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The germline genetic component of drug sensitivity
in cancer cell lines
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Patients with seemingly the same tumour can respond very differently to treatment. There
are strong, well-established effects of somatic mutations on drug efficacy, but there is at-
most anecdotal evidence of a germline component to drug response. Here, we report a
systematic survey of how inherited germline variants affect drug susceptibility in cancer cell
lines. We develop a joint analysis approach that leverages both germline and somatic var-
iants, before applying it to screening data from 993 cell lines and 265 drugs. Surprisingly, we
find that the germline contribution to variation in drug susceptibility can be as large or larger
than effects due to somatic mutations. Several of the associations identified have a direct
relationship to the drug target. Finally, using 17-AAG response as an example, we show how
germline effects in combination with transcriptomic data can be leveraged for improved
patient stratification and to identify new markers for drug sensitivity.
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central premise of personalised medicine in cancer is to use

molecular signatures of the tumour to predict drug

response, thereby informing treatment decisions. A tract-
able system for deriving the necessary predictive models are in vitro
screening experiments, which have allowed for assaying the efficacy
of large numbers of drugs in panels of molecularly well-
characterised cell lines. Initiatives such as the Genomics of Drug
Sensitivity in Cancer (GDSC)"2, the Cancer Cell Line Encyclo-
paedia (CCLE)?, the Cancer Target Discovery and Development
(CTD?)*° and the Haverty et al. study® have screened hundreds of
cell lines derived from a broad range of cancer types, assessing their
sensitivity to different compounds (predominantly targeted thera-
pies). By correlating molecular features across cell lines with var-
iation in the drug susceptibility phenotype, both genetic and non-
genetic biomarkers have been identified.

Although increasingly deep molecular profiling has helped to
improve the prediction of drug susceptibility’, genetic markers
remain central for personalised treatment. This is because cancer
subtypes are well characterised by the mutational profile of the
tumour, but also because genetic variant data are most accessible in
clinical practice. Naturally, previous analyses from in vitro screens
have primarily focused on somatic changes, which can reflect causes
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or consequences of cancer®. In contrast, the relevance of inherited
germline variants on drug susceptibility remains largely unknown.
While individual germline variants have been associated with drug
toxicity?, there are at-most anecdotal findings in a limited number
of cancer contexts that consider both germline variants and somatic
mutations to explain variation in drug sensitivity'?. We therefore
reasoned that the systematic integration of both types of genetic
variations in a pan-cancer design could deliver new treatment-
relevant insights, by (i) enabling improved prediction of drug sus-
ceptibility (Fig. 1a) and (ii) delivering additional germline markers
for drug efficacy (Fig. 1b). The markers and mechanisms uncovered
by such genetic data are clinically accessible, since the germline
genetic background is stable across cells in the patient, and it can be
jointly assayed with somatic mutation profiles within the same
sequencing experiment.

Results

Identification of germline variants in cancer cell lines. We
considered data from the latest revision of the GDSC screen,
consisting of genetic profiles for 993 cell lines (from 30 cancer
types) and drug susceptibility profiles for 265 drug compounds?.
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Fig. 1 lllustration of the joint analysis approach considering germline variants and somatic mutations. a Prediction of drug susceptibility, either exclusively
considering somatic mutations (baseline, black line) or considering the combination of germline variants and somatic mutations (green). Shown is out-of-
sample prediction performance measured by the Pearson correlation coefficient between predicted and observed drug susceptibility profiles (quantified as
1-AUC; Methods). Error bars show standard deviations across analysis repetitions of the difference of Pearson correlation coefficients from the compared
models (Methods, Supplementary Note 1). Selected drugs with large improvements of prediction performance when accounting for germline variants are
highlighted. b lllustration of a joint genome-wide association analysis, considering associations between somatic mutations (green) or germline variants
(black) and drug susceptibility for 177-AAG. Germline variants with genome-wide significant associations are highlighted in red (FWER < 0.05, dashed

horizontal line)
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The GDSC project previously generated mutation profiles for
735 somatic drivers that are also observed in primary tumours
(restricting to variants observed in the cancer genome atlas)?,
including 425 recurrently copy number altered segments, 300
single-variant mutations and 10 gene fusions2. We reanalysed the
raw genotype chip data (SNP6.0 microarray, 647,859 probes) to
call germline variants, thereby extending the set of 735 somatic
cancer variants. To mitigate the possibility of contamination of
germline variant calls by somatic mutations, we employed sta-
tistical imputation and we assessed patterns of local linkage dis-
equilibrium, which are expected for common inherited variants,
thereby identifying likely germline variants (Methods).

