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Abstract

Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic
intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is
the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR)
that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically
required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of
next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an
evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA
alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing,
we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene
presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.
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Introduction

The classical human leukocyte antigen (HLA) gene complex on
chromosome 6, and the killer-cell immunoglobulin-like recep-
tor (KIR) genes on the leukocyte receptor complex on chromo-
some 19 are complex genomic loci that have been known to
be difficult to genotype accurately. With the rapidly emerging
treatment approaches in the fields of cancer immunotherapy
[1, 2] and autoimmunity [3], the accurate characterization of
a patient’s immunogenetic composition in the HLA and KIR
regions is becoming more clinically important.

Classical HLA proteins play an important role in presenting
peptides derived from self, tumor or microbial antigens. They
display an extreme amount of allelic polymorphism, as a result
of pathogen-driven and balancing selection [4]. Much research
has shown these HLA variants to be strongly associated with
multiple immune and nonimmune phenotypes in the fields of
cancer [5, 6], autoimmunity [3, 7], neurodegeneration [8] and
infectious diseases [3, 7]. In the clinic, achieving matched clas-
sical HLA alleles between the donor and recipient is critical for
organ and stem cell transplantation, such that HLA typing and
matching have been integrated as part of standard clinical pro-
tocols for decades [9-11]. HLA typing has also become increas-
ingly important in diagnostics and clinical practice. For example,
several approved drugs carry labels indicating increased risk for
adverse events for carriers of specific HLA alleles [12-14].

KIR proteins are receptors for classical HLA class I ligands,
and are predominantly expressed on natural killer (NK) cells.
In contrast to most HLA genes, the genes coding for KIR dis-
play extensive copy number polymorphism [15], in addition to
considerable allelic variation [16] for each gene. KIR have shown
significant associations with disease phenotypes, mainly in the
fields of infectious diseases, autoimmunity, inflammatory dis-
eases and cancer [17]. Associations were found for both single
KIR genes, and when considering their interactions with spe-
cific HLA molecules. HLA-KIR interactions were demonstrated
to predict the risk of organ rejection after kidney transplan-
tation, suggesting a clinical use case for KIR typing [18, 19].
KIR proteins are also known to be important codeterminants
of NK cell education, which is in part mediated through their
interactions with different HLA molecules. Such interactions
significantly define the heterogeneity of NK cell responsiveness
and their sensitivity to inhibition by HLA across individuals [20,
21]. As such, KIR proteins play a critical role in the recognition of
‘missing-self’ phenotypes in infected or tumor cells, which are
typically defined by the loss or down-regulation of HLA class I
cell surface expression [22].

For research purposes, genotyping arrays covering single
nucleotide polymorphisms (SNPs) across the genome have been
used to impute HLA and KIR types. However, they require
statistical imputation methods to disentangle the complex
linkage disequilibrium (LD) between SNPs and HLA or KIR
types [23, 24]. These methods also rely on the availability
of ancestry-specific or multiancestry reference panels that
can be difficult to obtain, especially for populations not well
represented in genomic data sets [25]. In clinical diagnostics,
dedicated immunogenetics laboratory solutions to HLA and
KIR genotyping are being continually developed [26]. Initial
molecular typing technologies were low throughput and/or
probe-based assays [27, 28]. In recent years, high-throughput
next generation sequencing (NGS) has become increasingly
affordable [29]. This has enabled the prevalent use of short-
read NGS, namely whole-genome sequencing (WGS) and whole-
exome sequencing (WES), in the clinic [30, 31]. Although
well-validated bioinformatics pipelines have been implemented

to detect millions of genetic variants from the available clinical
sequences [32, 33], they are typically employed uniformly to the
entire genome or exome, and can be ineffective at particular
genomic loci that are highly polymorphic, such as the HLA and
KIR regions. Dedicated in silico typing tools that use NGS data and
specifically target the HLA or KIR genes could be a cost-effective
and efficient alternative to traditional laboratory HLA or KIR
typing methods. Although such NGS-based approaches do not
require linkage-disequilibrium-based statistical imputation for
genotyping (because the sequencing reads directly contain the
information to define e.g. the HLA allele status), they do require
the use of comprehensive databases that capture the diversity
and complexity of these genomic loci for alignment (as opposed
to single reference genomes).

