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Abstract

Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis 

(CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no 

studies have been done to show an association. The main obstacle is the lack of suitable 

animal models and no immediate availability of pancreas tissue in humans. In the CF porcine 

model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 

3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide 

dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated 

increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and 

this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities 

were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly 

increased DHE oxidation, peroxide production, reduced insulin secretion in response to high 

glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin 

or an SOD mimetic failed to restore insulin secretion. These results are consistent with the 

hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2
●− 

and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). 

We speculate that insulin secretory defects in CF may be due to oxidative stress.
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Introduction

Cystic fibrosis (CF) is a disease with high morbidity and mortality. It is caused by 

mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator 

(CFTR) [1–3]. Lungs are typically involved and individuals with CF usually succumb to 

complications of pulmonary disease [4]. In the gastrointestinal tract, CF primarily involves 

the pancreas, where it causes exocrine pancreatic insufficiency and later diabetes. With 

advancement in the care of pulmonary complications and extended life expectancy of people 

with CF, gastrointestinal manifestations and diabetes began to emerge and impact patient 

care and quality of life. Cystic fibrosis related diabetes (CFRD) is one of the most significant 

co-morbidities, affecting ~50% of CF patients > 30 years of age [5,6]. The development 

of diabetes in persons with CF is associated with a rapid decline in pulmonary function 

as well as higher risk for morbidity and mortality ensue [7,8]. Even before diabetes is 

apparent, patients demonstrate insulin secretory defects, with diminished and/or delayed 

insulin responses to oral glucose.

The pathophysiology leading to CFRD is largely unknown. The main barriers to 

understanding the disease mechanisms have been the inaccessibility of pancreas in humans 

and the absence of significant pancreatic disease in CF mice [9,10]. CF pigs develop multi-

organ disease similar to humans with CF, including severe exocrine pancreatic disease and 

a CFRD phenotype [11–15]. At birth, CF pigs exhibit hyperglycemia in response to glucose 

challenge and diminished insulin secretion despite relative sparing of insulin-positive cell 

mass [16], features common to humans with CF. These traits make the CF pig an attractive 

model for studying physiologically relevant CFRD and its mechanistic underpinnings.

Oxidative stress is caused by excesses in reactive oxygen species (ROS) and/or decreases in 

antioxidant capacity that lead to cell injury and loss of critical intracellular functions, which 

are associated with development of diabetes [17–23]. In general, ROS can be generated 

through hyperglycemia [24,25]. In type 1 diabetes, invading immune cells within pancreas 

would expose beta-cells to ROS [26]. Free radicals derived from superoxide, produced in 

the pancreas can impact islet structure and function [27,28] and inhibit insulin secretion 

[29]. Significant advances have been made in understanding the impact of ROS on beta-cell 

function [17–23]. ROS can negatively impact beta-cell function, though this depends on the 

source, nature, and cellular localization of the ROS. Beta-cells have limited capacity for 

SOD-based neutralization of ROS [30–33]. Oxidative stress has been postulated to play a 

similar role in the development of CFRD [34,35]. Glutathione (GSH), the main redox buffer 

of mammalian cells, is depleted in CF lung disease [36–41], possibly due to diminished 

transport caused by defective CFTR [39]. Lastly, the blood levels of 4-hydroxynonenal-

modified proteins (indicative of oxidative stress within lipid compartments) are elevated in 

children with CF and their concentrations correlate with the degree of impaired glucose 
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tolerance [42]. However, there are no published studies demonstrating that CF pancreas 

and/or islets are experiencing oxidative stress.

We hypothesized that CF pancreata and/or islets would demonstrate indications of oxidative 

stress relative to their normal counterparts. To test this hypothesis, we assayed for 

antioxidant enzyme activity, levels of superoxide using DHE oxidation, response to high 

glucose, and GSH, GSSG status in both normal and CF pancreas models. We found 

increased levels of DHE oxidation in frozen sections of the newborn CF pig pancreas, which 

was inhibited by the SOD-mimetic (GC4401), suggesting the involvement of superoxide. 

