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ABSTRACT

Analyses of suppressor mutations have been
extremely valuable in understanding gene function.
However, techniques for mapping suppressor muta-
tions are not available for most bacterial species.
Here, we used high-throughput sequencing technol-
ogy to identify spontaneously arising suppressor
mutations that enabled disruption of rpoE (which
encodes pE) in Vibrio cholerae, the agent of cholera.
The alternative sigma factor pE, which is activated
by envelope stress, promotes expression of factors
that help preserve and/or restore cell envelope
integrity. In Escherichia coli, rpoE is an essential
gene that can only be disrupted in the presence of
additional suppressor mutations. Among a panel
of independent V. cholerae rpoE mutants, more
than 75% contain suppressor mutations that
reduce production of OmpU, V. cholerae’s principal
outer membrane porin. OmpU appears to be a key
determinant of V. cholerae’s requirement for and
production of pE. Such dependence upon a single
factor contrasts markedly with regulation of pE in
E. coli, in which numerous factors contribute to its
activation and none is dominant. We also identified
a suppressor mutation that differs from all pre-
viously described suppressors in that it elevates,
rather than reduces, pE’s activity. Finally, analyses
of a panel of rpoE mutants shed light on the
mechanisms by which suppressor mutations may
arise in V. cholerae.

INTRODUCTION

The alternative sigma factor sE (also known as RpoE) is
one of several regulators that enable bacteria to respond
to perturbation of the cell envelope (1). In unstressed
growing cells, sE activity is relatively low, as it is tethered

to the bacterial inner membrane by the antisigma factor
RseA, and hence cannot interact with RNA polymerase to
direct transcription from sE-dependent promoters (2,3).
However, if misfolded outer membrane proteins (OMPs)
accumulate within the periplasm, they trigger the degra-
dation of RseA and release of sE, thereby allowing
increased expression of the sE regulon, which includes
genes encoding periplasmic proteases, foldases and cha-
perones that aid in periplasmic folding, as well as rpoE
itself (4–6). Activation of sE also induces transcription
of several small non-coding RNAs (sRNAs) that repress
production of OMPs (7). Heightened expression of these
factors is thought to aid in elimination of the inducing
stimulus and restoration of envelope homeostasis. sE

activity is also induced as cells enter stationary phase.
In Escherichia coli, this response has been shown to be
dependent upon the alarmone ppGpp, which typically
accumulates when nutrients are limited (8,9).
sE is classically thought of as regulating a stress

response; however, it has been found to be essential for
viability in E. coli and Yersinia enterocolitica, suggesting
that it plays a more fundamental role in bacterial physi-
ology as well (10,11). sE was not initially recognized to
be essential in E. coli, both because suppressor mutations
can mask this phenotype and because the growth (or
lack thereof) of E. coli rpoE mutants is highly dependent
upon the selective criteria employed. However, com-
parisons of independently derived E. coli rpoE mutants
suggested that these strains might contain suppressor
mutations, and several suppressors have been identified
to date (12,13). These include a loss of function mutation
in ydcQ, which encodes a putative DNA-binding protein,
and multicopy plasmids containing ptsN or yhbW. Little is
known about the mechanisms by which these suppressors
function; however, it has been observed that all the
suppressors reduce basal activity of other envelope stress
response pathways as well. Somewhat surprisingly,
suppressors that counteract E. coli’s requirement for the
proteases RseP and DegS, which are needed for degrada-
tion of RseA and thus for activation of sE in response to
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periplasmic stresses, did not also function as suppressors
for rpoE mutations. For example, when production of
OmpA and OmpC is reduced, either via deletion of both
genes or via overexpression of RseX, an sRNA that neg-
atively regulates them, degS and rseP are no longer essen-
tial; however, rpoE is still required (14). This may reflect
the fact that several pathways have been shown to activate
sE in E. coli.
Studies of rpoE in V. cholerae, the etiologic agent

of cholera, have not directly addressed whether rpoE is
essential or whether rpoE mutants contain suppressor
mutations. As with early studies of rpoE in E. coli, the
ability to generate rpoE mutants may have led to the
assumption that the gene is not required, without consid-
eration of the possibility of suppressors. In V. cholerae,
rpoE has been shown to be required for intestinal coloni-
zation in an animal model of disease and for resistance to
an antimicrobial peptide, and likely members of the reg-
ulon have been identified (15–17). Furthermore, we have
found that expression of sE is reduced in the absence
of OmpU, an abundant outer membrane protein in
V. cholerae whose expression is controlled by the key vir-
ulence regulator ToxR (18). However, many aspects of the
biology of rpoE mutants remain to be explored, and phe-
notypic comparisons of independently derived mutants
have not been reported.
Identification of suppressor mutations can be hampered

by a lack of scorable/selectable phenotypes and/or of tools
for genetic mapping. In V. cholerae, there are currently no
robust genetic tools for mapping spontaneous suppressor
mutations. However, the recent development of massively
parallel sequencing technology provides a potential path
around these experimental barriers. This technology
enables generation of high coverage genomic sequence
data at a cost that permits analysis of multiple samples,
and hence allows for direct identification of differences
between the DNA sequences of related strains. The
approach is ideally suited for unbiased identification of
genetic changes, particularly if multiple changes with
interdependent effects are present within a single strain
[e.g. as observed in (19)], since such effects might be
missed in phenotypic assays of individual changes.
We generated and characterized a set of V. cholerae

