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Copper (Cu) is an essential element of organisms, which can affect the survival

of cells. However, the role of copper metabolism and cuproptosis on hepatic

carcinoma is still unclear. In this study, the TCGA database was used as the test

set, and the ICGC database and self-built database were used as the validation

set. We screened out a class of copper metabolism and cuproptosis-related

genes (CMCRGs) that could influence hepatic carcinoma prognosis by survival

analysis and differential comparison. Based on CMCRGs, patients were divided

into two subtypes by cluster analysis. The C2 subtype was defined as the high

copper related subtype, while the C1 subtype was defied as the low copper

related subtype. At the clinical level, compared with the C1 subtype, the C2

subtype had higher grade pathological features, risk scores, and worse survival.

In addition, the immune response and metabolic status also differed between

C1 and C2. Specifically, C2 subtype had a higher proportion of immune cell

composition and highly expressed immune checkpoint genes. C2 subtype had

a higher TIDE score with a higher proportion of tumor immune dysfunction and

exclusion. At the molecular level, the C2 subtype had a higher frequency of

driver gene mutations (TP53 and OBSCN). Mechanistically, the single

nucleotide polymorphisms of C2 subtype had a very strong transcriptional

strand bias for C>A mutations. Copy number variations in the C2 subtype were

characterized by LOXL3 CNV gain, which also showed high association with

PDCD1/CTLA4. Finally, drug sensitivity responsiveness was assessed in both

subtypes. C2 subtype had lower IC50 values for targeted and

chemotherapeutic agents (sorafenib, imatinib and methotrexate, etc.). Thus,
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CMCRGs related subtypes showed poor response to immunotherapy and

better responsiveness to targeted agents, and the results might provide a

reference for precision treatment of hepatic carcinoma.
KEYWORDS

hepatic carcinoma, cuproptosis, copper metabolism, tumor immune microenvironment,
prognosis, therapy
Introduction

Liver cancer is one of the most common malignant tumors

and the fourth leading cause of cancer-related deaths worldwide,

threatening human health and life seriously (1, 2).

Hepatocellular carcinoma (HCC) is a common type of liver

cancer, accounting for almost 90% of primary liver cancers (3,

4). Some risk factors have been reported to be involved in HCC

development, thereinto, excessive alcohol intake and virus

infection, including hepatitis B or C, and Nonalcoholic fatty

liver disease (NAFLD) are the leading risk factors (5–8). The new

therapeutic tools and strategies for HCC, such as surgical

treatment, radiotherapy, transplantation, and chemotherapy,

have been developed in recent decades (9). However, multiple

factors, such as tumor heterogeneity, high recurrence rate and

metastasis, contribute to the low survival rate of HCC (10).

Therefore, it is necessary to investigate in detail at the molecular

level to improve the treatment efficacy for HCC.

Copper is an essential nutrient element for life involved in

various biological processes, including cell proliferation, growth

and metabolism. Cells regulate copper homeostasis through

absorption, transport, uptake and storage to achieve an active

copper balance. Alterations of copper levels may also lead to

cytotoxicity and affect the development and progression of

cancer (11, 12). Previous studies presented that the copper

content in cancer patients is higher than that in healthy

counterparts (13–15). Interstingly, latest study showed copper

overload also cause a new form of cell death termed cuproptosis,

which is different from apoptosis, pyroptosis, necroptosis

and ferroptosis. Cuproptosis happens on that copper

directly binds to lipoylated proteins in the tricarboxylic acid

(TCA) cycle, which causes the acuteproteotoxic stress, the

dysfunction of mitochodrial metabolism and, ultimately,

cell death (11, 16). Thus, The role of copper metabolism

and cuproptosis in tumorigenesis and progression deserves

further attention.

