme [148].
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The inhibition of α-glucosidase by natural compounds from spices such as fenugreek,
black pepper, ginger and turmeric was investigated in conjunction with their agonistic
activity on PPARγ [150]. Curcumin, pipernonaline, 6-gingerol and trigonelline were docked
at α-glucosidase (PDB ID: 5NN8 [134]) and PPARγ (PDB ID: 4A4V [151]) binding sites, and
replica exchange MD simulations were performed to characterize the dynamical behaviour
of complexes [150]. Results showed that curcumin and pipernonaline formed stable
complexes with the two proteins, which supports the beneficial effects of the compounds
in diabetes [150].

Salaudden et al. [152] tested 10 natural compounds with proved antidiabetic activity
against SGLT1 and SGLT2 using molecular docking and filtered them by ADMET, drug-
likeness and lead-likeness analysis. The most promising compound was sophoraflavone G,
which was also proved to form stable complexes with SGLT2 using MD simulations [152].
Since the crystal structures of SGLT1 and 2 are unknown, the authors performed all
calculations using homology models [152].

Other DM targets and their modulation by natural compounds from Piper longum Linn.
were addressed by Thakurla et al. [153]. The targets they investigated were: 11β-HSD1
(PDB ID: 1XU7 [154]); GFPT1 (PDB ID: 2V4M [155]); PTP1B (PDB ID: 3SME [156]); DPP-4
(PDB ID: 1J2E [157]); and GKRP (PDB ID: 4BBA [158]. The bioactive compounds that were
analysed were retrofractamide A, piperine, piperlongumine, and piperlonguminine, all
drug-like compounds. The molecular docking of compounds at selected proteins led to
good results, with piperine being the most promising compound [153].

Vo et al. [159] investigated the modulation of 11β-HSD1, GFPT1, PTP1B and SIRT6
by 20 bioactive compounds from Euphorbia thymifolia Linn. Molecular docking of com-
pounds at their possible targets allowed the identification of seven compounds able to bind
all targets, namely: β-amyrine, teraxerol, 1-O-galloyl-β-D-glucose, corilagin, cosmosin,
quercetin-3-galactoside and quercetin [159].

The ability of shikonin, a natural naphthoquinone dying pigment, to inhibit PTP1B
was evaluated through a complex approach involving in silico and in vitro methods [160].
Shikonin was docked at its putative binding site from 1AAX structure [161], which allowed
the identification of crucial residues involved in the interaction. The ZINC Natural Product
database was interrogated for compounds with pharmacophore features similar to those
of shikonin, resulting in a library of 1860 compounds that were screened against PTP1B
structure. Shikonin and the 100 best docked compounds were filtered based on their
ADMET and drug-likeness properties, which led to the identification of four additional
possible ligands: ZINC31168041, ZINC31168045, ZINC31168041 and ZINC31168554. These
compounds were also docked at PTP1B active sites, and ZINC31168045 presented the
highest docking score [160]. MD simulations also suggest that shikonin could be a lead
molecule for inhibiting PTP1B. The powerful inhibition of PTP1B by shikonin was deter-
mined experimentally (IC50 = 8.72 M), confirming the antidiabetic effects of the shikonin
scaffold [160].

Flavones are good candidates to inhibit HDAC1 and HDAC2. The docking of vorinos-
tat (a known inhibitor of the two enzymes), flavone, apigenin and luteolin to HDAC1 and
HDAC2 structures was performed at a vorinostat binding site revealed by X-ray crystallog-
raphy (PDB ID: 4LXZ [162]) [163]. Their results show that flavone, apigenin and luteolin
can occupy vorinostat binding sites and can interact with enzymes with energies similar
to vorinostat. Such data support the idea that dietary flavones can be used for epigenetic
therapy [163].