rpoE mutants and found that they displayed a range
of phenotypes, consistent with the possibility that they
might contain distinct suppressor mutations. Using high-
throughput sequencing, we identified several differences
between wt and rpoE strains that were subsequently con-
firmed to be suppressor mutations. Remarkably, the
majority of strains that lacked sE contained additional
mutations that reduced expression of V. cholerae’s major
OMP, OmpU. An ompU-independent suppression path-
way was also identified, which, unlike other rpoE suppres-
sors, elevated the basal activity of this envelope stress
response pathway. Overall, our data suggest that a key
role for sE is to respond to an endogenously generated
stimulus transmitted from OmpU. They also shed light on
the mechanisms used by V. cholerae to maintain appropri-
ate OMP expression, and upon the mechanisms by
which suppressor mutations may arise in this organism.
Finally, our results illustrate the utility of high-throughput

sequencing technology in carrying out a genomics-based
approach to suppressor genetics.

MATERIALS AND METHODS

Bacterial strains and culture conditions

All V. cholerae strains generated for this study are
derivatives of the sequenced clinical isolate N16961 and
are resistant to streptomycin. For analysis of rpoE pro-
duction by V. cholerae lacking various OMPs, transposon
insertion mutants derived from C6706 were used (20).
A related mutant with an insertion in vca0199 was also
used, both with the KnR transposon still present
(BD2034) and with the majority of the transposon excised
by flippase (BD2041). Transposons were also excised from
a subset of the C6706 OMP mutants, namely those in
which the transposon ‘scar’ remaining after excision con-
tained a stop codon to prevent production of the full
length gene product. Removal of the transposon, which
contains lacZ, was necessary prior to monitoring
rpoE::lacZ activity. C6706 �toxRS was obtained from
JJ Mekalanos. Escherichia coli strains DH5a�pir and
SM10�pir were used for cloning and conjugation of sui-
cide vectors, respectively. Bacteria were grown in LB at
378C unless otherwise noted, using antibiotics at the fol-
lowing concentrations: streptomycin, 200 mg/ml; carbeni-
cillin, 50 mg/ml; kanamycin, 50 mg/ml. Negative selection
against strains containing sacB was performed on plates
containing 10% sucrose at 308C. LB plates containing
0.25% SDS were used to assess the sensitivity of rpoE
mutants to detergents.

Strain and plasmid construction

Strains with insertion mutations in rpoE were generated
using pBD1574, a derivative of the suicide vector pGP704
that contains 424 bp of an internal fragment of rpoE (21).
Integration of this vector, via a single crossover event
within the rpoE-derived sequence, results in gene disrup-
tion and confers carbenicillin resistance. Exconjugates
were selected on plates containing streptomycin and
carbenicillin. When primary exconjugates gave rise to
colonies of varied sizes upon restreaking, which occurred
for at least 90% of exconjugants, large colonies were
selected for further analysis, in order to minimize analyses
of mixed populations. Strains with insertion mutations in
ompS and ompT were generated using pBD1664 and
pBD1665, which contain internal gene fragments of 451
and 382 bp, respectively.

All allele replacements were generated using vectors
derived from the suicide vector pCVD442, using standard
allele exchange procedures (22,23). In brief, the targeting
vector, which confers carbenicillin resistance, was trans-
ferred by conjugation to a V. cholerae recipient, where it
integrated. Primary exconjugants (selected on plates con-
taining streptomycin and carbenicillin) were then sub-
jected to counterselection on sucrose plates to identify
strains that no longer contained the plasmid backbone,
and further screened via PCR to identify strains contain-
ing the mutation of interest. Strains containing deletions
within rpoE were generated using pBD1578, which
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introduces a 342-bp deletion. Strains in which rpoE was
replaced by an rpoE::aph allele were generated using
pBD1999, in which rpoE is interrupted by insertion of
an aph gene cassette from pUC71K. Mutants were selected
on plates containing kanamycin as well as sucrose.
(Primary selection on plates containing sucrose alone,
followed by patching to plates containing kanamycin,
led to similar conclusions.) Point mutations in vca0199,
vc2413 and the ompU (vc0633) promoter and 50UTR
were introduced using plasmids pBD2038, pBD2036,
pBD2049 and pBD2088, respectively. Deletions in ompU
and ompT were introduced using the previously described
vectors pKEK276 and pKEK309 (24). Deletion of vc0972
was performed using pBD1900.

All ompU::lacZ transcription reporter fusions are deri-
vatives of pCB192N, which contains a promoterless lacZ
cassette (H. Kimsey, manuscript in preparation). Each
contains ompU-linked sequences extending from position
–411 to +227 relative to the ompU transcriptional start
site (25). The rpoE::lacZ transcription reporter fusion
is a derivative of pCB192 (26) and contains sequences
from –91 to +112 relative to the sE dependent transcrip-
tional start site, as defined in (16).