Despite their biological significance and many practical
advantages, the development of clinically ready in silico HLA
and KIR typing have thus far been largely hampered by the
genetically complex and highly polymorphic nature of the two
regions [7, 34]. Bauer et al. provided an extensive evaluation of
available HLA genotyping tools in 2016 [35]. They showed that
the concordance of HLA typing with their gold standard dataset
is generally low, with the best accuracy for a combined HLA I
and II genes at 73%. Since then, a new generation of in silico HLA
genotyping tools has been created, which showed much promise
for high accuracy. Here, we conducted a survey of the recent HLA
and KIR typing capabilities for potential scaling and readiness in
clinical applications. We evaluated available computational HLA
inference tools by comparing the inferred HLA alleles from WES
and WGS data to a gold standard dataset, which was generated
using a commercial dedicated typing method. We also assessed
and validated a recently published KIR method by Roe and Kuang
[36], which can be used to infer KIR gene presence and absence
from WGS data.

Methods
Generation of a gold standard HLA reference dataset

The gold standard reference dataset contains 56 patient sam-
ples. Genomic DNA was extracted from 1 ml of EDTA whole
blood on the Roche MagNA Pure 96 system using the MagNA
Pure 96 DNA and Viral NA Large Volume Kit. They were then
sent to LabCorp (Burlington, NC, USA) for sequence-based, two-
field HLA genotyping, using accepted scientific standards meet-
ing the accreditation requirements of the American Society for
Histocompatibility and Immunogenetics (ASHI) and the College
of American Pathologists (CAP). HLA class I genotypes of HLA-A,
-B and -C were determined using a combination of long-range
sequencing from PacBio (Menlo Park, CA, USA) RSII and Sanger
sequencing. Class II genotypes for HLA-DPA1, -DPB1, —DQA1,
-DQB1, -DRB1, -DRB3, -DRB4, -DRB5 were determined using a
combination of long-range sequencing from PacBio RSII, and
NGS from Illumina (San Diego, CA, USA) TruSight and MiSeq
technologies.

Generation of a KIR reference dataset

Genotyping of KIR alleles was performed for 72 patients using
the LinkSeq KIR kit according to manufacturer’s user guide (Cat-
alog No: 5358R, One Lambda, Canoga Park, CA, USA). Briefly,
the human genomic DNA was amplified and melt curves were
collected on a real-time PCR instrument (QuantStudio 5 sys-
tem, Thermo Fisher Scientific, Waltham, MA, USA). The data
were exported to SureTyper software 6.1.2 (One Lambda) for
interpretation and reporting of the genotype.
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Whole-genome and whole-exome sequencing

WGS and WES were performed for the samples in the HLA and
KIR reference datasets, on Illumina HiSeq instruments using
paired-end reads of 150 bp. The bait set used for WES was the
[llumina Nextera Exome Kit with 38 megabases target territory
(29 megabases baited). The WG samples were sequenced at an
average of 37x coverage (range =31-50x). For WES, all samples
were sequenced at an average of 80x coverage (range=70-99x),
and passed QC criteria of 85% of targeted bases at 20x or greater
coverage (£5%). FASTQ [https://en.wikipedia.org/wiki/FASTQ fo
rmat] files were generated for each WG and exome, and were
used as direct inputs for each tool, where appropriate. For tools
that required BAM files as inputs, the FASTQ files were processed
according to a workflow built using the Genome Analysis Toolkit
(GATK) best practices from 2015 and GATK v3.5 [33]. Briefly,
it includes read alignment using bwa 0.7.15 (bwa mem) with
GRCh38 as the reference genome, duplicate marking using Picard
tools v2.9, indel realignment using GATK v3.5, and then base
quality score recalibration using GATK 3. For bwa, except for
the M’ flag, all the default options were used. Individual-level
genetic data for this study cannot be made publicly available due
to consent restrictions.