7. Anti-Diabetic Synthetic Compounds and Their Molecular Target Effects on BBB

DM is a disorder that can lead to BBB disruption and cognitive decline. Ischemic stroke,
atherosclerosis, vascular cardiac consequences, hemodynamic abnormalities, cognitive
deficits, neurochemical, electrophysiological and behavioural alterations are all linked to
hyperglycaemia and insulin resistance [164,165]. BBB disruption and inflammation are
significant elements in diabetic stroke that lead to a poor outcome. Microcapillary integrity
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and oxidative stress may play a role in the overexpression and activation of the receptor
for advanced glycation end products (RAGE). T2DM and Alzheimer’s disease (or “type
3 diabetes”) are linked because type I membrane protein carries amyloid-beta across the
BBB [165]. Matrix metalloproteinases (MMP) are known to exacerbate white matter damage
and are linked to BBB disruption [166]. During induced epileptic episodes, the permeability
of the BBB is affected in T1DM. BBB permeability increased significantly in seizures under
diabetic circumstances, and BBB damage increased during epileptic seizures [167].

Glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) are the most
important glucose transporters across the BBB [168]. According to Prasad et al., the mRNA
and protein expression of GLUT1 and GLUT3 are down-regulated in hyperglycaemia
and increased in hypoglycaemia [165]. According to Duelli and Kuschinsky, the GLUT1
receptor level decreased by 8% after 3 weeks of hyperglycaemia, while GLUT3 transporter
levels stayed constant [168]. GLUTs 1, 3, and 4 were dramatically reduced in the brains
of untreated diabetic mice by 61, 69, and 64%, respectively [169]. The blockage of GLUT1
expressed in autoreactive T cells could limit the destruction of pancreatic β cells in T1DM.
As promising as such a pharmaceutical approach could be, it could interfere with GLUT1
activity in BBB, leading to neurological symptoms. An effective therapeutic approach
against T1DM autoimmunity with less off-target side effects should be limited in time,
taking into account the age of patients and the characteristics of their T cell response [170].
Several GLUT1 inhibitors have been developed over the years for cancer treatment [171].
Cytochalasin B is a mycotoxin that blocks GLUT1 [172]. By solving the crystal structure of
GLUT1 in complex to cytochalasin B, Kapoor at al. [173] described the interactions between
the ligand and the receptor, opening the possibility to develop even more specific and
effective inhibitors. The structure of the complex is presented in Figure 2a.

GLUT3 is similar in structure to GLUT1, but with different physiological roles and
transport affinity [174]. GLUT3 was associated with cell invasion and cancer metastasis,
being an attractive anti-cancer drug target, especially in brain cancers such as glioblas-
toma [175]. The structure of GLUT3 with a D-glucose molecule bound in its binding site is
presented in Figure 2b.

Biomolecules 2021, 11, x FOR PEER REVIEW 14 of 31 
 

cognitive deficits, neurochemical, electrophysiological and behavioural alterations are all 
linked to hyperglycaemia and insulin resistance [164,165]. BBB disruption and 
inflammation are significant elements in diabetic stroke that lead to a poor outcome. 
Microcapillary integrity and oxidative stress may play a role in the overexpression and 
activation of the receptor for advanced glycation end products (RAGE). T2DM and Alz-
heimer’s disease (or “type 3 diabetes”) are linked because type I membrane protein carries 
amyloid-beta across the BBB [165]. Matrix metalloproteinases (MMP) are known to exac-
erbate white matter damage and are linked to BBB disruption [166]. During induced epi-
leptic episodes, the permeability of the BBB is affected in T1DM. BBB permeability in-
creased significantly in seizures under diabetic circumstances, and BBB damage increased 
during epileptic seizures [167]. 

Glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) are the most im-
portant glucose transporters across the BBB [168]. According to Prasad et al., the mRNA 
and protein expression of GLUT1 and GLUT3 are down-regulated in hyperglycaemia and 
increased in hypoglycaemia [165]. According to Duelli and Kuschinsky, the GLUT1 recep-
tor level decreased by 8% after 3 weeks of hyperglycaemia, while GLUT3 transporter lev-
els stayed constant [168]. GLUTs 1, 3, and 4 were dramatically reduced in the brains of 
untreated diabetic mice by 61, 69, and 64%, respectively [169]. The blockage of GLUT1 
expressed in autoreactive T cells could limit the destruction of pancreatic β cells in T1DM. 
As promising as such a pharmaceutical approach could be, it could interfere with GLUT1 
activity in BBB, leading to neurological symptoms. An effective therapeutic approach 
against T1DM autoimmunity with less off-target side effects should be limited in time, 
taking into account the age of patients and the characteristics of their T cell response [170]. 
Several GLUT1 inhibitors have been developed over the years for cancer treatment [171]. 
Cytochalasin B is a mycotoxin that blocks GLUT1 [172]. By solving the crystal structure of 
GLUT1 in complex to cytochalasin B, Kapoor at al. [173] described the interactions be-
tween the ligand and the receptor, opening the possibility to develop even more specific 
and effective inhibitors. The structure of the complex is presented in Figure 2a.  