Additional details regarding plasmid and strain con-
struction are available upon request. The sequences of
plasmids and the chromosomal loci they were used to
alter were confirmed by Sanger sequencing.

Genome sequencing and analysis

Genome sequencing was performed by the Partners
Healthcare Center for Genetics and Genomics using an
Illumina Genome Analyzer. Sequence data was analyzed
using MAQ (http://maq.sourceforge.net/index.shtml) (27)
and Edena (http://www.genomic.ch/edena.php, (28)).
MAQ was primarily used for identification of single
nucleotide polymorphisms (SNPs), but also enabled detec-
tion of some single-nucleotide insertions and deletions in
regions with extended mononucleotide tracts. The consen-
sus sequence obtained for rpoE mutants was compared
to a control sequence from the wt progenitor and to the
published V. cholerae N16961 sequence, thereby enabling
identification both of mutant-specific SNPs and SNPs dis-
tinguishing our isolate from the published genome (29).
MAQ reports each candidate SNP with a consensus qual-
ity score that reflects the trustworthiness of the SNP pre-
diction. Filtered SNPs with consensus quality scores lower
than 50 were generally deemed unreliable.

De novo sequence assembly, using Edena, was performed
on pooled data from all sequenced samples, using default
parameters. Assembled contigs were then compared to
the published N16961 genome using MUMmer to
identify SNPs, insertions, and deletions (http://mummer
.sourceforge.net; Supplementary Table 1). Comparable
analyses using sequencing results from individual samples
did not yield genome-wide results, as the depth of sequence
coverage from individual samples was not always sufficient
to permit contig assembly; however, a subset of differences
could be identified.

The precise locations of sequences that differ between
the published N16961 genome and individual rpoE

mutants, which were confirmed by Sanger sequencing,
are presented in Supplementary Table 2.

b-galactosidase assays

Reporter plasmids were transformed into strains made
�lacZ using the plasmid pJL1. Assays were performed
basically as described (30).

Western blots

Protein samples were generated from overnight cultures of
V. cholerae unless otherwise indicated. Culture volumes
were normalized based on OD600, then cells were pelleted
and lysed in 1� NuPAGE LDS sample buffer (Invitrogen)
containing 5% b-mercaptoethanol at 958C. Samples were
run on NuPAGE Bis–Tris gels (Invitrogen) and trans-
ferred to nitrocellulose membranes according to the
manufacturer’s instructions. Membranes were probed
with polyclonal antisera to sE, OmpU, OmpT, OmpA,
or with a commercially available anti 6-His antibody
(Genetex). Horseradish peroxidase–conjugated secondary
antibodies and Supersignal West Pico chemiluminescent
substrate kit (Pierce) were used for detection of bound
primary antibodies.

Northern blots

RNA was harvested from log phase cultures unless other-
wise noted. RNA was extracted from cell pellets using
Trizol (Invitrogen), then treated with DNase I (Qiagen).
It was electrophoresed on glyoxal gels (Ambion), then
transferred to Bright Star Plus nylon membranes
(Ambion). RNA integrity was confirmed via assessment
of EtBr-stained rRNA bands. Blots were hybridized to
32P-labeled in vitro transcribed probes in ULTRAhyb
(Ambion) at 688C and washed according to the manufac-
turer’s instructions.

RESULTS

Isolation of V. cholerae rpoE mutants

We and others previously isolated rpoE mutants of
V. cholerae; thus, it was clear that there was not an absol-
ute barrier to obtaining rpoE mutants in this organism
(16,17). However, some of our strategies for generating
rpoE mutants had failed, while others seemed to have
only a low frequency of success. Furthermore, we noted
that the two published mutants did not share all pheno-
types (e.g. EtOH sensitivity), suggesting that they
might have acquired distinct suppressor mutations.
Thus, although V. cholerae rpoE had not previously
been reported to be essential, we undertook a systematic
characterization of V. cholerae rpoE mutants and their
potential suppressor mutations.
We first assessed the frequency of obtaining insertion

mutants following conjugation of suicide vectors contain-
ing either an internal fragment of rpoE or a control gene
(ompS or ompT), along with the selectable marker bla.
Carbenicillin resistant (carbR) mutants of rpoE, ompS
and ompT were obtained with approximately equal
frequencies, suggesting that these rpoE mutants could
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arise in the absence of any suppressor mutations.
However, we noticed that the initial selection for rpoE
mutants routinely yielded smaller colonies than for the
control genes, and that upon restreaking these colonies
typically yielded a mixture of large and small colonies
(Figure 1). Further characterization of the mutants
revealed that they could be grouped into distinct classes.
Mutants could be distinguished by their levels of OMP
expression, their colony size and morphology, and their
ability to grow on plates containing detergents. Together,
these results suggested that our carbR rpoE insertion
mutants frequently acquired at least one of several
additional mutations that suppressed the small colony
phenotype of an rpoE mutant and enabled more rapid
growth.
Derivatives of wt V. cholerae in which rpoE was deleted,

using a targeting vector conferring carbR and sucrose
sensitivity, were obtained much less readily than rpoE
insertion mutants. Identification of deletion mutants
required a biased screening of sucrose resistant colonies,
namely preferential testing of small or differentially col-
ored colonies. Mutants in which rpoE was replaced by
rpoE::aph could not be obtained. Thus, rpoE appeared
to be essential for V. cholerae growth under the selection
conditions for rpoE::aph.