Predicting drug response from germline and somatic variants.
First, we considered either somatic mutations or the combination
of somatic and germline variants as input to train multivariate
linear regression models of drug susceptibility (Fig. 1a). For 12
drugs, the model that accounts for germline variations yielded
significantly improved prediction accuracy compared to a model
based on somatic variants only (97.72% confidence interval from
ten repeat experiments using fivefold cross validation of elastic
net regularised linear regression; response profiles normalised by
cancer type, Methods). For most of these, we observed that
multiple germline variants were selected as features by the model,
suggesting that the germline contribution to the response phe-
notype has a polygenic genetic architecture (median 44 selected
variants across all drugs; Supplementary Fig. 1 and Supplemen-
tary Fig. 2). For the most striking example (17-AAG), the joint
model explained 5.1% of the phenotype variance (r =0.28, esti-
mated using out-of-sample prediction), whereas a model based on
somatic mutations only yielded predictions at chance level
(Fig. 1a and Supplementary Data 1). Overall, the germline pre-
diction accuracy for drugs with the largest germline component
was similar to predictions based on somatic markers (Supple-
mentary Fig. 3), including drugs with clinically approved and
preclinical somatic biomarkers (e.g., r=0.2 for PLX4720 asso-
ciation with BRAF, selumetinib association with KRAS and BRAF,
and PD-0325901 association with NRAS and KRAS).

To compare the predictive value of germline variants to data
from other molecular layers, we also considered combinations of
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somatic mutations with gene expression profiles from the same
cell lines, a commonly considered set of molecular layers!=37. In
line with previous findings®’, we observed that gene expression
levels were a strong predictor for drug response, globally
explaining larger proportions of variance than germline features.
However, germline variants were as relevant or more predictive
than gene expression levels for 55 drugs (~21%, Supplementary
Fig. 4a, b and Supplementary Data 1). Additionally, DNA-based
biomarkers are more accessible in clinical practice than gene
expression!l. We also considered a conditional analysis to
account for germline signals when assessing association between
gene expression levels and drug susceptibility, finding reduced
associations for seven drugs (Supplementary Fig. 4c). This
suggests that some of the previously reported associations
between gene expression levels and drug response!=>7 can in
part be explainable by underlying germline effects, which were
not taken into account in these analyses.

Quantitative trait loci for drug susceptibility. Next, we used
quantitative trait locus (QTL) mapping to test for genetic asso-
ciations with response to each of the 265 drugs, considering both
germline variants or somatic mutations. This identified 78 drugs
with at least one significant drug response QTL (family-wise error
rate (FWER) <5%), nine of which were associations between
germline variants and drug response, including eight targeted
therapies and one DNA crosslinker (Supplementary Fig. 5). As an
additional quality-control step, we compared the allele frequency
of germline variants that are drug response QTLs to allele fre-
quencies observed in human reference populations (1000 Gen-
omes Project!?, Supplementary Table 1), finding overall
consistent results. For three of nine drugs with a germline QTL,
we observed a second independent somatic QTL (Fig. 2a and
Supplementary Data 1). Although globally, somatic QTLs tended
to have larger effect sizes than germline QTLs (average 0.125 +
0.008 versus 0.049 + 0.003, P < 10715, ¢-test, Fig. 2b), both QTL
types exhibited comparable effect sizes when stratifying by variant
frequency (Supplementary Fig. 6). We also compared the effect
sizes of germline QTLs to those observed for clinically approved
somatic biomarkers, finding overall comparable effects in this
in vitro cell line model (Supplementary Data 2 and 7). Finally, we
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Fig. 2 Germline and somatic associations with drug susceptibility. a Negative log P values from genome-wide association analyses with drug susceptibility
phenotypes of 265 drugs, either considering lead germline variants (x-axis) or lead somatic mutations (y-axis). Shown are lead associations, i.e., the most
significant association for either QTL type for each drug. b Effect size estimates for the associations shown in a, considering the corresponding lead
germline associations (x-axis) or lead somatic associations (y-axis). Each dot represents a drug. Drugs coloured in blue have a significant germline or
somatic association (FWER < 0.05). Somatic QTLs tended to have large effect sizes than germline QTLs. (See also Supplementary Fig. 5 for an analysis

stratified by variant frequency)

| (2018)9:3385 | DOI: 10.1038/541467-018-05811-3 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 Associations between germline variants and drug response