GLUT3 is similar in structure to GLUT1, but with different physiological roles and 
transport affinity [174]. GLUT3 was associated with cell invasion and cancer metastasis, 
being an attractive anti-cancer drug target, especially in brain cancers such as glioblas-
toma [175]. The structure of GLUT3 with a D-glucose molecule bound in its binding site 
is presented in Figure 2b.  

 
Figure 2. (a) Structure of GLUT1 in complex with cytochalasin B, according to the crystal structure 
5EQI [173]. (b) Structure of GLUT3 in complex with D-glucose according to the crystal structure 
4ZW9 [176]. The ligands cytochalasin B (a) and D-glucose (b) are represented with yellow van der 
Waals spheres. 

The matrix metalloproteinase enzymes may have a role in BBB breakdown due to 
their systemic activation during diabetic ketoacidosis [177]. The findings of Hoffman et al. 
[177] indicated that the matrix metalloproteinase 9 (MMP-9) is expressed in the fatal brain 
oedema of diabetic ketoacidosis patients as well as on cells from brain intravascular 

Figure 2. (a) Structure of GLUT1 in complex with cytochalasin B, according to the crystal structure
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Waals spheres.

The matrix metalloproteinase enzymes may have a role in BBB breakdown due to
their systemic activation during diabetic ketoacidosis [177]. The findings of Hoffman
et al. [177] indicated that the matrix metalloproteinase 9 (MMP-9) is expressed in the fatal
brain oedema of diabetic ketoacidosis patients as well as on cells from brain intravascular
regions. MMP-9 is present on neurons in the hippocampus areas of both brain oedema and
diabetic ketoacidosis patients. At the same time, the Tissue Inhibitor of Metalloproteinases
1 (TIMP1) expression in the locations is reduced [177]. The authors suggested that further
studies are necessary to determine the role of MMP-9 in the pathogenesis of the neurologic
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catastrophe of brain oedema in diabetic ketoacidosis. Inhibition of MMP-9 expression might
help preserve neuronal function and BBB integrity during diabetic ketoacidosis [177].

The understanding of drug delivery across the BBB should also consider the structure
and selectivity of tight junction proteins. Claudin-5 from tight junctions (Figure 3) forms
pores that mediate the paracellular permeability of molecules smaller than 800 Da [178].
Molecular modelling and simulation studies on the subject are extensively reviewed in [178].
Such an approach can lead to the identification of compounds that modulate properties of
tight junctions such as specificity, pore size or permeability [178].

Collagen IV, a key component of BBB, can be degraded by MMP-9. During central
nervous system inflammation, MMP expression, particularly MMP-9, is linked to BBB
breakdown. Propofol (Table 2) is a sedative drug that reduces MMP-9 expression in human
cerebral microvascular endothelial cells triggered by inflammatory factor TNF. Propofol
can restore BBB integrity that has been harmed by TNF, and it also reduces TNF’s inhibitory
action on collagen IV [179].

T2DM is a significant predictor of perioperative neurocognitive disorder. However,
the mechanism of action is still understudied. Zhang et al. [180] investigated the treatment
with TAK-242 (Table 2) on adult male db/db and db/m mice (a mouse model of type
2 diabetes mellitus) on tibial fracture surgery-induced hippocampal BBB damage. TAK-
242 is a selective inhibitor of Toll-like receptor 4 (TLR4) [180]. This receptor promotes
lipopolysaccharide-induced microglial activation and inflammatory cytokine levels in high
glucose conditions. The study found that TLR4-mediated hippocampus inflammatory
cytokine release, MMP/TIMP axis imbalance, and BBB rupture were improved by TLR4
inhibition [180].
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Figure 3. Three-dimensional structures of some proteins associated with BBB breakdown, namely matrix metalloproteinase-
9 (MMP-9) and Toll-like receptor 4 (TLR4), or with BBB proper function, namely claudin-5. In (a) we represented MMP9
according to the 3D structure 1L6J [181]. In (b) we represented TLR4 according to 3FXI structure [182], and in (c) we
represented the structural model of claudin-5 generated using the machine learning approach AlphaFold [183] that we
retrieved from AlphaFold Protein Structure Database [184]. In the case of claudin-5, we used a black circle to show
the location of a permeation pore defined by two claudin-5 dimers located in the membranes of adjacent endothelial
cells [185,186].