Identification of candidate suppressor mutations

To identify the putative suppressor mutations in
V. cholerae rpoE mutants, we took advantage of newly
developed massively parallel sequencing technology.
Whole genome sequencing of DNA from a subset of inser-
tion mutants and deletion mutants as well as from wt
V. choleraeN16961, from which the mutants were derived,

was performed on the Solexa Genome Analyzer. This
approach yielded an average of 2.8 million 36-nt sequence
reads per sample (range of 1.2–4.0 million). Sequences
were subsequently mapped to the published V. cholerae
N16961 genome sequence (29) using the freely available
software MAQ [Mapping and Assembly with Qualities;
http://maq.sourceforge.net/index.shtml (27)]. MAQ uses
the Solexa nucleotide sequences and their associated qual-
ity scores (which reflect the confidence with which each
nucleotide within a 36-mer was called by the Genome
Analyzer) to predict SNPs, positions where the sequenced
sample differs from the reference genome. MAQ also cal-
culates its own consensus quality score for these potential
SNPs. An average of 88% of the Solexa sequences could
be mapped to the reference genome. Numerous potential
SNPs were identified; however, most were identified as
candidate SNPs in wt as well as rpoE mutant samples
(and thus correspond to differences between our strain
and the published sequence) or had relatively low consen-
sus quality scores. Based on visual inspection of sequence
alignments (using MAQ’s companion program,
MAQview) as well as Sanger sequencing of some candi-
date loci, we determined that candidate SNPs with con-
sensus quality scores of less than 50 were likely to be false.
Removing these loci from the list of mutant-specific can-
didates left a relatively small number of candidates, suit-
able for confirmation using Sanger sequencing and/or
elimination via visual inspection of aligned reads.
Through this process we verified the presence of five can-
didate suppressor mutations, located in the vca0199 and
vc2413-coding regions (one each, in strains BD1965 and
BD1963 respectively) and in the intergenic region between
vc0633 and vc0634 (three distinct mutations, in strains
BD1962, BD1956 and BD1987). The effects of these muta-
tions are described below.

Comparison of newly sequenced isolates to the published
V. cholerae genome

Solexa reads were also used as inputs for the de novo
assembly program Edena [Exact DE Novo Assembler
(28)], which generated contigs that could be searched
for differences relative to the published V. cholerae
N16961 sequence using MUMmer. The advantage of
this approach is that it performs gapped as well as
ungapped alignments, and hence can be used to identify
small insertions and deletions, which generally cannot be
detected in our data set using MAQ. Disadvantages are
that it does not utilize the Solexa quality scores or pro-
vide a means to identify high quality versus low quality
candidate SNPs, and it requires a greater number of
sequences to generate a consensus, often more than we
obtained for a single sample. Edena confirmed the pres-
ence of most of the candidate suppressors identified using
MAQ; however, its principal utility was in identification
of differences between our starting strain and the refer-
ence strain, for which we pooled all our Solexa sequences
to generate the Edena input. With this comprehensive set
of sequences, contigs spanning 3.9 million bases, or
>88% of the V. cholerae genome, could be assembled,
and 145 differences between our strains and the reference

Figure 1. An rpoE insertion mutant restreaked on plates containing Sm
and Carb following the primary selection. The mutant is a derivative of
wt V. cholerae N16961. Both large (boxed) and small (circled) colonies
are detectable.
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strain could be identified (Supplementary Table 1). These
included 40 SNPs, most of which had also been predicted
by MAQ and 79 small insertions or deletions. A subset
of these correspond to loci identified in a recent study
as likely errors within the published genomic sequence
(31). An approximate position for many of the inser-
tions/deletions could also be obtained by performing
BLAST analyses on sequences that could not be
mapped by MAQ. This approach can be utilized even
if sequence depth does not meet the stringent conditions
required by Edena, and hence can be used to search
for insertions and deletions in sequence from an individ-
ual sample as well as pooled samples. However,
BLAST analyses did not identify any insertions or dele-
tions in the rpoE mutants that were not also present in
our wt strain.

Many rpoE mutants contain mutations upstream
of ompU that reduce its expression

The intergenic sequence between vc0633 and vc0634,
which was found to contain three independently derived
candidate suppressor mutations, contains the promoters
for both genes. Notably, vc0633 encodes OmpU, which
we have previously shown is a determinant of sE levels
(18). Given the frequency of mutations obtained in this
region and our knowledge concerning the gene’s role,
we resequenced this region in all our rpoE mutants.
Remarkably, these analyses revealed that 17 of 21 rpoE
mutants contained mutations in this region (Figure 2A).
Identical mutations were detected in multiple strains,
almost all of which are known to have arisen indepen-
dently. Most of the mutations are within confirmed
binding sites for ToxR, which activates transcription