We then utilized immunohistochemical and immunoblotting approaches to demonstrate the 

presence of protein oxidative damage in the form of 3-nitrotyrosine- and 4-hydroxynonenal-

modified proteins in the CF pig pancreata relative to non-CF controls. Cultured CF pig islets 

had diminished insulin secretion in response to high glucose, reduced secretory index as 

well as evidence of superoxide and peroxide production in comparison to non-CF islets. 

However, acute treatment with inhibitors of superoxide and NADPH oxidase production 

failed to restore insulin secretion. These results are consistent with the hypothesis that 

newborn CF pig pancreas and islet cells are under significant oxidative stress, which may be 

a chronic contributing factor to insulin secretory defects in people with CF.

Materials and methods

Animals.

Animal experiments were reviewed and approved by the University of Iowa Institutional 

Animal Care and Use Committee. CF (CFTR−/−, CFTRΔF508/ΔF508) and non-CF (CFTR+/+, 
CFTR+/−, CFTR+/ΔF508) piglets were obtained from Exemplar Genetics (Sioux Center, IA, 

USA), and studied within 24 h after birth.

Pancreas sample processing for enzyme activity assays.

Following euthanasia, the pancreas was quickly prosected and fresh pancreas tissue (~100 

mg) was frozen at −80 °C until use. Samples were thawed on ice, homogenized in 

500 μl cold phosphate buffer (50 mM, pH 7.0) and centrifuged briefly at 12,000 × g. 

The supernatant was used for protein quantification and enzyme activity assays. Protein 

concentration was0020measured using BCA kit (Sigma Aldrich, St. Louis, MO, #QPBCA) 

according to the manufacturer’s protocol.

Neonatal islet cultures.

CF and non-CF islets were isolated and cultured using a previously described protocol for 

neonatal pig islets [43]. Briefly, newborn pancreata from CF or non-CF neonatal pigs were 

minced into 1- to 2-mm pieces and digested in HBSS containing 0.5% BSA, 1% penicillin/

streptomycin, and 2.5 mg/ml collagenase for 4 min at 37 °C. Following digestion, the tissue 

fragments were washed 3 times in medium without collagenase and then cultured in 24-well 

plates with 2 ml Ham’s F12 medium (containing 10 mM glucose) supplemented with 

0.5% BSA, 50 μM 3-isobutyl-1-methylxanthine (IBMX), 10 mM nicotinamide, 1.67 mM 

l-glutamine, and 100 U/ml penicillin and 100 μg/ml streptomycin. The medium was changed 
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on the second day after isolation and every other day thereafter. In some experiments, 10 μM 

of GC4401 was added to the medium and continued through insulin secretion studies.

Glutathione assay.

The glutathione assay is based on the following coupled redox reaction: GSH is oxidized 

by 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) to give glutathione disulfide (GSSG) with 

stoichiometric formation of 5-thio-2-nitrobenzoic acid (TNB), and GSSG is reduced to GSH 

by glutathione reductase and NADPH [44,45]. The rate of change in absorbance of TNB 

formation is then recorded at 412 nm and it is proportional to the total GSH present. The 

addition of 2-vinylpyridine, which binds any reduced GSH, in a separate aliquot of sample 

was used to determine GSSG only. GSH (Sigma Aldrich, St. Louis, MO #G4251) and 

GSSG (Sigma Aldrich, St. Louis, MO #G4626) standard curves were performed along with 

pancreas extract samples. Reduced GSH was determined via subtracting GSSG from total 

GSH. Pancreas tissue was minced and deproteinized with 5% 5-sulfosalicylic acid. Total 

GSH and GSSG were measured and normalized to the total amount of protein in each pellet. 

Samples were mixed with 150 mM potassium phosphate buffer containing 1 mg/ml DTNB 

(Sigma Aldrich, St. Louis, MO #D8130), 0.25 mg/ml NADPH and 0.4 U/ml glutathione 

reductase (Sigma Aldrich St. Louis, MO, #3664). The absorbance was recorded at 412 nm 

for 5 min with 30 s interval. Reduced GSH was determined via subtracting GSSG from total 

GSH.

4-hydroxynonenal (HNE) modified proteins assay.