Candidate causal Variant annotation Drug name Putative drug Compound P value Adjusted P Effect size

variant target clinical stage value

Causal rs1800566 (lead Missense variant NQOT1 17-AAG HSP90 In clinical 2.801020  3.7710°> —~7.891072

rs12595927) development

rs67038646 Intron variant FRMD4A XL-880 MET In clinical 194101 113104 5.00-1072
development

rs148617501 3’ UTR variant SB 216763 GSK3A, GSK3B  Experimental 14810710 1.021073 3.84102

rs6461564 Intron variant SP4 Mitomycin C DNA crosslinker Clinically 22710° 1261072 —5.44102
approved

rs1825828 Intergenic variant XMD8-92 MAP2K5 Experimental 23610° 129102 —2.081072

(ERK5)

rs12991665 Intron variant DPP10 Pyrimethamine DHFR Clinically 2.6610° 1431072 —5.811072
approved

rs56291722 Downstream gene variant ~ CGP-082996  CDK4 Experimental 6.0410° 298102 3901072

(eQTL for GJAT)

rs7919642 Intron variant CAMKI1D AZD-0530 SRC, ABL1 In clinical 1.09108  4.941072 210102
development

rs11710820 Intergenic variant Vorinostat HDAC class |, Clinically 1101078 4.98102 —8.53102

Ila, 1lb, IV approved
Shown are candidate causal variant for nine drugs with significant germline drug response QTLs. For all instances, but 17-AAG, shown is the lead variant; For 17-AAG, the causal variant in NQOT is
known52. Variant annotations were obtained from the variant effect predictor®3. For each drug, shown is the putative target and the clinical stage

assessed previously reported associations between individual
germline variants and drug efficacy in vivo!? (Supplementary
Data 3). We considered 35 individual variant-drug response pairs
(nine unique drug/gene pairs) that could be assessed using our
data (drug in our screen, variant allele frequency at least 2%), ten
of which could be replicated (FDR <20%), including BRCA1/2
loss of function (LOF) with olaparib'* and cisplatin'®>, WESI
variants and cisplatin toxicity'®, and DPYD LOF 5-fluorouracil!”.
Taken together, these results indicate that our germline QTL map
allows screening for germline effects on drug efficacy, which
analogously to previous applications of cell line models for
identifying somatic biomarkers can serve as candidates for in vivo
validation.

Next, we focused on the set of nine germline QTLs that reached
genome-wide significance (Fig. 2a, Supplementary Fig. 8, Table 1
and Supplementary Data 1), all but the response QTL for 17-
AAG!S8, to our knowledge, had not been previously observed. To
assess the validity of these associations, we considered independent
screening data in CCLE and CTD? for replication. These screens
contained the corresponding germline variant and drug response
profiles for three germline-drug associations (17-AAG in both
CCLE and CTD?, XL-880 in CTD? and mytomicin in CTD?), all of
which could be replicated (adj. P <0.05, linear regression LR test)
(Supplementary Table 2 and Supplementary Fig 9, Methods). We
also considered a more stringent validation strategy, considering
only fully independent lines that are not contained in
GDSC for replication. At this reduced sample size (Supplementary
Fig. 10), only the drug response QTL for 17-AAG was significant;
however, we observed consistent effect size estimates between
discovery and replication studies for all associations (Supplementary
Table 2 and Supplementary Fig. 9). Next, we explored potential
functional mechanisms of these associations. We assessed co-
localisation of drug response QTL with gene expression quantitative
trait loci, both using expression data in the same GDSC lines, or
using data from the genotype tissue expression (GTEx) project!®
(Methods), which identified two instances of colocalization
(Supplementary Fig. 11 and Supplementary Data 4). For example,
the intergenic variant rs56291722, which was associated with
response to the CDK4 inhibitor CGP-082996, is also an expression
quantitative trait locus (eQTL) for GJAI in two GTEx tissues (Nerve
Tibial, Oesophagus Mucosa, Supplementary Fig. 11), suggesting
that GJA1 may act as a potential mediator of this genetic effect on