delete 1A of A9: 1956, 1966, 1967, 1968, 1969, 1996
insert 1A  in A9: 1970, 1987

delete 1A of A8: 1960,
1964, 1972, 1997

<--- greA’
(vc0634)

ompU’ --->
(vc0633)

ompU tx start

insert A: 1974 G>T: 1962insert T: 1995 insert A: 1973T>A: 1971

Suppressors in rpoE mutants lacking ompU-linked mutations
1957: potential suppressor in vca0199  1961: unknown
1965: confirmed suppressor in vca0199 1963: unknown
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Figure 2. Locations of rpoE suppressor mutations and their effects on OMP levels and promoter activity. (A) Schematic depiction of the locations of
suppressor mutations in rpoE mutants. The ompU promoter region is drawn to scale; hash marks denote 100-bp intervals. The 50 ends of the coding
sequences of flanking genes are shown as black boxes; the ompU-coding sequence corresponds to that shown in (25) rather than the published
genome sequence. Binding sites for ToxR are shown as grey rectangles as defined in (32). Circles represent the sites of suppressor mutations, and
numbers above (e.g. 1956) correspond to the strain numbers of corresponding rpoE mutants. rpoE deletion mutants are underlined; all other strains
are insertion mutants. In most cases, mutants were independently derived, despite detection of identical suppressors in multiple strains. Only the pairs
1966/1967 and 1968/1969 could each potentially consist of siblings. The precise positions (relative to the published N16961 genome) of all SNPs
linked to suppression of rpoE mutations are listed in Supplementary Table 2. (B) Western blots showing expression of OmpU, OmpA and OmpT
levels in whole cell lysates from wt, �ompU, and a non-redundant subset of rpoE mutants. (C) b-galactosidase activity from ompU::lacZ transcrip-
tion reporter fusions generated from wt V. cholerae and the indicated rpoE mutants. Activities shown are averages +SEM from three independent
cultures and were generated from overnight cultures; log phase cultures yielded similar relative activities.
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of ompU; however, two of the mutations are not within the
promoter, and instead lie within ompU’s 50UTR
(21,25,32). OmpU-coding sequences were also examined
for many of the strains, but no mutations were detected.
Western blots showed that all of the strains with ompU-
linked mutations contained reduced amounts of OmpU,
although the levels varied widely (Figure 2B). No muta-
tions in this region were identified in the strains found to
contain candidate suppressor mutations at loci other than
ompU, and OmpU levels in rpoE strains lacking ompU
mutations were equal to those in wt V. cholerae.
To confirm that the ompU-linked mutations are respon-

sible for reduced OmpU levels, we generated ompU::lacZ
transcription reporter fusions containing wt and mutant
promoter/UTR sequences, and assessed their activity in wt
V. cholerae. All of the mutant promoter fusions yielded at
least 2-fold less activity, as did a reporter fusion contain-
ing a mutation within the ompU 50UTR (Figure 2C),
suggesting that the mutations do impair ompU expression,
in most cases presumably due to reduced ToxR binding.
However, the 50UTR mutation (identified in strain
BD1962) seems likely to influence processes other than,
or in addition to, transcription, (e.g. mRNA translation
or stability), as its effect on OmpU mRNA (data not
shown) and protein levels (Figure 2B) was more dramatic
than that of promoter mutations that yielded similar
reporter activity. Additional northern and b-galactosidase
assays suggest that the UTR and promoter mutations do
not alter transcription of vca0634 (data not shown),
although the intergenic region presumably contains its
promoter as well.

OmpU-linked and vca0199 mutations reduce V. cholerae’s
requirement for pE through distinct processes

To determine whether the candidate rpoE suppressor
mutations did in fact facilitate the growth of rpoE
mutants, we regenerated candidate suppressor mutations
in a wt strain, and assessed whether rpoE::aph mutants
could be obtained in these new strains. Following chro-
mosomal integration of the targeting vector, candidate
rpoE::aph mutants were selected on plates containing
sucrose and kanamycin, and then patched to plates con-
taining carbenicillin to eliminate false positives from the
sucrose selection. Using this selection protocol, all sucrose
and kanamycin-resistant colonies isolated from the wt
strain were also resistant to carbenicillin, i.e. no rpoE
mutants were obtained (Table 1). In contrast, rpoE
mutants were readily obtained in strains containing muta-
tions within the ompU promoter or 50 UTR, indicating
that a reduction in OmpU levels obviates V. cholerae’s
need for sE under these selection conditions. A compara-
ble result was observed using strains with deletions of
ompU or toxRS (Table 1). Similarly, we found that
rpoE::aph mutants were generated at high frequency
in the presence of the vca0199 candidate suppressor
mutation. However, no mutants were obtained in a
strain containing the vc2413 candidate suppressor muta-
tion, suggesting that the mutation does not function as a
suppressor. The consequences of the vc2413 mutation
were not pursued further.