Haemorrhagic transformation is a neurological disease that worsens as a result of an is-
chemic stroke. Although the chemical mechanism is unclear, studies show that Bradykinin
1 receptor (B1R) causes vascular toxicity. In a rat model of cerebral ischemia/reperfusion
with type 1 diabetes, Sang et al. [187] investigated B1R expression in brain tissues [187].
According to the study findings, B1R-specific antagonists reduced haemorrhage volume
and BBB disruption in diabetic patients in a dose-dependent manner, and the specific



Biomolecules 2021, 11, 1692 16 of 31

agonists increased it. Through ERK signalling, B1R was involved in ischemia-related
bleeding and BBB degradation in diabetic rats. B1R-activated ERK1/2 stimulated NF-B
activation, resulting in MMP-9 production and tight junction associated protein degra-
dation. U0126 (1,4-Diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene) and
pyrrolidine dithiocarbamate (Table 2), both of which were tested, showed encouraging
results. B1R-induced NF-B/p65 activation was decreased by U0126, an ERK inhibitor. In
addition, following a stroke, this chemical restores BBB function. Pyrrolidine dithiocarba-
mate is an NF-B selective inhibitor that reduces the levels of MMP-9 mRNA and protein in
haemorrhagic tissues [187].

APX3330 (Table 2) is a specific APE1/Ref-1 redox activity inhibitor that exhibits ther-
apeutic benefits in T1DM stroke rats. In a study conducted by Yan et al. [166], rats with
T1DM were given a temporary middle cerebral artery blockage; they were then treated
with PBS or APX3330, and their BBB permeability was measured. According to the findings,
APX3330 therapy for stroke in T1DM rats improved neurological functional outcome, BBB
integrity, total vascular density, and other factors. Moreover, in cultured primary corti-
cal neurons exposed to high glucose and oxygen-glucose deprivation, APX3330 therapy
substantially reduced cell mortality and MMP-9 gene expression [166].

Soluble epoxide hydrolase (sEH), an enzyme that degrades epoxyeicosatrienoic acids
(EETs), has various beneficial effects on vascular structure and function. According to
Wu et al. [188] enhanced BBB vascular permeability was accompanied by overexpression
of sEH and downregulation of 14,15-EET. The study concluded that decreased EET degra-
dation caused by sEH inhibition might be a therapeutic strategy for slowing the course of
BBB damage in diabetic mice through activation of the AMPK/HO-1 pathway [188].

The chemical structures of the previously reported compounds are shown in Table 2.
Furthermore, we determined the BBB permeability of compounds. The logarithmic ratio of
brain to plasma concentration of the drug (log BBB) was predicted by pkCSM, whereas the
probability of the molecule passing through the BBB (BBB probability) was predicted by
admetSAR 2.0 [189,190].

Table 2. Compound name, SMILES code, chemical 2D structure, pkCSM [189] (sourced from pkCSM-parmacokinetics
server [191]) and admetSAR2.0 [190] (sourced from admetSAR web server [192]) predictions. Molecules with a logBB > 0.3
are believed to cross the BBB, whereas molecules with a logBB-1 are poorly dispersed to the brain, according to pkCSM.
admetSAR2.0 estimates a probability, with 1 indicating that the molecules cross the BBB and 0 indicating that they do not.

Compound
pkCSM

Numeric (log
BBB)

admetSAR 2.0
BBB

Probability
SMILES Structure

propofol 0.497 +(0.99) CC(C)C1=C(C(=CC=C1)C(C)C)O
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Table 2. Cont.