drug response. GJA1 (also known as Connexin43) is involved in gap
junctions between cells, and has been shown to act as suppressor of
metastasis from mammary tumour to lungzo, as tumour suppressor
in colorectal cancer?!, and it is associated with reduced metastasis
and cell proliferation of melanoma?®2.

For other germline QTLs, the identified germline variant was
directly located within genes with plausible molecular mechanisms,
including the association of pyrimethamine response to a germline
intron variant in DDPI0 (rs12991665, Supplementary Data 1 and
Supplementary Fig. 8f). Pyrimethamine targets dihydrofolate reduc-
tase (DHFR), which plays a role in DNA synthesis. DPP10 changes
the biochemical properties of voltage-gated potassium channels, and
in turn potassium has been reported to affect the drug target DHFR
activity?3, which is a plausible mechanism for this association.

Molecular mechanisms of a germline QTL for 17-AAG
response. The most significant germline QTL was observed for
17-AAG response (P=541-10"1%, linear regression LR test,
explained variance 7.1%, Table 1, Supplementary Data 1), the first
HSP90 inhibitor (Supplementary Fig. 12A) that reached clinical
trials?%. Although multiple variants were significantly associated with
17-AAG response (Fig. 3a), prior evidence points to rs1800566 as the
causal variant that underlies this association!®, a common variant in
the human population (allele frequency ~30%, Fig. 3f). This variant
has previously been identified as loss-of-enzymatic activity>>2°, and
multiple studies documented its effect on functional expressed NQOI
and 17-AAG efficacy!?7-2°, This non-synonymous variant in the
coding sequence of NQOIC6YT (C>T at nucleotide position 609)
causes a structural change from proline>serine at amino acid position
1862430, directly affecting the function of NQOI.

Leveraging the substantially larger sample size of our data
compared to previous studies of 17-AAG response (N =890 cell
lines versus N=4 in ref.!8), we were able to dissect this NQOI
association in further detail. In a joint analysis using gene
expression data from the same cell lines, we observed a statistical
interaction between the expression level of NQOI and the germline
variant rs1800566, where high expression level in either the CC or
CT germline background resulted in increased efficacy of the drug
(Fig. 3b). Notably, these factors were unlinked, i.e., we found no
evidence that rs1800566 affects the expression level of NQOLI itself
(Supplementary Fig. 12B-C). Instead, NQOI expression level was
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Fig. 3 The germline component of 17-AAG drug susceptibility. a Quantile-quantile plot of negative log P values from genome-wide association tests of 17-
AAG susceptibility, considering germline variants (back) and somatic mutations (green). The most associated (lead) variant rs12595927 is in tight linkage
disequilibrium with the known causal variant for this associations (rs1800566, e.g., ref.18, r2=1 in European populations). b Scatter plot between NQOT
gene expression (x-axis) and 17-AAG drug susceptibility (y-axis). Dots correspond to individual cell lines stratified by genotype at the rs1800566 locus
(yellow: TT allele, blue: CC/CT allele). Box plots show the effect of the rs1800566 locus on gene expression (top panel) and drug susceptibility (right
panel). Whereas NQOT expression level is not associated with the germline variant, rs1800566 modulates the association between NQOT expression level
and drug susceptibility. The combination of high expression levels of NQOT together with a CC or CT genotype is associated with the largest drug response.
Boxes extend from the lower quartile (Q) of the data to the upper quartile (Q,) of the data, whiskers show the range of the data (after excluding outliers),
fliers show outliers and the red lines show the medians. Outliers are defined by the standard condition x <Q; —1.5(Q, —Qy) v x> Q, + 1.5(Q, —Qy).