Selection and configuration of HLA typing tools

For WGS and WES HLA genotyping, we specifically selected tools
that (i) are recently published, (ii) are easy to install and imple-
ment, (iii) have the ability to work with WGS and WES data (iv)
and could genotype both HLA I and II genes for potential clinical
use. These included HLA*PRG:LA [37], xHLA v1.2 [https://githu
b.com/humanlongevity/HLA] [38], HLA-HD v1.2 [https://www.ge
nome.med.kyoto-u.ac.jp/HLA-HD/] [39], and HISAT2 v2.1 [https://
ccb.jhu.edu/software/hisat2/index.shtml] [40]. As a comparison
to a more widely used tool, we also assessed results from
Polysolver v1.0 [41]. Polysolver has been widely utilized in many
benchmarking and research studies, and has been shown to be
one of the more accurate genotyping tools, albeit only for classi-
cal HLA class I genes [42-44]. We summarized each tool’s main
algorithm of genotyping HLA alleles, unique characteristics,
various features and implementation idiosyncrasies in Table 1.
For more in-depth discussion on their algorithms, please refer to
their respective publications and corresponding supplementary
materials; for more details in implementation, please refer to
related documentation (listed in Table 1).

There are some tools that require a BAM file format, i.e.
read alignment to a reference genome. For xHLA and Polysolver,
FASTQs were aligned using BWA MEM to hg38 to produce BAMs.
They then require further preprocessing. For xHLA, BAMs were
preprocessed with an additional bash script provided by the
authors [https://github.com/humanlongevity/HLA/blob/master/
bin/get-reads-alt-unmap.sh]. Polysolver, by default, hardcoded
hgl8 or hgl9 genomic coordinates for read extraction from
chromosome 6 in the BAM files prior to HLA genotyping. In order
to overcome this limitation, we modified the code to include
the use of BAMs that are aligned to hg38 as well. No other
modifications were made to the code. For HLA-HD and HISAT2,
the raw FASTQs were used directly. All the tools were run using
default settings, and with the HLA/IMGT databases versions that
came with the respective tools. For the exact run parameters,
please refer to Supplementary Table 1.

Evaluation of HLA typing tools

The tools typically give two alleles per HLA gene, but we do
see in occasions, albeit rare, in our study where the algorithm
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provided more than one pair of possible alleles, and often in
descending order of significance. For any results that offer more
than two alleles, we only took the top two inferred HLA alleles;
we assumed a diploid germline genome.

Each in silico HLA typing tool was evaluated by two accu-
racy metrics. (i) The ‘allele concordance’ with the gold standard
dataset, which counts the number of concordant HLA alleles
called by the tool when compared with the reference HLA geno-
types obtained from LabCorp, for the classical HLA I and II
genes. Its accuracy was defined as the quotient of the number
of concordant calls and the sum of the number of concordant
plus discordant calls. (ii) The ‘full-sample concordance’ counts
the number of samples that have perfect concordance with the
gold standard dataset. Its accuracy was defined as the quotient
of the number of samples with full concordance and the total
number of samples that were successful in the run for each tool.
For uniformity, results from the tools were converted to four-
digit resolution before evaluation, except for HLAxPRG:LA, which
can only perform genotyping at G group resolution. A G group
consists of HLA alleles that have identical nucleotide sequences
in the exons coding for the peptide binding domain (exons 2
and 3 for HLA class I and exon 2 for class II), whereas a P group
contains all HLA alleles that have the same amino acid sequence
for the exons coding for the peptide binding domain. A minimum
of P group resolution or higher (including G group, four-digit/two-
field resolutions), is usually considered ‘high resolution typing’
and therefore clinically relevant [45]. For HLA*PRG:LA, gold stan-
dard results were first converted to G groups before evaluation.
G group information was obtained from the IMGT/HLA database
[http://hla.alleles.org/alleles/g groups.html].