Compound
pkCSM

Numeric (log
BBB)

admetSAR 2.0
BBB

Probability
SMILES Structure

Pyrrolidine
dithiocarbamate 0.041 +(0.98) C1CCN(C1)C(=S)S
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8. Natural Compounds That Prevent BBB Dysfunction in Diabetic Patients

Many neurological disorders have been found to be alleviated by natural compounds
such as flavonoids, which modulate the signalling transduction cascades involved with BBB
breakdown [193]. Understanding the actions of natural products through the molecular
processes linked to BBB degradation in DM may pave the way for the discovery and
development of new medicines to prevent the BBB breakdown.

In a quest for compounds able to preserve BBB integrity and proper function, Mamo
et al. identified probucol as a promising compound [194]. The compound was effective in
an insulin-resistant mice model obtained by administering a high fat, high fructose diet for
6 months. The mice presented a significantly increased BBB permeability relative to control
due to the decrease in endothelial tight junction proteins (occludin-1 and zonula occludens
(ZO)-1) expression. Probucol presented peripheral anti-inflammatory effects, reduced the
levels of cholesterol supplied to BBB endothelial cells, and prevented the extravasation of
IgG from blood to brain by restoring the levels of occluding-1 and ZO-1 [194].

Natural compounds can also present protective effects on the BBB under diabetic con-
ditions; for example, resveratrol reduces BBB permeability [195] and berberine or patchouli
alcohol reduce vascular damage [195]. Many other natural compounds that prevent
BBB breakdown are summarized in [193]. The compounds belong to classes of alkaloids
(berberine, caffeine), lipids (α-lipolic acid), phthalides (z-ligustilide), flavonoids (baicalin,
genistein, pinocembrin, quercetin), phenols (caffeic acid phenethyl ester, curcumin, cur-
culigoside A, forsythoside B, resveratrol, sesamol) or terpenes (6-O-acetyl shanzhiside
methyl ester, astragaloside IV, ginkgolide B, ginsenoside Rb1, oleanolic acid, tanshinone
IIA) and exhibit their BBB protective effects by modulating different transcription factors or
signalling transduction cascades [193]. We should highlight that some of these compounds,
such as curcumin, quercetin and berberine, also modulate molecular targets of diabetes,
showing their multiple beneficial effects in DM.

Kam et al. [193] also reviewed some structure–activity relationship (SAR) studies
conducted on flavonoids [193]. For instance, the number of hydroxyl groups in the B-ring
of 4-oxo-flavonoids correlates with their cytoprotective activity and their inhibitory activity
on the expression of ICAM-1, an adhesion molecule involved in leukocyte recruitment [196].

Idebenone was used in combination with insulin to decrease BBB permeability in
streptozotocin-induced diabetic rats [197]. The two molecules presented a synergistic effect
in closing the tight junctions, upregulating the expression of occludin, claudin-5 and ZO-1,
decreasing the levels of reactive oxygen species, and decreasing the levels of receptors for
advanced end glycation products and for nuclear factor-kB [197].

Quercetin is a polyphenol that can limit high BBB permeability. Polyphenols decrease
the adhesion of monocytes caused by hyperglycaemia to the level of brain endothelial
cells [198]. Studies in animal models have shown how catechin metabolites are distributed
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in tissues, managing to cross the BBB [199]. This phenomenon was observed by measuring
tissue permeability, thus showing the neuroprotective effect that can cause neurogene-
sis [200]. Quercitin resulted in a pK value (calculated using 1/Ki) of 7.62 ± 0.13 [201].
This natural compound is an inhibitor of GLUT-mediated glucose transport as well as a
permeant ligand via GLUT [202]. Quercetin in the diet prevented diabetic mice from losing
59 percent and 63 percent of their GLUT 1 and GLUT 3 levels, respectively [169].

Prediction of isorutarine’s molecular properties showed that it cannot cross the BBB.
However, its metabolites and various molecules resulting in its cleavage could cross the
barrier and have a beneficial effect in the treatment of diabetes [117,203].

The natural compound kaempferol could present protective and preventive effects in
diabetic complications [203,204]. Azevedo et al. showed that in the case of breast cancer
cells, kaempferol inhibited glucose absorption via reducing GLUT1-mediated glucose
uptake [205]. A study conducted by Martin et al. showed that kaempferol pK value
calculated from absorbance was 7.30 ± 0.01, and a pK value calculated from 1/Ki was
7.51 ± 0.29 [201].