It is commonly accepted that tumor microenvironment

(TME) acts as a critical role in tumor development and

progression (17). TME contains various cell types, such as

immune cells, fibroblasts, endothelial cells, and a variety of
02
soluble substances, including inflammatory factors, cytokines,

chemokines (18). Then, TME affects the malignant cells through

soluble substances and extracellular matrix elements, which

promote tumor progression and predict prognosis. Emerging

evidences presented that overload of copper, the intermediates of

copper metabolism and the production of cuproptosis led to

immune dysfunction through reactive oxygen species (ROS). For

example, ROS could contribute to the damage-associated

molecular patterns (DAMP) release, which significantly

regulates immune response (19, 20). However, the relationship

between copper metabolism and cuproptosis-related genes

(CMCRGs) and prognosis of HCC patients is not clear. Thus,

the molecular characteristics of CMCRGs may provide

important insights to understand the characteristics of TME

and the underlying mechanism of HCC, then predict the

immunotheray and prognosis.

In this study, we analyzed expression of CMCRGs in HCC

from TCGA, and then univariate Cox was used to screen out 49

CMCRGs, which have significant effect on the survial of HCC

patients. Furthermore, we established molecular subtype of HCC

based on these genes related to copper metabolism and

cuproptosis, and verified the stability of the subtype using self-

constructed database and International Cancer Genome

Consortium (ICGC) database. Next, we analyze the TME,

somatic mutation landscape, tumor mutation burden (TMB),

immune checkpoint genes (ICGs), and treatment sensitivity

between two different subtypes. In summary, we demonstrated

the molecular subtype of HCC based on CMCRGs, which

predicts prognosis for HCC patients, and provides new

insights for treatment.
Materials and methods

Data collection and processing

The process used for analysis is summarized in the flow

chart (Figure 1). The transcriptional profiles, clinical follow-up

information (including age, sex, TNM stage, tumor grade,

survival time, and survival status), single nucleotide variation
frontiersin.org
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(SNV) and copy number variation (CNV) data of HCC patients

were downloaded from the liver hepatocellular carcinoma

(LIHC) cohort in The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov). The data from self-constructed

database and International Cancer Genome Consortium (ICGC)

database (https://dcc.icgc.org/) were used as validation sets

(Table S1). The self-constructed database was 57 pairs of

cancer and adjacent tissues diagnosed as hepatocellular

carcinoma by biopsy were sequenced for gene expression

profile by Illumina platform. We finally acquired a total of 50

normal and 374 HCC samples from the above publicly available

open data sources. A total of 137 CMCRGs were searched from

Molecular Signature Database v7.5.1 (MSigDB, https://www.

gsea-msigdb.org/gsea/msigdb/) and previous literatures, which

are summarized (Table S2).
Differentially expressed CMCRGs

To identify the CMCRGs involved in the progression of

HCC, we performed differentially expression analysis comparing

the 50 normal samples and 374 tumor samples in TCGA-LIHC

cohort. Differentially expressed genes (DEGs) were screened out

with the threshed set to the |log2 fold change (FC)| > 0 and P

value < 0.05 using the R package “edgR”. To further explore the

biological function of these significant DEGs, GO and KEGG
Frontiers in Immunology 03
enrichment analyses were conducted using the “clusterprofiler”

package in R.
Identification of overall survival
associated CMCRGs

To understand the potential prognostic significance of

CMCRGs in HCC, we investigated the overall survival (OS)

associated CMCRGs using univariate Cox proportional hazard

regression analysis in TCGA-LIHC (n = 370). P values < 0.05

were considered statistically significant, and all P values

correspond to two-sided significance tests.
Consensus clustering analysis
of CMCRGs

Consensus clustering analysis is a robust unsupervised

classification technique achieved through multiple resampling

and clustering, which was performed to classify HCC patients

into distinct molecular subtypes according to CMCRGs

expression using the ‘ConsensusClusterPlus’ package. K-means

algorithm and cumulative distribution function (CDF) curve

were used to determine the best number of subtypes, and 50

iterations with maxK=9 were carried out for stable subtypes.
FIGURE 1

Flow chart of this study.
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Relationship between molecular
subtypes with the clinical features and
prognosis of HCC

To dissect the potential advantages of the two subtypes

identified by consensus clustering applied in actually clinical

issues, we compared the correlation between molecular subtypes,

various degrees of diverse clinicopathologic characteristics (e.g.,

such as age, sex), andmain prognostic clinical parameters including

tumor stage (e.g., T stage, M stage andN stage) andmutation status

using Kruskal test with boxplots. Moreover, we assessed the

differences in HCC among different subtypes using Kaplan-Meier

curves produced by the R packages “survival” and “survminer”.
Gene set enrichment analysis and gene
set variation analysis