¢ Scatter plot between NQOT expression level (x-axis) and 17-AAG drug susceptibility (y-axis), stratified by tissue type. d Lower panel: Mean drug efficacy
of AUY922 and 17-AAG as a function of NQOT expression and stratified for rs1800566 genotype. Colours indicated the genotype group with triangles
corresponding to AUY922 response and circles denoting 17-AAG response. Shaded areas indicate plus or minus one standard error of the mean drug
response. Top panel: number of cell lines in stratified groups. AUY922 is more effective than 17-AAG for low NQOT expression. In cell lines with a CT and
CC (rs1800566) germline background and high expression of NQOT, the efficacy of 17-AAG is comparable or larger than AUY922. e Mode of action for 17-
AAG and AUY922. f Frequency of NQOT germline variants in different human populations. Data for rs1800566 extracted from EnsEMBL

strongly associated with the tissue of origin of the cell line (Fig. 3c).
The association between NQOI expression and drug response was
robustly observed across and within individual cancer types
(Supplementary Fig. 12D). Taken together, our data suggest a
mechanism whereby expression level of NQOI is the main
determinant of 17-AAG drug response, with an effect that is
modulated by the germline background, ie., NQOI1 needs to be
functionally expressed (CC or CT germline background).

There is some, albeit limited, clinical data on the impact of NQOI
variants on quinine-based antitumor agents such as 17-AAG3l.
While the first phase clinical trial of 17-AAG also tested for
germline effects due to the aforementioned variant (rs1800566)32,
this study concluded that the variant does not affect drug efficacy.
This apparent discrepancy with our data is most likely the result of
a dramatic difference in sample size (21 patients versus 890 cell
lines). Moreover, Goetz et al.32. considered the CT genotype as loss-

of-function event, whereas our data suggest that the homozygous
TT background only affects NQOL1 function (Fig. 3b).

Finally, we explored how these insights could be leveraged for
improved patient stratification. We compared drug susceptibility
of 17-AAG with the more recent HSP90 inhibitor AUY922,
which acts via an NQOI-independent mechanism33. While in the
TT germline background, AUY922 was more effective than 17-
AAG, our data indicate that 17-AAG is as effective as AUY922 in
a CC or CT germline background, provided NQOI is highly
expressed (Fig. 3d). To this end, it is worth noting that NQOI is
frequently overexpressed in cancer cells compared to matching
control tissue (Supplementary Fig. 12E and Supplementary
Data 5), which could potentially be leveraged to guide the
application of NQO1-directed agents®!*%. Our results support
such a strategy, and show that accounting for the germline
background is critical for treatment success.
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Discussion

Our study provides a systematic characterisation of the effect of
germline genetic variations on drug response in cancer cell lines.
We find that joint modelling of somatic mutations and germline
variants can yield substantially improved predictions of persona-
lised drug efficacy. We also compared the predictive value of
germline variants to gene expression profiles, finding that some of
the predictive benefits of gene expression profiles on drug response
can be explained by underlying germline effects.

Beyond predictions of drug susceptibility, we identified associa-
tions between individual germline variants and drug response
profiles, reproducing previously known response variants as well
identifying novel associations. For example, our data replicate
associations between BRCA1/2 LOF with olaparib!# and cisplatin!?,
as well as between DPYD LOF and 5-fluorouracil'’, and between
WESI variants and cisplatin toxicity!® at marginal significance
levels (FDR<10%, Supplementary Data 3). At more lenient
thresholds, we find suggestive evidence for additional known
germline effects, including MGMT variants associated with temo-
zolomide toxicity®>, and SLCOIBI variants as methotrexate phar-
macokinetics predictor3®37 (FDR < 30%, Supplementary Data 3).
Although our data are consistent with a considerable number of
known in vivo markers for drug response, others could not be
replicated. There a number of possible explanations for these dif-
ferences, including statistical power and limitations of in vitro
models in general. Notably, our study is also based on a pan-cancer
analysis, and hence tissue-specific signals will most likely be missed.
Systematic tissue-specific analyses would be a natural extension our
analysis, however will require larger sample sizes.