We split the evaluation of the tools’ accuracy into three
categories: (i) HLA I, consisting of classical HLA I genes HLA-
A, -B and -C, (ii) HLA IIa, consisting of classical HLA 1I genes
HLA-DPA1, -DPB1, —DQA1, -DQB1 and -DRB1 and (iii) HLA IIb,
consisting of a second group of classical HLA 1I genes, HLA-
DRB3, -DRB4 and -DRB5 (Table 2). We created a second category
(HLA IIb) for additional DR genes because only HLA-HD currently
genotypes them. Additionally, since every individual carries a
variable copy number of the three genes DRB3, DRB4 or DRB5
that is highly dependent on the DRB1 genotype [46], a no-call by
the computational tool is considered concordant with the gold
standard results if it is not also identified. Some tools cannot
genotype the full set of the classical class II genes, thus we
also provided the accuracy with respect to each class II gene
(Table 3).

Evaluation of KIR typing with kpi and interpretation of
results

For inference of KIR gene presence or absence, we evaluated
kpi [https://github.com/droeatumn/kpi, downloaded 11 March
2020]. An earlier version of the software was recently presented
in a preprint and did not provide a validation of its accuracy
when compared to qPCR-based dedicated KIR typing methods
[36]. Kpi requires WGS FASTQ files as input data and outputs
a presence/absence call for each KIR gene, as well as possible
combinations of KIR haplotypes according to a provided list
of reference haplotypes [https://github.com/droeatumn/kpi/blo
b/master/input/haps.txt]. Each KIR gene can in principle be char-
acterized by copy number and allelic variation. A KIR haplotype
determines the order and presence of single KIR genes [47,
48]. However, kpi only detects presence or absence of each KIR
gene, not allele status or copy number. As a result, the calls for
haplotype pairs can be ambiguous (due to differences in copy
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Table 2. Overall evaluation results for HLA typing using WES and WGS. HLA genes are categorized into classical class I genes (A, B and C), Ila
genes (DPA1, DPB1, DQA1, DQB1 and DRB1), and IIb genes (DRB3, DRB4 and DRB5). The class Ila genes that each tool can genotype differ: HLA-HD
can infer all of the above; xHLA can only infer DPB1, DQB1 and DRB1; HISAT2 and HLAxPRG:LA only DQA1, DQB1 and DRB1. Note that HLAxPRG:LA
was evaluated based on the G group resolution. Results from the older and well-utilized Polysolver were provided as an additional source of
comparison for HLA I genes. For each category, we also provided two accuracy metrics, (i) allele concordance, computing the total number of
alleles that are concordant with the gold standard data, and (ii) full-sample concordance, computing the number of samples that have perfect

concordance with the gold standard data

Method Allele or WES concordance (%) WGS concordance (%)
full-sample
concordance
Ig lla Ib Ig Ila 1b
Polysolver Allele 328/336(97.6) - - 330/336(98.2) - -
Sample 49/56(87.5) - - 51/56(91.1) - -
HLAPRG:LA Allele 333/336(99.1) 335/336(99.7) - 333/336(99.1) 335/336(99.7) -
(G groups only)
Sample 53/56(94.6) 55/56(98.2) - 53/56(94.6) 55/56(98.2) -
xHLA Allele 156/330(47.2)2 187/330(56.7)? - 327/336(97.3) 327/336(97.3) -
Sample 6/55(10.9) 7/55(12.7) - 49/56(87.5) 50/56(89.3) -
HLA-HD Allele 334/336(99.4) 552/560(98.6) 329/336(97.9) 334/336(99.4) 557/560(99.5) 328/336(97.6)
Sample 54/56(96.4) 48/56(85.7) 50/56(89.3) 54/5696.4) 53/56(94.6) 49/56(87.5)
HISAT?2 Allele 332/336(98.8) 310/336(92.3) - 334/336(99.4) 324/336(96.4) -
Sample 52/56(92.9) 42/56(75) - 54/56(96.4) 49/56(87.5) -

a1 sample failed to run in xHLA WES.

bIncluded miscalls for a novel HLA-C allele at four-digit resolution. All tools matched the LabCorp result at two-digit resolution correctly.

number of present genes), but the presence of single KIR genes
can be resolved [36]. As such, KIR typing with kpi, albeit coarse,
is still useful because many associations have been reported
on haplotype or gene level. Furthermore, interactions of KIRs
with their HLA ligands are usually defined at the KIR gene level
[17, 22]. It should be noted though, that the KIR genes do show
extensive allelic polymorphism that can still have an effect on
such defined interactions [34, 49].