As described above, the HCC patients were classified into C1

and C2 subtypes based on CMCRGs. To assess the dominating

hallmark genes and signaling pathway relevant with these subtypes,

we performed enrichment analysis by uploading the sample groups

and gene expression data to Gene Set Enrichment Analysis (GSEA)

software (https://www.gsea-msigdb.org/gsea/index.jsp). To verify

the different pathway for investigating the divergence in biological

function among the two subtypes, we further used the “GSVA” R

package to execute the enrichment analysis with the gene sets of

“h.all.v7.4.symbols.gmt” downloaded from the MSigDB database.

The functional annotation of the CMCRGs were predicted using R

package “cluterProfiler”. P values < 0.05 were regarded as

statistically significant difference in gene ontology.
Evaluation of tumor microenvironment
cells in patients with HCC

Algorithms of immune cell infiltration comprised of

CIBERSORT was utilized to compare the immune landscape

among different HCC subgroups. Besides, the abundance of

immune cell infiltration in different HCC groups was estimated

using the single-sample Gene Set Enrichment Analysis (ssGSEA)

algorithm in the HCC-LIHC cohort. ESTIMATE software in R

package was then used to assess the infiltration extent of immune,

and stromal score of each HCC sample (Table S3). A series of

immune checkpoints and immunomodulator molecules were

enrolled for analyzing the immune mechanism (Tables S4 and S5).
Mutation profile and copy number
variation frequency among subgroups

To further validate and characterize the mutation profile, we

performed the mutational signature analysis among different
Frontiers in Immunology 04
subgroups with R software “maftools” package, which is an

efficient and comprehensive analysis of somatic variants in

cancer and provide visualization process of mutation analysis

results. Comprehensive analysis of somatic copy number

alteration (SCNA) was detected by the GISTIC 2.0, which has

been applied to multiple cancer types.
Drug-sensitivity analysis and
tumor immune dysfunction
and exclusion analysis

We predicted the potential sensitivity of chemotherapy or

targeted drugs with half-maximal inhibitory concentration (IC50)

via Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org) by using the pRRophetic (version 0.5) algorithm

in R package. The IC50 of each HCC sample was estimated by ridge

regression, and the prediction accuracy was evaluated by 10-fold

cross-validation according to the GDSC training model.

Furthermore, the potential response of immune therapy among

different subgroups was estimated with Tumor Immune

Dysfunction and Exclusion (TIDE) tool (http://tide.dfci.harvard.

edu/), which is a widely used algorithm to predict immune evasion

mechanism and immunotherapeutic responsiveness.
Statistical analyses

All statistical analyses and visualizations were performed

with R 3.6.2 and GraphPad Prism v. 8.01 (GraphPad Software,

La Jolla, CA, USA). Student’s t test was used to analyze data that

satisfied normal distribution. A Mann-Whitney U test was used

to evaluate non−parametric data. Kaplan-Meier (K-M) analysis

and Cox regression were conducted by the “survival” and the

“survminer” packages. The C indices was calculated for each Cox

model and pooled using the random-effects mixed model with

maximum likelihood. A time-dependent ROC curve was

generated by the “timeROC” package to estimate predictive

robustness. The “rms” package was employed to fit regression

model and depict nomogram. P values < 0.05 indicated

statistical significance.
Results

Identification of CMCRGs subtypes in
hepatic carcinoma

The analytical flow of this experiment was shown in

Figure 1. Through the intersection of the differential

expression profiles and the CMCRGs, combined with the

survival model simultaneously, a total of 49 genes were

screened, which might affect the occurrence and development
frontiersin.org
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of hepatic carcinoma (Figure 2A). We applied the screened

CMCRGs to a cluster analysis of 374 hepatic carcinoma

samples, which were divided into two types—C1 and C2

(Figures 2B, C). As shown in the heatmap, CMCRGs were

mainly highly expressed on C2 subtype (Figure 2D). Based on

the degree of expression and survival analysis, the C2 subtype

was defined as a high correlation group for copper metabolism

and had a lower survival rate (Figure 2E). We utilized the ICGC

database and a self-constructed database for validation. Similar

to TCGA, two subtypes based on clustering were significantly

discriminated in CMCRGs, which could represent copper

metabolism related tumor characteristics for further

exploration (Figure S1A).
Frontiers in Immunology 05
Clinical characteristics in patients
with hepatic carcinoma based
on cluster analysis

The distinction of clinical features in the two subtypes was

further analyzed. The significant difference between the two subtypes

was mainly focused on age, stage and grade (Figure 3A-C).