Suppressor mutations presumably reduce the cell’s need
for sE; consequently, it might be expected that production
and activation of sE would be reduced in strains contain-
ing suppressor mutations. Our previous studies of OmpU
and sE suggested that OmpU is a key determinant of basal
levels of rpoE expression, as strains lacking OmpU con-
tained markedly lower level of sE (18). Mutations that
downregulate OmpU production (e.g. promoter and 50

UTR mutations) also reduced the abundance of sE

(Figure 3). In addition, such mutations cause a decrease
in sE activity, as indicated by reduced b-galactosidase
from an rpoE::lacZ transcription reporter fusion whose
activity is dependent upon sE (Figure 4A and data not
shown). In contrast, the point mutation in vca0199 that
suppresses rpoE essentiality did not appear to influence
production of sE, and increased sE activity several fold,
suggesting that it influences survival via a different mech-
anism (Figures 3 and 4A). Additional attributes of
vca0199 are discussed further below.

Activation of pE is growth phase dependent

Although the abundance of OmpU is fairly consistent
throughout all phases of V. cholerae growth, accumulation
and activation of sE is largely limited to late stationary
phase (Figure 4). Cells contain low amounts of sE

throughout log phase, and sE activity in overnight cul-
tures is at least 10-fold higher than in log phase cultures
(Figure 4). Similar growth phase-dependent activation in
E. coli has been attributed to production of ppGpp during
stationary phase (8), and ppGpp may account for this
activation in V. cholerae as well. It should be noted, how-
ever, that activation by OmpU is not limited to stationary
phase; diminished ompU expression resulted in reduced
activity (relative to the wt strain) in all phases of growth
(Figure 4A).

ompU mutations modulate OmpT levels

All of the V. cholerae rpoEmutants contained higher levels
of OmpA and OmpT than were detected in wt V. cholerae

Table 1. Frequency of obtaining rpoE::aph mutants from sucrose/

kanamycin selection

Parental
strain

Mutation rpoE mutanta Percentage
rpoE::aph (n)

N16961 NA – 0 (85)
BD2046 vc2413 BD1963 0 (49)
BD2048 vca0199 (pt. mut.) BD1965 91 (102)
BD2064 ompU 50UTR BD1962 83 (31)
BD2096 ompU promoter BD1956 95 (68)
MKW156 �ompU – 96 (46)
JM3-3 �ompT – 0 (33)
BD1902 �vc0972 – 0 (45)
BD2139 �vca0199 – 45 (65)
C6706 NA – 0 (48)
BD2041b vca0199, vca0200 0 (52)
BD2093b �toxRS – 94 (54)

NA, not applicable; n, number of colonies tested for carbenicillin
resistance.
aStrain in which candidate suppressor mutation was initially identified,
if applicable.
bDerived from C6706; all other strains derived from N16961.
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(Figure 2B). However, unlike the case for OmpA,
the degree to which OmpT abundance increased was not
uniform among these mutants. OmpT levels were only
slightly increased in rpoE mutants that lacked ompU-
linked suppressor mutations, while they were markedly
higher in rpoE mutants that also contained ompU-linked
mutations (Figures 2B and 3). These data suggest that
sE–mediated control of OmpT accumulation [potentially
due to sE–dependent expression of a regulatory sRNA, as
seen for V. cholerae OmpA and several E. coli OMPs,
(33,34)] is relatively minor. Furthermore, they suggest
that ompU may regulate accumulation of OmpT in a
sE–independent fashion. Notably, even relatively slight
reductions in OmpU had a more significant effect on
OmpT accumulation than did disruption of rpoE in a
strain with normal OmpU production (Figure 3, compare
strains BD2096 and BD1965).

OMPs other than OmpU are not major determinants
of pE abundance and activity in V. cholerae

Western blot and rpoE::lacZ transcription reporter anal-
yses of a panel of V. cholerae OMP mutants suggest that
OmpU plays a privileged role with respect to sE levels in
V. cholerae. Strains with mutations in a variety of OMP-
encoding genes were obtained from a comprehensive
transposon insertion library of V. cholerae mutants (20)

and monitored for production of sE. Disruption of ompU
or of toxRS, key activators of ompU expression, con-
sistently reduced the abundance of sE 2- to 4-fold.
In contrast, we found that disruption of genes encoding
OMPs other than OmpU generally did not influence sE

abundance, although disruption of ompA and vc1622 did
slightly reduce sE levels in a subset of experiments
(Figure 5 and data not shown). The cause of inconsistent
results with these two mutants is not known. We also
monitored the activity of a sE-dependent rpoE::lacZ tran-
scription reporter fusion in a subset of the OMP mutants
(those in which excision of the lacZ-encoding transposon
resulted in production of a truncated, rather than full
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length, OMP). Among this set—which included strains
with mutations in ompA, vc1622, ompU and four addi-
tional OMP-encoding genes—the activity of the transcrip-
tion reporter was reduced by more than 2� only in
the ompU mutant (data not shown). Together, these
data suggest that, at least for the growth conditions
assayed, OmpU is the principal OMP underlying sE

induction (Figure 5). Deletion of several OMP-encoding
genes (ompT, vc0972) also did not reduce V. cholerae’s
requirement for sE; rpoE::aph mutants could not be
obtained in strains lacking these genes (Table 1).