Inference of HLA-KIR interactions

NK cell inhibiting as well as activating KIR interactions with their
HLA class I ligands were defined according to Pende et al. [18]
Briefly, some KIR interact with groups of four-digit HLA alleles
according to specific HLA amino acid residues. HLA-B alleles
were classified as either Bw4 or Bw6 according to amino acid
positions 77-83. HLA-C alleles were assigned C1 or C2 status
based on amino acid position 80 [18]. Other interactions were
defined between KIR and specific two-digit or four-digit HLA
alleles (e.g. Ax03 - KIR3DL2).

Results

High accuracy for HLA I and II typing with current gold
standard WES and WGS data

We selected HLA genotyping tools to infer HLA identities of
56 patients from the EXCELS (NCT00252135) [50] and AVANT
(NCT00112918) [51] clinical trials. The inferred HLA types were
then compared to results from the gold standard reference
dataset. The diversity of HLA alleles is imperative in the
evaluation of HLA genotyping tools, as it allows testing of
the tools against different alleles. Despite the limited size
of our dataset, the diversity of HLA class I alleles for each
HLA gene in our samples is highly comparable to the publicly
available, ethnically varied and sequencing-derived 1000
genomes/HapMap validation set generated by Ehrlich et al. [52]
(Supplementary Table 1).

From the results consolidated in Table 2, all the selected
genotyping tools perform generally well, at an allelic accuracy

of >90% for most of the class I and II gene categories, except for
xHLA on WES class I and Ila genes. xHLA demonstrated unchar-
acteristically low accuracy for our WES data for both classes I
and II, when compared to both reported performance [38] and
the other tools. HISAT2 and HLA-HD performed comparably for
the HLAIgenes A, B and C for both WES and WGS data, at >98.8%
accuracy. Overall, for class II genes, HLA-HD is consistently the
most accurate HLA typing tool for both WES and WGS data, at
>97.6% accuracy for DRB3, DRB4 and DRBS5, and >98.6% accuracy
for the DPA1/B1, DQA1/B1 and DRBI genes. Moreover, it also
provides the widest range of HLA II genes, with the ability to
genotype all the classical class II genes (including HLA-DRA, -
DRB3, -DRB4 and -DRB5), whereas other tools are restricted to a
subset of classical class II alleles. However, HLA-HD has lower
accuracy for DQA1 when working off WES data, compared to
HISAT? (Table 3).

Although we observed similar or increased accuracy when
comparing results from WGS to WES data from the same tool
(Table 2), WGS and WES miscalls were not always the same.
This is evident when assessing accuracy at the gene level. For
example, the increase in overall accuracy of HISAT2 when using
WGS data for identifying class Il alleles was mainly due to a lower
HLA-DRB1 accuracy when using WES data.

We next focused on the top performant methods, HLA-HD
and HISAT2. Notably, the number of miscalls in HLA I genes
was too low to characterize patterns or biases (Table 2; only a
maximum of four miscalls). For class II genes, HISAT2 showed
the highest number of HLA-DRB1 miscalls when using WES data
(Table 3). This is largely due to a higher number of missing calls
generated in HLA-DRB1 by HISAT2 in WES than WGS data. For
WES data, 11/13 samples have no-calls in both HLA-DRB1 alleles,
and for WGS, 2/6 samples. No-calls are quite rare in the results
of the other tools (except xHLA in WES data). Coupled with
the fact that similar observations occur in both WGS and WES
(albeit to different degrees), the no-calls might indicate a larger
issue with HISAT?2 in calling HLA-DRBI alleles. We found that
there is an enriched number of no-calls originating from car-
riers of DRB1x15:01 compared to samples with non-DRB1x15:01
alleles in both WES (Fisher’s test P=0.008) and WGS (P=0.04).
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Figure 1. KIR gene carrier frequencies and accuracy of kpi typing. (A) KIR gene presence for AVANT patients (N =824) was inferred from kpi haplotype predictions, and
compared to published frequencies for an English reference cohort (N =584). (B) For 72 AVANT patients typed with kpi, KIR typing with a QPCR-based method (LinkSeq)

was performed to assess typing accuracy.