Curcumin decreased the transport activity of GLUT1 in a dose-dependent way by
causing rapid reversible inhibition [206]. Curcumin may also help to prevent diabetes-
related cerebral infarction, by inhibiting both the GLUT1 and GLUT3 transporters [207,208].

According to molecular docking research, rutin has a binding affinity (kcal/mol) of
−13.101 on the GLUT1 transporter. This molecule forms a hydrogen bond with the back-
bone of GLUT1 through Thr137, Glu380, Asn415, Asn288 and Asn411 residues [209].
In human erythrocytes, rutin is a low-affinity inhibitor of glucose efflux via GLUT1
(Ki 0.1–0.3 mM) [202].

Berberine is a compound known to cross the BBB; this molecule modulates GLUT3
levels and has no effect on GLUT1 [169]. The activities involved in anti-inflammation and
insulin resistance in the prefrontal cortex of diabetic rats were used to examine the influence
of berberine on cognitive activity in diabetics. Berberine has the potential to boost GLUT3
expression and reverse the damage [210]. Even though some studies claim berberine has
no impact on GLUT1, Cok’s research showed that berberine abruptly increases GLUT1
transport activity [211].

Catechins are also known to inhibit GLUT, especially GLUT1 [212,213].
In rats with type 1-like diabetes mellitus, Lee et al. found that ginseng extracts, gs-kg9

and gs-e3d, reduce BBB damage and thereby decrease apoptotic cell death of hippocampus
neurons. The findings revealed that GS-KG9 and GS-E3D inhibited MMP-9 expression and
activation, had dose-dependent antihyperglycemic action, and dramatically reduced BBB
permeability and tight junction protein loss [214].

9. Databases and Web-Servers of Anti-Diabetic Compounds

Specific databases are a valuable tool in drug discovery, especially when it comes to
in silico studies. We have identified three specific databases and web-servers of antidia-
betic compounds.

Anti-Diabetic Natural Compounds Database (ADNCD) collects and categorizes natu-
ral compounds according to their anti-diabetic modes of action (e.g., Akt phosphorylation,
improving glucose uptake, insulin mimetic activity, insulin sensitizers), providing a single
platform with advantages for diabetes researchers. The database also contains information
on the physicochemical characteristics (miLogP**, absorption percent, Lipinski’s violation,
etc.), and toxicity (mutagenic and tumorigenic risk, reproductive and irritant effect) of
anti-diabetic natural compounds [215].

DiaNat-DB is a database containing 336 compounds from plant species that show anti-
diabetic action in vitro or in vivo. This database provides the SMILES of the compound,
the activity, plant family and genera, the use, and the country/region. That information can
help future analysis, design, and development of novel anti-diabetic medicines. DiaNat-DB
is freely available from this link: http://rdu.iquimica.unam.mx/handle/20.500.12214/1186,
accessed on 10 October 2021 [216].

http://rdu.iquimica.unam.mx/handle/20.500.12214/1186


Biomolecules 2021, 11, 1692 19 of 31

Dia-DB is an open web server that uses two techniques to predict the probability of a
molecule to be utilized as an anti-diabetic drug. The web server compares the results with a
selected library of anti-diabetic medications and experimental molecules based on similarity.
Additionally, based on user-selected input compounds, Dia-DB conducts an inverse virtual
screening against a set of proteins considered relevant targets for anti-diabetic components,
such asperoxisome proliferator-activated receptor delta, aldose reductase, insulin receptor
precursor, glucokinase, etc. The web server can be accessed at: https://bio-hpc.ucam.edu/
dia-db/, accessed on 10 October 2021 [217].

10. Blood Brain Barrier Permeability Prediction Web Services

We identified a number of free web services that can estimate whether or not a
chemical would pass the BBB. Prof. Xiang-Qun developed the BBB Predictor of COMPU-
TATIONAL CHEMICAL GENOMICS SCREENING CENTER website. Using the support
vector machine (SVM), LiCABEDS algorithms and four types of fingerprints (MACCS,
Openbabel (FP2), Molprint 2D, and Pubchem) of 1593 reported chemicals, this web-service
will predict if a molecule can pass the BBB (BBB+) or cannot pass the BBB (BBB-). The
chemical structures can be either loaded or drawn using the JSME molecular editor [218].