In addition to reproducing known associations, we identified
nine genome-wide significant germline QTLs, most of which have
not previously been reported (Table 1). This catalogue could be
relevant for treatment decisions or to improve our understanding
of drug action. Germline associations with drug efficacy can also
guide drug development and drug safety, irrespective of whether
the variant itself is used as a biomarker for patient stratification8.
Despite the successful replication of several germline-drug asso-
ciations using independent screening data (Supplementary Fig. 9
and Supplementary Table 2), there remain limitations of our
analysis. In particular, as our analysis is based on genetic variant
calls in cell lines, germline and somatic variants can only be
distinguished computationally. We have considered different fil-
ters to identify germline variants that are known to segregate in
human populations, with consistent allele frequencies to human
reference populations (Supplementary Table 1). However, we
cannot rule out that some of the signals we report may still be
driven by somatic processes that act on the same loci. Thus,
ultimately, the associations we have identified will require addi-
tional in vitro and in vivo validation.

Finally, we dissected a germline QTL for 17-AAG response,
identifying an interaction effect between a germline variant and
NQOL expression affecting 17-AAG susceptibility, which tags a
tissue-specific effect. Although the data set sizes of current studies
are only beginning to permit such stratified analyses, we antici-
pate that the systematic identification of interactions and tissue-
specific associations will open new venues for personalised
models of drug sensitivities (Supplementary Fig. 13). The sub-
stantially increased search space to test for such interactions will
require larger data sets. Ongoing studies using primary tumours,
notably the initiatives by the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA), are
starting to deliver data at the required scale. Additionally,
organoid-based technologies enable drug screenings at large scale
and in physiologically relevant contexts®®. We anticipate that
interaction analyses will become powerful tools to fully exploit
these forthcoming data sets.

Methods

Drug response screen. The drug response data are based on Genomics of Drug
Sensitivity in Cancer (GDSC) project release (http://www.cancerrxgene.org/
downloads/)12. Drug responses are measured in one minus area under the drug
response curve (1-AUC).

Somatic mutation data. The somatic mutation data were generated by the GDSC
project? and assembled from the COSMIC database (http://cancer.sanger.ac.uk/
cell_lines)#’. This variant set was derived using whole-exome sequencing data
(Agilent SureSelect/Illumina, https://www.ebi.ac.uk/ega/datasets/
EGAD00001001039), Affymetrix SNP6.0 arrays (https://www.ebi.ac.uk/ega/
datasets/EGAD00010000644) and breakpoint-specific primers for copy number
variants and fusion genes. Multiple filters were applied in the primary data analysis,
identifying a set of 715 curated somatic markers.

Imputed germline variation set. An initial set of germline variants was derived
from the Affymetrix SNP6.0 microarrays, which captures 884,110 common var-
iants. For genetic analyses, we used statistical imputation to enhance the resolution
of the germline QTL map. Imputation was carried out based on a 1000 Genomes
Phase 3 reference panel'?. We applied shapeit v2.r7274! with default parameters to
obtain haplotype estimates separately for each chromosome. Imputation was
performed using impute2 v2.3.242, again with default parameters. This imputation
was parallelised in intervals of ~5 Mb (or larger), such that each interval contained
at least 200 variants. Low-frequency and rare variants (MAF > 2%, on the whole
panel of 993 individuals), as well as variants with low-quality scores (quality score
<0.9) were discarded, resulting in 8,251,755 genome-wide variants for analysis.

For drug response predictions (Fig. 2), variant resolution was no concern.
Consequently, we used unimputed raw variants, again filtered by variant allele
frequency (MAF >2%, resulting in 645,752 variants). Additionally, we discarded
variants that were not in local linkage disequilibrium (LD), only retaining variants
that were in LD (2> 0.4) with at least one of the closest 50 SNPs (Supplementary
Fig. 14). This filter resulted in a set of 526,697 germline variants for analysis (See
Supplementary Fig.14).