By contrast, HLA-HD miscalled mostly in the class IIb genes,
where it failed to discriminate the highly similar alleles of the
paralogous genes HLA-DRB3, -DRB4 and -DRB5. There was no
obvious bias in miscalls of homozygous genes in the HLA-HD
and HISAT? results (Supplementary Table 2). We note that most
of HLA-HD miscalls still called an allele in the same G group
as the anticipated allele. In particular, almost all the miscalls
in DQA1 (5/6 of DQA1 miscalls and 5/8 of total miscalls) were
made when they were called as DQA1x03:01 and the anticipated
calls were DQA1x03:02 and DQA1x03:03; all three alleles are in
the same G group. For HISAT2, many of the miscalls in class II
genes were due to missing calls, i.e. calls that the tool was not
able to assign an allele at all.

Additionally, we used a metric, we called ‘full-sample con-
cordance’, where we computed the proportion of samples that
were in full concordance with our reference dataset, for the three
HLA gene categories and also for each HLA gene. We observe that
most of the full-sample concordance exceeded 80% in both WES
and WGS, which is expected given the high allelic concordance.
This observation also implies that there is little sample bias
in general, i.e. errors do not originate from the NGS data of
specific samples. An exception is the WES results of HISAT2 in
inferring HLA alleles that are in class IIa at 75%. This is primarily
due to the enriched number of no-calls in HLA-DRB1 genes by
HISAT2 in WES data, as described above. Since DRB1x15:01 is
common in European samples, the high number of no-calls
resulted in a decreased full-sample concordance despite high
allelic concordance.

High accuracy for identifying KIR gene
absence/presence

We used kpi to infer KIR gene presence for 824 patients with
available WGS data from the AVANT trial (NCT00112918) [51].
We found that the gene carrier frequencies were very similar to
those of published KIR gene carrier frequencies from an English
cohort of Caucasoid ethnicity [53]. (Figure 1A). The software
was unable to predict possible haplotype pairs for 3% (n=25)
of cases.

We selected 72 of these 824 patients to perform qPCR-based
KIR typing, based on DNA sample availability and the diversity
of kpi-predicted KIR haplotypes. These patients are different
from those selected for the HLA gold standard data because of
limited availability of DNA. For this selection, we also included
8 of the 25 patients that had yielded uninterpretable haplotype
combinations using kpi.

Almost 99.2% of kpi gene presence/absence calls were correct
when compared to our qPCR-based reference (range of 95.8-
100% for the 16 tested genes, Figure 1B, Supplementary Table 3).
When excluding the four framework genes KIR3DL3, KIR3DP1,
KIR2DL4 and KIR3DL2, which were invariable in our dataset and
are present in most common haplotypes, the accuracy for the
12 remaining genes was 99.0%. Three patients were typed with
one error each (KIR2DS3), and one patient with six errors. The
eight gPCR-typed individuals with uninterpretable kpi haplotype
results had correct kpi gene calls, which could not be clearly
assigned to a reference haplotype combination as provided by
the software (Supplementary Table 4).


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa223#supplementary-data
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Discussion

The broad availability of NGS data, generated in a multitude of
clinical scenarios, allows for the inference of disease-relevant
immunogenetic variation without additional dedicated typing
efforts. Hence, in order to evaluate the usefulness in a clinical
setting, we were interested in a systematic comparison of the
newest generation of computational HLA typing solutions, run
alongside the more well-established HLA typing tool Polysolver,
that is limited in only typing HLA class I genes. Our analyses
suggest that for both WES and WGS data, most of the tools out-
perform Polysolver in HLA inference, in both class I genotyping
accuracy and the ability to perform inference on HLA II genes. For
KIR typing using kpi, we are not aware of a published indepen-
dent validation of its performance. Our evaluation demonstrates
that kpi performs well at determining the absence or presence
of a KIR gene, but it is not able to ascertain KIR allele or gene
copy number.