Not all vca0199 mutations suppress V. cholerae’s
requirement for rpoE

As noted above, a mutation within vca0199 appears to
suppress V. cholerae’s requirement for sE by a different
mechanism than does inhibition of OmpU production,
since the vca0199 mutation increases, rather than
diminishes, sE activity (Figure 4A). This effect was detect-
able both in log and stationary phase cultures. vca0199
does not appear to be a member of the sE regulon,
based on Northern (data not shown) and previously pub-
lished microarray analyses (17). Northern blotting also
revealed that the suppressor mutation within vca0199
may cause a small reduction in its transcript and that of
the nearby downstream gene, vca0200, although such a
reduction was not evident in all experiments (Figure 6).
vca0199 and vca0200 are probably cotranscribed, since an
insertion mutation within vca0199 eliminates transcripts
of both genes (Figure 6). We were unable to detect expres-
sion of chromosome-encoded epitope-tagged Vca0199
and Vca0200, suggesting that these proteins are probably
produced at fairly low levels. However, cell fractionation
studies performed using plasmid-encoded Vca0199 with a
C-terminal His6 tag indicate that the product of vca0199 is
probably a cytoplasmic protein (data not shown).
No function has yet been described for vca0199 or

vca0200, and their putative protein products have strong
homology only to hypothetical proteins. The closest

homologs are in distantly related organisms, including
Bacteriodes fragilis, Listeria innocua and Trichodesmium
erythraeum; homologs are absent from vibrios other
than V. cholerae and from most other gamma-proteobac-
teria as well, suggesting that these genes were probably
acquired relatively recently via horizontal gene transfer.
The vca0199 mutation detected by high-throughput
sequencing is predicted to result in substitution of a Y
for an S at amino-acid 594 of 638, a region with minimal
conservation among vca0199 homologs. Interestingly,
Sanger sequencing of vca0199 from other rpoE mutants
lacking ompU-linked suppressors identified an additional
vc0199 mutation, predicted to change P616L (in strain
BD1957).

Since the effects on protein function of the vca0199
point mutations described above were not known, we
assessed whether additional mutations in vca0199
could also suppress V. cholerae’s requirement for sE.
Unexpectedly, these assays gave somewhat ambiguous
results. An insertion mutation in vca0199, which elimi-
nates expression of both vca0199 and vca0200, did
not enable replacement of rpoE by rpoE::aph (Table 1;
strain BD2041). In contrast, rpoE::aph mutants could be
obtained when vca0199 contained an internal deletion,
which should not alter expression of vca0200 (Table 1,
strain BD2139). However, the rpoE mutants generated
in the latter background grew very slowly; colonies were
significantly smaller than those obtained in the presence of
the vca0199 point mutation. Furthermore, mutants were
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Figure 6. Northern blots probed for transcripts of vca0199 and
vca0200. Lanes 1–3 contain RNA from strains derived from N16961;
lanes 4–6 contain RNA from strains derived from C6706. Lane 1, wt
N16961; lane 2, BD2048 (vca0199 point mutation); lane 3, BD1965
(vca0199 point mutation and rpoE insertion); lane 4, wt C6706;
lane 5, BD2034 (vca0199 insertion, KnR); lane 6, BD2041 (vca0199
insertion, KnS).
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obtained at a much lower frequency when vca0199 con-
tained an internal deletion rather than the point mutation.
Together, these data suggest that loss of Vca0199 function
may facilitate growth of rpoE mutants, but only in the
presence of Vca0200, and that the consequences of the
point mutation are not simply a loss of protein function.
Whether the SNP in vca0199 partially preserves wt protein
function and/or results in a novel function remains to be
determined.

DISCUSSION

We have assessed V. cholerae’s requirement for sE and
found that it is essential for growth under some but not
all selective conditions. Under permissive conditions for
disruption of rpoE, mutants could readily be obtained
but their initial growth was slow. More rapidly growing
variants, which arose frequently from the initial isolates,
were found to contain additional mutations at unlinked
sites. Introduction of these unlinked mutations into wt
V. cholerae enabled selection of rpoE mutants under
otherwise non-permissive conditions, confirming that
these mutations suppress V. cholerae’s need for sE. The
majority of suppressor mutations reduced production of
OmpU, a general diffusion porin that constitutes a signif-
icant portion of V. cholerae’s outer membrane protein
(35,36). The basal level of sE declined in strains with
ompU-linked mutations, presumably reflecting the dimin-
ished role for rpoE that rendered it non-essential.
However, mutations within vca0199, which encodes a
gene of unknown function, also were found to suppress
V. cholerae’s need for rpoE. Unlike the ompU-linked sup-
pressors and suppressors of rpoE essentiality identified in
E. coli (13,37), suppressor mutations within vca0199 aug-
mented, rather than reduced, sE activity, suggesting that
they diminish the requirement for sE through a distinct
mechanism, perhaps by influencing a process downstream
of sE activation. High-throughput genomic sequencing
was a crucial tool in the identification of suppressor muta-
tions, particularly the latter class, which could not have
been predicted based on previous knowledge of sE’s role
and regulation in V. cholerae. The availability of this
technology, which continues to improve, should greatly
facilitate similar studies in other organisms.