Drug response prediction from germline and somatic variants. To assess the
utility of germline variants for drug susceptibility prediction, we compared a
baseline model using only somatic mutations with a joint model that combines
both somatic mutations and germline variants. Both models were implemented
using elastic net regularised multivariate linear regression*>. The somatic model
was trained on the set of 735 somatic variants. In order to train the joint model, we
first regressed out the predictions from the somatic baseline model on the training
samples, and then trained an elastic net on the residuals of the drug response
phenotype, considering the set of 526,697 germline variants. Predictions from the
joint model on test samples were obtained as the sum of the predictions from the
baseline model and the model trained on residuals using germline variants. Prior to
analysis, we regressed out tissue covariates from all drug response phenotypes and
standardised all genetic features (somatic and germline). The predictive perfor-
mance of both models was assessed using fivefold cross validation (under this
scheme, all model hyperparameters were optimised using a nested cross validation,
strictly using training data fractions only), where we considered the Pearson cor-
relation coefficient between the predicted and observed phenotype values.
Results were averaged over ten repetitions of fivefold cross validation with
different random splits of the data into different folds. Standard deviations
across repeat experiments were used to determine significance levels of improve-
ments in prediction accuracy. Drugs for which the Pearson correlation between
predictions from germline variants from the joint model and observed drug
responses exceeded two standard deviations were considered to have a
significant germline component (97.72% confidence interval, one-sided test,

12 total, Supplementary Data 1). For full details on the method and the
implementation of the joint somatic and germline regression model, see
Supplementary Note 1.

Quantitative trait loci mapping of drug susceptibility. To map somatic QTLs,
we employed a linear association test, accounting for tissue of origin as fixed effect
covariates. Let the susceptibility phenotype (1-AUC) of a particular drug across cell
lines be, y, x, correspond to the binary encoding of a particular somatic variant and
W denotes the matrix of covariates. This linear model can be written as

y = 1y + Wa + xS, + y, wherey ~ N(0, 021). (1)

Here, f3; denotes the effect size of the somatic variant, a denotes the effect size of
the tissue covariate, y is the intercept and y denotes residual noise.

To test for germline associations, we considered a linear mixed model,
introducing an additional random effect term to account for genetic relatedness
between cell lines (samples), thereby adjusting for possible confounding due to
population structure*, This extended model can be written as:

¥ = lu+ Wa+ x,B, + g + ywhereg ~ N(o, oﬁK) andy ~ N(0,021).  (2)
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Analogously to the model in Eq. (1), x; and 3, denote the germline variant of interest
and its effect size, respectively, and K denotes the realised relatedness matrix*>46.

For both association models, we considered a likelihood ratio test to assess
significance of the alternative hypothesis B#0 or B;#0. To improve the robustness
with respect to potential outlying phenotype values, all drug susceptibility
phenotypes were quantile normalised to standard Gaussian distributions prior to
analysis. Effect sizes of somatic and germline genetic effects were estimated by
fitting the same model on the original phenotypic scale. All genetic association
models were implemented in LIMIX47+48,

Multiple hypothesis testing correction in QTL mapping. Significant somatic and
germline QTLs were reported at a fixed family-wise error rate thresholds, considering
germline variants and somatic variants separately. At FWER = 5%, this analysis yielded
68 drugs with a significant somatic QTL only, eight drugs with a germline QTL only
and four drugs with a germline and a somatic QTL. For somatic variants, FWER was
controlled using a Bonferroni correction of P values. For imputed germline variants, we
employed a method based on permutations to estimate the effective number of
genome-wide tests, thereby accounting for redundant tests due to genome-wide pat-
terns of LD. Specifically, we considered the following two-step procedure

1. for each drug, we obtained 100 genome-wide minimal P values using
a permutation procedure (see below);

2. we pooled the minimum P values across all permutations and drugs
(2650 P values) to obtain an empirical null distribution, which we used
to compute empirical (adjusted) P values.

Following ref.*°, genome-wide-adjusted minimal P values were obtained using
permuted genotype data for variants on chromosome 3, thereby comparing the
observed association P values to an empirical null distribution. Genome-wide
statistics were then extrapolated by adjusting the chromosome-level statistics by the
relative length of chromosome 3 compared to the whole genome (correction factor
~15.6, see also ref.4?), assuming that the variant density and the extent of LD on
chromosome 3 are representative of genome-wide trends.

The final set of germline variants were filtered to rule out contamination by
underlying somatic changes. Specifically, we excluded putative germline QTLs that
were not in LD with at least one other variant within 100 kb (r% > 0.4). The filtered
result set included nine germline QTLs at genome-wide significance, which were
considered for further analysis (Table 1).