There was no significant difference in gender between the two

subtypes (Figure 3D). Compared with the C1 subtype, the C2

subtype has higher-grade pathological features. Further, using

lasso model dimensionality reduction combined with Cox

models, we constructed risk scores based on CMCRGs

to characterize both subtypes (Figures 3E, F). C2 had a
B

C

D

E

A

FIGURE 2

CMCRG subtypes and clinicopathological of two distinct subtypes of samples divided by consistent clustering. (A) Forest plot of copper
metabolism and cuproptosis-related genes. (B, C) Cluster analysis and principal component analysis of two subtypes. (D) The expression profile
of copper metabolism and cuproptosis-related genes in the two subtypes. (E) Survival curve. T: size of the tumor; N: regional lymph node
involvement; M: metastasis; Stage: tumor progression stage; Grade: grade of tumor pathological heterogeneity.
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significantly higher risk score than the C1 subtype (Figure 3G).

The risk scores also had better performance in evaluating

different clinical stages. The higher the risk score, the worse

the patient’s disease outcome (Figures 3H-J). These results

suggested that CMCRGs might be associated to the outcome

of hepatic carcinoma and therefore have implications for

further exploration.
Gene differences and pathway
enrichment between C1 subtypes
and C2 subtypes

At the molecular level, we analyzed the difference between

the two subtypes and obtained the differential expression profile.

Next, an enrichment analysis was performed on these differential

genes using four gene sets (metabolism, signal transduction, cell

process as well as immunity, etc.). The main differences between

subtypes were immune response processes (immune response

and immune effector process, etc.), metabolic states (metabolism

of xenobiotics by cytochrome P450, etc.), as well as cancer-

related signaling pathways (P53 and PI3K-Akt signaling

pathway, etc.) (Figure 4A). To avoid bias caused by the

enrichment analysis ignoring the biological properties of some

genes and by differential threshold delineation, GSEA and GSVA

analysis were also performed. GSEA analysis showed that there

were different immune response and metabolic states between

C2 and C1 (‘complement and coagulation cascades’ and

‘tyrosine metabolism’, etc.) (Figure 4B). At the pathway level,

the results of GSVA analysis also confirmed this conclusion
Frontiers in Immunology 06
(Xenobiotic metabolism, PI3K-Akt-mTOR signaling and

Interferon gamma response, etc.) (Figure 4C).

Similarly, we used the ICGC database and a self-constructed

database for validation. In both databases, significant differences

in immune response (immune response and immune system

process, etc.), metabolic status (Metabolism of xenobiotics by

cytochrome P450, etc.), and tumor related pathways (PI3K-Akt

signaling pathway, etc.) were shown between the two subtypes

(Figures 4A-C). These results suggested that at the molecular

level, copper metabolism and cuproptosis-related genes might be

closely related to the immune response and metabolic process

in HCC.
Immune microenvironment analysis of
two subtypes

Three different algorithms were used to explore the immune

microenvironment between the two subtypes. The TCGA

database served as the test set, while the ICGC database and

the self-constructed database served as the validation set.

CIBERSORT and ssGSEA analyses confirmed that the two

subtypes have distinct immune cell composition proportions at

the overall level (Figures 5A-F). Furthermore, the overall

immune cell composition was scored by the Estimate

algorithm and showed that the C2 subtype had a higher

immune composition score (Figures 5H-J).