We previously observed that deletion of ompU reduced
V. cholerae’s production of sE; however, the importance
of this finding was not recognized at the time (18). Our
new data highlight the central role played by OmpU as
a regulator of sE; indeed, they suggest that one of sE’s
most critical roles in V. cholerae may be to respond to this
endogenously generated factor. Even relatively small
reductions in OmpU levels have a dramatic effect on the
organism’s need for, and production of, this sigma factor.
It appears a threshold level of OmpU must be present
to generate a requirement for sE; simply reducing ompU
promoter activity by �60% renders rpoE inessential, even
though OmpU is still readily detectable. It is also notable
that OmpU has a significant influence on activity both
during log phase, when much OmpU must be synthesized,
and during stationary phase, when OmpU transcript levels

are quite low (data not shown). The latter observation
raises the possibility that OmpU’s activating stimulus is
transmitted from previously synthesized, rather than
newly generated, protein. Factors may accumulate in the
culture medium by late stationary phase that trigger mem-
brane and OMP disruption and thereby reveal the activat-
ing motifs that are masked within properly folded proteins
(4). Alternatively, exposure of activating domains within
OmpU may be coupled to peptidoglycan remodeling
during stationary phase, since OmpU has been reported
to be associated with this polymer (36). It is also theoret-
ically possible that the sE-activating stimulus is not due to
OmpU misfolding but instead is a result of OmpU’s porin
activity, which might enhance transmission of a signal
from the culture media into the periplasmic compartment.
Our study reveals both significant similarities and

differences between the role and regulation of sE in
V. cholerae and E. coli. For both organisms, rpoE is abso-
lutely essential under a subset of conditions tested, and
no mutants can be derived from wt cells under these con-
ditions (10). Under less stringent selection conditions,
mutants can be isolated; however, they have been found
to contain additional suppressor mutations. Such suppres-
sor mutations also permit disruption of rpoE under the
otherwise non-permissive selective conditions (14,38).
Deletion of OMP-encoding genes reduces the activity of
sE in both V. cholerae and E. coli. sE is also a negative
regulator of OMP production in both organisms, although
it should be noted that sE does not appear to influence
V. cholerae’s production of its principal OMP, OmpU,
since an rpoE mutant that lacks an ompU-linked suppres-
sor produces wt amounts of this protein (Figure 3), and
overexpression of sE also did not alter OmpU production
(data not shown). A key difference between the species
is that no single deletion or combination of deletions of
OMP-encoding genes has yet rendered rpoE non-essential
in E. coli (14), whereas the absence of a single V. cholerae
OMP is sufficient to do so. Thus, it appears that the path-
ways for activation of sE in V. cholerae are more limited,
and that monitoring and responding to OmpU (mis)-
folding is of paramount importance. Given that significant
activation of sE is still detectable in stationary phase cul-
tures of a strain with diminished OmpU, it is quite striking
that rpoE is no longer essential in these cells.
Our work provides new evidence that bacteria have

developed numerous safeguards to coordinate and balance
expression of their OMPs. Excessive OMP accumulation
was already known to trigger sE activity and the resulting
transcription of sRNAs that downregulate OMP transla-
tion (33,38,39). In addition, it has been noted that OMP-
encoding sequences are often adjacent to genes encoding
negative regulators of other OMPs, suggesting that
new OMP-encoding genes can more readily be acquired
in conjunction with means for downregulating those that
are already present (40). In this study, we observed that
expression of OmpU has a significant negative effect
on production of OmpT. It has long been recognized
that the genes encoding these proteins respond in opposite
fashions to the transcriptional regulator ToxR, and thus
that their expression is coordinated (21,32,41); however,
disruption of ompU has not previously been reported to
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augment OmpT production. It remains to be seen whether
this interdependence of OmpU and OmpT production is
mediated by OmpU’s porin function, by an sRNA that
overlaps with or is coordinated with the ompU transcript,
or by some alternate mechanism.
Finally, our identification of a panel of suppressor

mutations provides clues about the mechanisms by
which such suppressors may arise. Two aspects of these
suppressor mutations are particularly striking. First, the
same suppressor mutations were generated from distinct
selection protocols (i.e. growth in the presence of antibio-
tics versus sucrose), suggesting that the process for sup-
pressor formation is not determined solely by the selection
used. Second, most suppressor mutations (11 of 21) were
single nucleotide contractions of mononucleotide (A/T)
repeats. In E. coli, such mutations are characteristic of
the error-prone polymerase DinB, which is induced by
specific stresses and is associated with temporary forma-
tion of a hypermutable state (42). Although mutation as a
stress response has yet to be investigated in V. cholerae,
our data are consistent with the possibility that formation
of rpoE suppressor mutations may be facilitated by such a
response. Transient emergence of a mutator phenotype
may thus underlie the high frequency with which suppres-
sors arise (e.g. Figure 1). Such a possibility could be
explored by assessing whether factors often needed for
formation of stress-linked mutations (e.g. DinB, RpoS
and the SOS response) are also required for development
of rpoE suppressor mutations. Additionally, blocking
these processes might permit characterization of the true
consequences of rpoE disruption, unmodulated by addi-
tional genomic changes.
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