Our analyses also show the breadth of class II genes that
current state-of-the-art tools can infer. In particular, only HLA-
HD was able to genotype the classical HLA II genes, HLA-DRB3, -
DRB4 and -DRB5, and we were able to further examine the results
with our gold standard dataset. Interestingly, we found that
many of the HLA-DRB3, -DRB4 and -DRB5 miscalls can be salvaged
using knowledge of the strong (and clear) LD between the HLA-
DRB1 gene and its DRB paralogs [54]. It appears that incorporating
this piece of biological information could be useful in developing
tools that would like to genotype all the DRB genes, especially
when there is high accuracy in genotyping the HLA-DRB1 gene.

Additionally, with WGS and WES data for the same subjects,
we observed that HLA inference from WGS data has yielded
marginally higher accuracy compared to WES in many HLA
genes (Tables 2 and 3). This possibly indicates that the addition
of noncoding sequence information, or a more uniform read
coverage in the HLA region, might be more relevant in these
genes, especially in resolving alleles that are in the same G group,
e.g. HLA-DQA1x03:01, -DQA1x03:02 and -DQA1x03:03. It might
also point to the use of bait sets in WES, which can bias the
calling of some alleles; WGS does not require such baits.

Of note, the dedicated HLA typing approach (LabCorp) identi-
fied one novel HLA-C allele in our cohort of 56 individuals at two-
digit resolution. Even though all the tools gave an estimation
(i.e. it was not a missing call) and were correct at the two-digit
resolution, none of the tested tools were able to identify the allele
as novel. This is because the inferences are all based on aligning
sequencing reads to a database of known HLA alleles. This
might not be highly important for large-scale genetic association
approaches, but might be relevant in a clinical setting focused
on individual patients, especially for ethnicities that have thus
far been underrepresented with regard to genome sequencing,
let alone HLA typing [55, 56].

The choice and accuracy of a given HLA method might
depend on read length and sequencing coverage, which are
factors that are not included in the current study. A recent
comparison of HLA-HD and xHLA for use with target capture
methods or amplification sequencing suggested that HLA-HD
might decrease in sensitivity at read lengths below 150 base
pairs (paired-end) [57].

We noticed that documentation for most of the HLA typing
tools tested is mainly centered on the final inference, but not
the auxiliary output files. The latter set of files typically contains
the scores for all the candidates used for inference. Although
accuracy is important, tool documentation in a clinical setting
is also imperative to better understand the tool and its outputs,

so that best practices can be developed in the clinic for different
contexts.

As for the KIR typing efforts, kpi was shown to predict KIR
gene presence/absence at >99% accuracy overall, and at >95%
for each gene. Six out of nine errors were found in a single indi-
vidual. This was likely due to a sample swap, and the remaining
three miscalls were all for KIR2DS3 in different patients. In this
case, all other genes were inferred at 100% accuracy. However,
since kpi detects gene presence/absence and does not perform
an estimation of copy number, it assigns one or more possible
haplotype combinations in many cases, resulting in considerable
ambiguity. Thus, we recommend to analyze kpi results at the
level of individual KIR genes, if possible. It is likely that the
25 uninterpretable haplotype pairs are due to carriers of rare
haplotypes not present in the reference, which would prevent
an assignment of possible reference haplotype combinations.

Notably, kpi requires WGS data and does not consider allelic
variation within KIR genes. This is a significant limitation, since
allotypes for a given KIR gene can be functionally different [58],
and also have differential binding capacities to their predicted
HLA ligands [49, 59, 60]. Allele-level typing would be desirable.
The only software we are aware of that provides this level of
granularity (PING) was not designed to work with NGS data in
a high-throughput setting [61].