Furthermore, we analyzed the expression profile of key

molecules involved in intercellular communication pathways,

including cytokines, chemokines and receptors, interferons and
B C D

E F

G H

I J

A

FIGURE 3

Clinical characteristics in patients with hepatic carcinoma based on cluster analysis. (A–D) Analysis of the constituent ratio of clinical
characteristics in the two subtypes. (E, F) Lasso regression dimensionality reduction on subtype classification results. (H–J) Risk scores and
pathological characteristics of subtype classification. *P<0.05, **P<0.01, ***P<0.001. NS: Not Significant. G: Grade; T: size of the tumor; Stage:
tumor progression stage; Grade: grade of tumor pathological heterogeneity.
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receptors, interleukins and receptors. Compared with the C1

subtypes, cell communication molecules were more highly

expressed in C2 subtype (Figure 5G). Correlation analysis of

communication molecules and immune cells also confirmed that

high expression of communication molecules in C2 subtype was

closely related to immune cells (Figure S2A). These results

suggested that copper metabolism status in hepatic carcinoma

might have an impact on immunotherapy by affecting the

composition of immune cells.
Frontiers in Immunology 07
Analysis of immune checkpoints and
tumor immune dysfunction & exclusion
in both subtypes

Hepatic carcinoma was a typical inflammation-associated

cancer, and immunotherapy was an alternative treatment

strategy. The landscape of immune checkpoint expression

between the two subtypes required further exploration. Immune

checkpoint gene expression was significantly higher in C2 subtype
B

C

A

FIGURE 4

Gene differences and pathway enrichment between C1 subtypes and C2 subtypes. (A) Enrichment analysis of immune, metabolic, signaling
pathways and cellular processes based on TCGA, ICGC and Self-constructed database. (B, C) Enrichment analysis of GSEA and GSVA based on
TCGA, ICGC and Self-constructed database.
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compared to C1 subtype (Figure 6A). Next, the co-expression

correlation matrix of CMCRGs and immune checkpoint genes

was used to further clarify the role of CMCRGs on immune

checkpoints (Figure 6B). Combined with genes previously

involved in constructing a risk score, 4 genes (LOXL3, LOXL2,

SORD, as well as LOX, respectively) were filtered out, of which

LOXL3 had the highest correlation (Figures 6C, D). In the analysis

of validation set (ICGC and Self), MT-CO1, ATP13A2 and IDO1

were also significantly related to immune checkpoints. LOXL3 had

the best concordance among the three datasets (Figures 6C, D).
Frontiers in Immunology 08
In terms of immunotherapy, TIDE analysis (tumor immune

dysfunction and exclusion) was used to evaluate the

responsiveness of different subtypes to immunotherapy

(Figure 7A). The results showed that the TIDE score of C2

subtype was significantly higher than that of C1 subtype, and the

patients with C2 subtype had lower immune response to

immunotherapy (Figures 7A, B). These results suggested that

C2 subtype was more likely to be closely associated with tumor

immune dysfunction and exclusion, thus affecting the efficacy

of immunotherapy.
B C

D E F

G
H I

J

A

FIGURE 5

Immune microenvironment assessment of two subtypes. (A–C) ssGSEA enrichment analysis based on TCGA, ICGC and self-constructed
database. (D–F) CIBERSORT analysis based on TCGA, ICGC and self-constructed database. (G) The expression profile of key molecules involved
in intercellular communication pathways, including cytokines, chemokines and receptors, interferons and receptors, interleukins and receptors
based on TCGA, ICGC and Self-constructed database. (H–J) ESTIMATE analysis based on TCGA, ICGC and self-constructed database. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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Identification of subtype
mutation characteristics

In addition to immunotherapy, targeted therapy was another

therapeutic strategy. First, we analyzed the driver gene mutation

map and found that the mutation frequency of TP53 and OBSCN

in C2 subtype was significantly higher than that in C1 subtype

(Figures 8A, B, and Figure S3). In terms of CMCRGs, the results

were not statistically significant because single nucleotide

mutations occurred less frequently (Figure S1B). Meanwhile,

there was no significant difference in TMB between the two

subtypes (Figure 8C). Correlation analysis between the risk score
Frontiers in Immunology 09
and TMB revealed that the risk score of the C2 subtype, but not the

C1 subtype, was significantly associated with TMB (Figure 8D).