SwissADME, affiliated with the Swiss Institute of Bioinformatics, predicts ADME
parameters, pharmacokinetics, drug-likeness, and medicinal chemistry compatibility of
small molecules. Using 156 BBB permeable and 104 non-permeable compounds, this
web service predicts a passive-BBB permeability model using a BOILED-Egg model. The
parameters used for this model are WLOGP versus topological polar surface area. This
model has a Matthews correlation coefficient of 0.79 [219,220].

pkCSM is a web service that employs a new method built on graph-based signatures
to estimate the pharmacokinetic characteristics of compounds. These are used to train
prediction algorithms by encoding distance patterns between atoms. The ratio of brain
to plasma drug concentration is represented by the BBB permeability, which is given as
logBBB. The method incorporates 320 chemicals, each of which has had its BBB determined
experimentally [189].

admetSAR 2.0 is a free model for estimating and optimizing a small molecule’s
chemical ADMET features. This web service estimates BBB permeability using a binary
predictive algorithm that includes 1830 molecules in its training set. The model has an area
under the receiver operating characteristic curve of 0.944, an accuracy of 0.907, a sensitivity
of 0.921, and a specificity of 0.861 [190].

An example of pkCSM and admetSAR [189,190] usage is presented in Table 2 where
we reported predicted BBB permeabilities of antidiabetic compounds discussed in Section 7.
Additionally, we used the same tools to predict the BBB permeability of gymnemic acids
presented in Section 3. The results in Table 3 show that all chemicals may pass the BBB,
except for gymnemic acid VI.

B3Pred web server predicts and designs effective BBB penetrating peptides (B3PPs).
The technique relies on 269 experimentally confirmed B3PPs from the B3Pdb database.
This program uses the FASTA format of the peptides and estimates whether a peptide
will penetrate the BBB. The results show a prediction score and some peptide features:
hydrophobicity, hydropathicity, hydrophilicity, charge, and Mol wt [221].

LightBBB is a predictor of BBB permeability based on a collection of 7162 molecules
with known BBB permeability. LightBBB uses the light gradient boosting machine tech-
nique and has an overall accuracy of 89 per cent. The model uses the SMILES code or an
.SMI file, and the output indicates if a compound is or is not BBB permeable [222].

https://bio-hpc.ucam.edu/dia-db/
https://bio-hpc.ucam.edu/dia-db/
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Table 3. Predicted BBB permeability of gymnemic acids I-VII using pkCSM [189] (sourced from pkCSM-parmacokinetics web server [191]) and admetSAR2.0 [190] (sourced from
admetSAR web server [192]). Their SMILES codes of the compounds are given as well.

Compounds pkCSM admetSAR 2.0 SMILES

gymnemic acid I, −1.517 +0.843 CC=C(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)COC(=O)C)O

gymnemic acid II, −1.558 +0.91 CCC(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)COC(=O)C)O

gymnemic acid III, −1.652 +0.91 CCC(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)CO)O

gymnemic IV, −1.611 +0.84 CC=C(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)CO)O

gymnemic acid, V, −1.743 +0.84 CC=C(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)CO)OC(=O)C(=CC)C

gymnemic VI, −2.346 −0.78 CC=C(C)C(=O)OC1C(C2(C(CC1(C)C)C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)OC7C(C(C(C(O7)CO)O)O)O)O)C)CO)O

gymnemic acid VII −1.259 +0.84 CC1(CC2C3=CCC4C5(CCC(C(C5CCC4(C3(CC(C2(CC1O)CO)O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)C
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For a detailed perspective on the BBB permeability of candidate compounds, one could
use MD simulations. Carpenter et al. performed reliable predictions of BBB permeability
based on the potential of mean force calculations for candidate compounds through a lipid
bilayer using MD simulations. The authors derived one-dimensional position-dependent
diffusion coefficients based on MD trajectories. The effective permeability of a compound
was determined based on its diffusion coefficient as corroborated with the free energy
landscape. Their results were in good agreement with logBBB (blood-brain concentration
ratio) and logPS (permeability surface-area product) of compounds [223]. A more recent
study investigated the permeability of compounds by steered molecular dynamics simula-
tions [224]. Using a simple lipid bilayer, Thai et al. [224] computed the non-equilibrium
work required to pull a compound through the lipid membrane, leading to values in good
correlation to logBBB or logPS. The method allows the usage of different membranes and
brings insight on the energetic barriers and forces acting on the ligand when crossing the
membrane [224].