In conclusion, our survey for both high-resolution four-digit
clinically relevant HLA typing and inference of KIR gene pres-
ence from NGS data (of conventional read length and coverage)
indicated that recently published software tools can yield very
high accuracy (>97% for HLA alleles and >95% for KIR genes,
respectively), that may be suitable not only for research use,
but also for the clinic. For comparison, the 2019 Standards for
Accredited Laboratories issued by the ASHI requires that at least
80% of the samples are in full concordance with another CLIA-
certified ASHI-accredited laboratory to be deemed satisfactory
in clinical testing [62]. Most of the tools were able to achieve
this, especially when using WGS data (Tables 2 and 3). It is note-
worthy that WGS and WES continue to become less expensive,
thereby presenting an alternative even in scenarios that focus
only on HLA or KIR typing. However, a foreseeable hurdle is
the process of obtaining regulatory approval for computational
tools for HLA and KIR typing in the clinic, either as a stand-
alone device, or as part of a pipeline. Such a process could be
tricky as it can be highly dependent on the context of how the
tool is being applied in the clinic. There are pros and cons for
each tool. Other considerations in the choice of method that
we did not explore in this study and might merit investigation
in the future, include the characteristics of the NGS datasets
at hand, such as the read length and read coverage, which
can affect accuracy and thus cause deviations from what is
shown in the present report. Also, although Illumina short-read
sequencing is a standard in clinical sequencing, novel long-read
technologies (as offered by e.g. Pacific Biosciences or Oxford
Nanopore) have great potential in resolving complex genetic
loci. A higher error rate [63] is accompanied with challenges
for HLA or KIR typing efforts and will require dedicated com-
putational approaches likely resulting in a new generation of
software tools. But there are also clear advantages in long-read
approaches, for example the ability to phase HLA haplotypes, as
recently demonstrated in the context of a targeted sequencing
approach [64].

Finally, we would like to further emphasize that computa-
tional tools can generate HLA and KIR information in a high-
throughput manner on large cohorts of patients with clinical
sequencing. Furthermore, the time and logistical challenges and



risks associated with acquisition, preparation and shipping of
valuable clinical specimens to perform a separate genotyping
would be greatly reduced. In a clinical setting, the HLA and KIR
results from these tools can then be applied directly to detect
immunogenetic biomarkers that might be relevant for treatment
decisions, or to predict the likelihood of adverse events for a
given treatment of choice [65]. HLA typing is also a require-
ment in the context of individualized cancer treatment strate-
gies, including immunization efforts and neoadjuvant-directed
T-cell therapies [66, 67]. Neoepitope prediction requires highly
accurate HLA types in order to maximize the likelihood of an
immunogenic antitumor response [68]. KIR genes are emerging
biomarkers in several disease areas, including cancer immunol-
ogy [69], and should ideally be investigated in the context of their
interactions with their HLA ligands. Having both HLA and KIR
information will also allow stratification of patients according to
their individual, and biologically relevant HLA-KIR interactions
(demonstrated in Supplementary Figure 1) [22]. For example, it
was shown that the presence of both KIR2DL3 and HLA-C1 lig-
ands is associated with increased Hepatitis C virus clearance [70,
71]. The ability to investigate immunogenetic variation without
having to engage in dedicated typing efforts might stimulate
hypothesis generation and facilitate similar discoveries in the
future. Finally, as more computational tools for HLA and KIR
typing are likely being developed in the future, they should be
continuously evaluated so that they can fulfill a greater role in
assessing clinical genomes.

Key Points

® In silico typing of HLA and KIR holds the potential
to enable large-scale analyses in research settings,
as well as facilitate and accelerate clinical decision
making.

® Recently published software tools for HLA typing from
WGS and WES data are highly accurate for both class
I and class II genes.

® A recently published tool for KIR haplotype inference
accurately predicts KIR gene presence/absence, but
does not consider allelic variation.

® Availability of both HLA and KIR types allows the cod-
ing of experimentally verified interactions and testing
of biological hypotheses related to NK cell activity.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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