Next, the mutation characteristics of different subtypes were

further analyzed. The direction of analysis was mainly divided

into two aspects single nucleotide polymorphisms as well as copy

number variations. Based on single nucleotide polymorphism,

96 mutation profiles were constructed and divided into 11

signatures. The somatic signatures of the two subtypes were

significantly different (Figures 8E, F). Then, the somatic

signatures of the two subtypes were annotated using the

COSMIC database, and the unique features of the two

subtypes were screened out according to the correlation
B

C D

A

FIGURE 6

Immune checkpoints analysis in both subtypes. (A) Checkpoint analysis among subtypes based on TCGA, ICGC and self-constructed database.
(B) Correlation analysis between checkpoints and copper metabolism and cuproptosis-related genes based on TCGA, ICGC and self-
constructed database. (C) Significant correlation genes between PDCD1 and copper metabolism and cuproptosis-related genes based on TCGA,
ICGC and self-constructed database. (D) Significant correlation genes between CTLA4 and copper metabolism and cuproptosis-related genes
based on TCGA, ICGC and self-constructed database. *P<0.05, **P<0.01, ***P<0.001.
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greater than 0.7 (Figures 8G, H and Table 1). The C1 subtype

exhibited an extremely strong transcriptional strand bias for

T>C mutations at ApTpN context, with T>C mutations

occurring almost exclusively on the transcribed strand. The C2

subtype exhibited a very strong transcriptional strand bias for

C>Amutations indicating guanine damage that is being repaired

by transcription-coupled nucleotide excision repair.

In terms of copy number variations, LOXL3 showed a different

pattern of mutations in the two subtypes. LOXL3 showed an

acquired CNV mutation in the C2 subtype and a deletion CNV

mutation in the C1 subtype (Figures 8I, J). These results suggest

that CMCRGs subtypes might affect the mutation of some specific

genes, but would not affect the overall mutation load of tumors.
Drug sensitivity tests in
multiple databases

Now that the status of CMCRGs might affect the efficacy of

immunotherapy, there were also significant differences in the

composition of mutations in different subtypes. Furthermore, we

evaluated the drug sensitivity responsiveness of drugs to

different subtypes of HCC from a tumor drug sensitivity multi

omics database. The results indicated that although C2 subtype

had lower responsiveness to immunotherapy, it performed

better in terms of targeted therapy (Figures 9A-C). Specifically,

the C2 subtype showed lower IC50 values in camptothecin,
Frontiers in Immunology 10
cisplatin, doxorubicin, etoposide, gemcitabine, imatinib, JNK

inhibitor VIII, vinorelbine, sorafenib and methotrexate

susceptibility tests (Figures 9A-C). These results would be

instructive for subsequent precision treatment.
Discussion

Due to the strong heterogeneity of HCC, the treatment

options for HCC, such as immunotherapy, chemotherapy or

surgery are not effective long enough, so that the overall survival

rate of patients with HCC is relatively low. Although several

studies have shown that molecular subtypes based on immune-

related, hypoxia related or ferroptosis-related genes were

constructed to guide personalized therapy of HCC, there is still

significantly heterogeneity. Therefore, the accurate classification

for HCC to improve survival is urgent. Nowadays, several

researches have shown that the levels of copper in cancers was

significantly increased. In addition, copper also plays a vital role

in malignancy biological process of cancers including cell specific

death, treatment sensitivity, proliferation, and invasiveness.

Moreover, Yang et al. found that commd10, a copper

metabolism gene, mediated the radiosensitivity in HCC (21),

suggesting that copper also plays an important role in HCC.

Thus, genes related copper metabolism and cuproptosis should

be concerned and we speculate that the molecular subtypes based

on CMCRGs may guide diagnosis and improve survival of HCC.
B

A

FIGURE 7

Tumor immune dysfunction & exclusion in both subtypes. (A) Responder percentage in Tumor immune dysfunction and exclusion analysis
based on TCGA, ICGC and self-constructed database. (B) Tumor immune dysfunction and exclusion value between C1 and C2. *P<0.05,
***P<0.001. NS: Not Significant.
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In the study, we collected 137 CMCRGs from MSigDB and