11. Conclusions

T1DM and T2DM are metabolic disorders in which insulin secretion is reduced (T2DM)
or no longer secreted due to pancreatic-cell death (T1DM). The diabetic condition alters BBB
function and integrity, which further results in diabetes-related neurological complications.
In the present review, we discussed research on natural and synthetic compounds that
operate on therapeutic target proteins in DM and on the BBB. We approached three current
research directions, namely the modulation of proteins involved in glucose metabolism or
in insulin response, of proteins involved in the development and preservation of pancreatic
β cells, and of proteins involved in BBB permeability preservation. The relevant druggable
targets for each direction were identified, some of them being IR, SIRT6, AR, α-glucosidases,
PPAR, SGLT, 11-HSD1, GFPT1, PTP1B, DPP-4, GKRP, GLUT2, glycerol-3-phosphate, GSK-3,
PDK2, glucokinase, and HDAC. In the case of all targets, we presented bioinformatics
studies aiming to determine natural and synthetic compounds that could regulate their
function. Different methods were taken into account, namely QSAR, molecular docking
and molecular dynamics.

Only a few QSAR studies have investigated the effect of natural compounds on
specific targets in diabetes such as α-glucosidase, GPR40, or AR receptors. According to the
previously reported studies, andrographolide and flavone derivatives are active on the α-
glucosidase target, while 3-aryl-3-ethoxypropanoic acid derivatives are GPR40 modulators.

The most popular protein targets approached by molecular docking studies are α-
glucosidases and IR. Molecular docking studies predicted that natural compounds such as
kaempferol, herbacetin, or herbacetin should present an enhanced affinity for receptors
such as AR, IR, or SIRT6. Anthroquinonol and rutin presented good docking scores in
interaction with the α-glucosidase receptor, while docosanol, tetracosanol, anthroquinonol
and berberine presented good docking scores in interaction with α-amylase.

Molecular dynamics studies showed that (i) shahidine, epicatechin, quercetin, iso-
columbin, ellagic acid, and lutolin should inhibit α-amylase; (ii) curcumin and pipernon-
aline should form stable complexes with PPARγ; (iii) β-amyrine, teraxerol, 1-O-galloyl-β-
D-glucose, corilagin, cosmosin, quercetin-3-galactoside and quercetin should modulate
11β-HSD1, GFPT1, PTP1B and SIRT6; (iv) shikonin could inhibit PTP1B; (v) apigenin
and luteolin target HDAC1 and HDAC2; (vi) sophoraflavone G should inhibit SGLT1
and SGLT2.

GLUT1, GLUT3, B1R, TLR4 or MMP-9 are relevant targets for preventing alterations
of BBB permeability due to glycaemic variations in T1DM and T2DM patients. Numerous
studies investigated compounds that could prevent BBB dysfunctions, some examples
being propofol (synthetic compound) or berberine, genistein, quercetin, resveratrol or
curcumin (natural compounds). The permeability of BBB can be modelled using different
prediction servers such as SwissADME, pkCSM or admetSAR.
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The findings of reviewed simulation studies are encouraging, indicating that analysed
compounds have potent inhibitory effects on specific receptors in DM treatment. These
compounds might also be employed in in vitro and in vivo investigations or in future in
silico studies as “lead-like” structures. Databases of natural compounds with anti-diabetic
activity (ADNCD and DiaNat-DB) and Dia-DB webserver (predicts the possibility of a
molecule used as an anti-diabetic drug) are helpful tools that may be used to find new
anti-diabetic medicines or natural compounds.

To summarize, natural substances may be a viable choice for T2DM management, as a
therapy adjuvant, or to prevent diabetes-related dysfunctions; however, more studies are
needed. Although insulin therapy is required for T1DM, natural or synthetic compounds
such as propofol, APX3330, coumarin, quercetin, kaempferol, berberine, and others show
promise in treating BBB damage caused by glucose swings, and therefore, should be
investigated further.
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