Overlap with eQTL from the GTEx project. For each of the nine germline QTLs,
we considered association P values from the GTEx V6 summary statistics (7,051
tissue samples, 44 tissues) between the lead drug response QTL (or a proxy variant)
and any gene in 1 Mb and tissue that was analysed in GTEx!. Specifically, if the
lead response QTL was not contained in the GTEx data set, we considered the
GTEx variant in highest linkage (maximum 72 in 1000 Genomes Phase 3) as its
proxy. Variants for which no GTEx proxy variant could be identified (2 <0.8 for
all GTEx variants) were not considered for replication.

For each drug response QTL, the P values of association with gene expression
for different gene/tissue pairs were corrected for multiple testing using
Benjamini-Hochberg adjustment (Supplementary Fig. 11a).

For each drug/gene with significant association in at least one tissue (FDR < 5%),
we assess signal colocalization between drug response and expression in the tissues
with signal. Instances with evidence for colocalization (Pearson correlation between
-log10 P greater than 0.8) are shown in Supplementary Fig. 11b, c. Summary results
from the co-localisation analysis are provided in Supplementary Data 4.

Replication of known associations. We assessed 35 variant-drug associations,
considering germline variants that have been identified to affect drug efficacy in vivo
(Supplementary Data 3). We used ref.!3 as the primary source to compile this
association lists, which we augmented by additional known association between drug
5-Fluorouracil and DPYD LOF!7, an association between SN-38 and UGT1A1
promoter variant®2, WFSI variant and cisplatin toxicity'S, MGMT variants asso-
ciated with temozolomide toxicity*’, as well as SLCOIBI variants as methotrexate
pharmacokinetics predictor337. We assessed variant-drug pairs for replication if the
drug was contained in our screen, provided that the variant allele frequency was at
least 2% in our study. Each variant was tested for association with drug efficacy using
the same methods as used for genome-wide association analyses (see above). We used
Benjamini-Hochberg to adjust for multiple testing across drug-variant pairs, and
reported associations at FDR < 20% as replicated. This identified ten variant-drug
pairs that could be replicated in our data (Supplementary Data 3).

Replication of germline associations in alternative screens. Five of the nine

drugs with a germline QTL identified in the GDSC discovery data set were contained
in either CCLE or CTD2. Germline information was taken from CCLE and mapped
to lines from CTD?, for which no genotype information was available. We considered
raw germline variants without imputation for replication. Considered were proxy

variants in the replication cohort that were in proximity and in strong LD with the
lead variant identified in the discovery cohort (within 100 kB, 2 > 0.7). This approach
identified proxy variants for three out five QTLs, including 17-AAG (both in CCLE

and CTD?), XL-880 (in CTD?) and mitomycin (in CTD?). We considered two
alternative replication strategies: (i) validating germline-drug association using all
lines and (ii) considering out-of-GDSC cell lines only. The all-lines setting includes
some of the same lines that were also contained in GDSC, however with independent
drug response profiles. The out-of-GDSC settings is fully independent of the discovery
cohort, although at much reduced sample size due to considerable overlap between
these cohorts (up to 500 cell lines; Supplementary Fig. 10). The all-lines approach
allowed for replicating three out of three QTLs (adj. P < 0.05, adjusted for 4 tests,
Supplementary Table 2). The out-of-GDSC approach only allowed for replicating the
germline QTL for 17-AAG response, most likely due to the much reduced sample size
(Supplementary Fig. 10). However, we observed good consistency in effect size esti-
mates between discovery and validation cohorts, including for insignificant effects
(Supplementary Table 2 and Supplementary Fig. 9).

Code availability. All association testing analysis were performed with the LInear
MiXed (LIMIX) library available at https://github.com/limix/limix. An imple-
mentation of the two-step elastic network procedure we used for the joint analysis
of germline and somatic mutations is available at https://github.com/PMBio/
stepwise-elnet.

Data availability. The data used for this study are available from the GDSC
repository, http://www.cancerrxgene.org/downloads/>?, the COSMIC database
(http://cancer.sanger. ac.uk/cell_lines)*(, the European Genome-phenome Archive
https://www.ebi.ac.uk/ega/ data setsyEGAD00001001039 and https://www.ebi.ac.
uk/ega/datasets/EGAD00010000644 and the GTEx resource, https://www.
gtexportal.org/home/°.
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