previous studies. Subsequently, we calculated the RNA

expression level of the 137 CMCRGs between tumor and

adjacent normal tissues in TCGA cohort, and we found

that 115 CMCR DEGs, among which 49 genes were associated

with prognosis in HCC. Then, we divided HCC from TCGA into

two subtypes using 49 prognostic genes through consensus

clustering analysis. Notably, compared to C1 subtype, C2

subtype had a poor prognosis, indicating that CMCRGs

in HCC are heterogeneous and that the survival outcome

was significantly different between different CMCRGs

molecular subtypes.
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Additionally, the survival outcome was significantly different

between the two molecular subtypes, which clarified the role of

CMCRGs in HCC prognosis. Then, ORA (Over-Representation

Analysis), GSEA and GSVA were conducted to find the

pathways between C1 and C2. The genes that have been

differentially modulated are associated with pathways,

including p53 signaling pathway, PI3K-Akt signaling pathway,

HIF-1 signaling pathway, Hippo signaling pathway, TNF

signaling pathway, chemokine ligand 12 signaling pathway,

and cytokine production; moreover, retinol metabolism,

carbon metabolism, glycolysis, gluconeogenesis, and primary

bile acid biosynthesis related with cancer also changed in the
B

C D

E F

G H

I J

A

FIGURE 8

Identification of subtype mutation characteristics. (A, B) Immune mutation landscape of driving genes. (C, D) Correlation analysis of mutation
load and risk score of copper metabolism and cuproptosis-related genes among subtypes. (E, F) Frequency spectrum of somatic mutation
between subtypes. (G, H) The spectrum of somatic mutations between subtypes was analyzed jointly with COSOMIC database. (I, J) CNV
analysis of copper metabolism and cuproptosis-related genes among subtypes. NS: Not Significant.
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two clusters. Previous studies had showed that p53 signaling

pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway

are important pathways involved in tumor development and

metastasis (22, 23). Additionally, glycolysis, gluconeogenesis,

and bile acid biosynthesis also play an important role in the

tumor progression (24–26). Moreover, immune signaling

pathways, including TNF signaling pathway, chemokine ligand

12 signaling pathway, and cytokine production, act a critical role

in tumor (27, 28). These results were validated in the dependent

own data and ICGC-JP. Therefore, the pathways gave a hint of

the importance of immune between the two molecular subtypes.

However, the relationship is greatly complex between tumors

and immune cells. Previous studies have reported that M2

macrophage promote tumor invasion, progression and immune

escape through increasing the expression of MHC class I

molecules and secreting anti-inflammatory cytokines (29–31).

Moreover, Tregs also inhibit the immune response, which led to

immunosuppressive functions and accelerated the malignant

tumors progression (32, 33). Neutrophils secrete some factors,

such anti-inflammation cytokines, to affect TME, promoting

tumor occurrence and metastasis (34, 35). Additionally, DCs,

natural killer (NK), natural killer T (NKT) cells and CD8+ T

cells act as strong cytotoxic functions through secreting

pro-inflammatory cytokines, which promote tumor

immunosuppression (36–39). Thus, ssGSEA, CIBERSORT and

ESTIMATE analysis were used to analyze immune infiltration to

estimate the activities of TME cells in HCC. The results showed

that the abundance of activated B cell, M1 macrophage cell, and

activated CD8+ T cell, which were the main pro-inflammatory
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cells were high in C1. And C2 contain the immunosuppressive

cell, including M2 macrophages, Tregs, neutrophils and so on.

These results suggest that different clusters had critical differences

in the cellular component. Moreover, C1 with effective antitumor

immune cells had a better survival than that in C2, which was in

consistent with previous study (40). Though the infiltration of

immune cells regulates immune activity and improve the

prognosis, the therapeutic effect in various cancers was not as

expected. Therefore, it is important to focus on the immune

checkpoints (ICB), which also affect the prognosis. Then, the

differences of the expression in ICBs between C1 and C2 were

explored. The results showed that the expressions of inhibitory

immune checkpoint, such as PD-1, CTLA-4, LAG3, TIM3 and

TIGIT, in C2 were increased compared to those in C1, which

hinted that HCC patients in C1 might be better responsive to

immunotherapy. Various researches came to the same

conclusion. For example, Chuah et al. reported that anti-PD-1

drug significantly improves the response for HCC and offers

mechanistic insights into the immune trajectories in different

immune subsets, indicating that immunotherapy targeting

inhibitory immune checkpoints is promising in HCC (41).

Wan et al. showed that MTDH could improve the anti-PD-1

response and increase cytotoxic T-cell infiltration, indicating that

the effectiveness of MTDH for predicting immune checkpoint

inhibitor treatment in HCC (42). Meanwhile, TIDE analysis

showed a higher proportion of patients with immune tolerance

in the C2 subtype. Based on the results of these analyses, we

believed that patients in the C2 subtype might not have optimal

outcomes when receiving immunotherapy regimens.
TABLE 1 Correlation between denovo somatic signatures and cosmic database.

DeconstructSig (C1/C2) C1 & COSMIC C2 & COSMIC C1 & C2 Cor

S1 Signature.22
0.9

Signature.22
0.9

0.949925

S2 Signature.15
0.3

Signature.6
0.7

0.408974

S3 Signature.1
0.7

Signature.1/6
0.8

0.630723

S4 Signature.16
0.3

Signature.24
0.8

0.023968

S5 Signature.11
0.4

Signature.1
0.6

0.086543

S6 Signature.6
0.7

Signature.23
0.5

0.480364

S7 Signature.20
0.4

Signature.5
0.4

0.047464

S8 Signature.19
0.4

Signature.2
0.4

0.321194

S9 Signature.16
0.4

Signature.11
0.5

0.238639

S10 Signature.24
0.5

Signature.16
0.25

0.248606

S11 Signature.20
0.3

Signature.19
0.27

0.251936
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On the other hand, some studies also reported that the

responsiveness or tolerance to immunotherapy was significantly

related with tumor mutations (43, 44). Thus, we analyzed the

mutation profiles and found that the TMB between C1 and C2

was similar. However, the oncogenic driver genes, including

TP53 and OBSCN, were frequently changed. In this study, we

observed that the TP53 mutation in C2 was higher than that in

C1. It is well known that TP53 regulated tumor progression and

metastasis through several pathways including cell apoptosis,

proliferation and cancer stem cells. Moreover, the mutations of

TP53 indicate the poor prognosis in various cancers, including

HCC. Interestingly, OBSCN, a new oncogene, significantly
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mutated in C2. Various studies had shown that the mutation

of OBSCN is strongly associated with cancers (45–47). This is

consistent with the result that C2 had a poor prognosis.

It is well known that HCC is mainly treated by surgery,

immunotherapy and chemotherapy, and is usually resistant to

immunotherapy. However, chemotherapy drugs can turn the

cold tumor environment of patients to hot ones so that to

improve the effect of immunotherapy. Thus, it is of great

importance to understand the chemosensitivity of HCC

CMCRGs clusters. In our research, C2 were more sensitive to

camptothecin, cisplatin, doxorubicin, etoposide, gemcitabine,

imatinib, methotrexate, and sorafenib. Thus, the identification
B

C

A

FIGURE 9

Drug sensitivity tests in multiple databases. (A) Drug sensitivity analysis based on TCGA database. (B) Drug sensitivity analysis based on ICGC
database. (C) Drug sensitivity analysis based on Self-constructed database.
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of CMCRGs subtypes are conducive for chemotherapy

optimization and improve the curative effect in HCC.

However, there are several limitations in our study. Firstly,

data from public databases and our data, was small and the clinical

follow-up information was lack, which may cause a selection bias,

affecting the results. Therefore, a large HCC samples need to be

enrolled. Secondly, the results were obtained by bioinformatics

analyses. Thus, we should conduct experimental studies to

validate these results. Thirdly, some clinical variables, such as

chemoradiotherapy, neoadjuvant chemotherapy, were

unavailable, which influence the robustness of immunotherapy

efficacy. Moreover, large immunotherapy cohorts are needed for

predicting prognosis and immune response.
Conclusions

In conclusion, we characterized the two subtypes of HCC

based on copper metabolism and cuproptosis-related genes, and

found that different subtypes had distinct prognosis. Moreover,

the differences in signaling pathways and immune networks

between the two subtypes in HCC were explored, which

provided more insights between copper metabolism and

cuproptosis and immunity. Thus, our study suggested that the

subtypes based on copper metabolism and cuproptosis-related

genes might be helpful to proposed novel insights and guided

clinical treatment strategies for HCC.
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