Pancreas was digested in 10 mM DETAPAC/RIPA (Sigma Aldrich, St. Louis, MO, 

#R0278)/50 μM Butylated Hydroxytoluene (Sigma Aldrich, St. Louis, MO, #B1378)/Roche 

Mini Protease inhibitor buffer (Sigma Aldrich, St. Louis, MO # 11836153001). Protein 

concentration was measured using the Pierce BCA Protein Assay (Thermo Fisher Scientific, 

Waltham MA, #23227). Protein was loaded into Hoefer PR648 slot blot manifold (Hoefer 

Inc Holliston, MA, #PR648) after assembly according to the manufacturer’s instruction. 

Briefly, the bottom block was put together with the membrane support block. A Whatman 

filter paper 100×150 mm (GE Healthcare, Chicago, IL #GB003), pre-soaked in Tris-

Buffered Saline (TBS) (50mM Tris, 150mM NaCl, pH 7.6) was placed into the membrane 

recess, followed by an activated membrane (1-minute methanol incubation, 5-minute 20% 

methanol / 80% 100 mM 3-(N-morpholino) propanesulfonic acid (MOPS), 100% MOPS 

until ready for application). The top block was then placed on top of the membrane support 

block, where it was screwed in following the manufacturer’s instructions. The manifold was 

attached to an adjustable vacuum, followed by a 10 s vacuum initiation by applying 25 cm 

Hg. The samples were applied and run through the apparatus at 25 cm Hg followed by a 

wash with TBS at 50 cm Hg.

A positive control sample for the 4-HNE modified protein antibody was generated using 

a 50 μM spike of 4-HNE (Cayman Chemical Company, Ann Arbor, MI, #32100) into a 

control sample (randomly selected wildtype) at 0.2 μg/mL protein concentration, followed 

by incubation at 37 °C for 30 min. Standard curves were generated by utilizing various 

protein concentrations from the spiked control (30, 25, 15, 10, 5 μg) alongside a negative 

addition standard utilizing increased protein concentrations from a non-spiked wildtype 
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(30, 60, 90, 120, 150 μg). Equal protein (30 μg) was applied to the membrane for each 

experimental sample. After removal of the membrane from the apparatus and drying 

followed by reactivation with methanol for one minute, and incubation in 80% of 100 

mM MOPS/ 20% methanol for 5 min, the membrane was incubated in 250 mM sodium 

borohydride (Sigma Aldrich, St. Louis, MO, # 480886) at room temperature for 15 min to 

stabilize Schiff bases and Michael adducts. The membrane was then washed three times in 

dIH2O and once in PBS before the membrane was blocked in 5% BSA/ TBST for one hour 

at room temperature. Following wash cycle with TBST the membrane was incubated with 

rabbit anti – 4-HNE [1:2,000] (Millipore, Burlington, MA #ABN249) in 5% BSA/ TBST 

overnight at 4 °C. The membrane was then incubated with Anti-Rabbit IgG – peroxidase 

[1:25,000] (Sigma Aldrich, St. Louis, MO, #A6154) for one hour at room temperature after 

another wash cycle. Following another wash cycle, the membrane was incubated in Pierce 

ECL 2 Western Blotting Substrate (Thermo Fisher Scientific, Waltham MA # 80196) for five 

min and visualized on x-ray film (Sigma Aldrich, St. Louis, MO, #Z363006). Densitometry 

was done on ImageJ using an integrated density measurement after subtracting background 

and results were normalized to total protein using Ponceau S staining (0.5% Ponceau S/ 

0.1% Acetic Acid) (Thermo Fisher Scientific, Waltham, MA #BP103-10).

Catalase activity assay.

Catalase activity was measured as the decomposition of H2O2 monitored 

spectrophotometrically as previously described [46]. Pancreas homogenates were mixed 

in 50 mM phosphate buffer (pH 7) following addition of 10 mM H2O2 (Thermo Fisher 

Scientific, Waltham, MA, #H-325). The raw absorbance data was recorded at 240 nm for 

60 s and plotted, then the linear part of data to generate a slope was used to calculate the 

activity.

Superoxide dismutase activity assay.

The measurement of SOD activity is based on the inhibition of nitroblue tetrazolium 

(NBT) reduction by O2
•− [47,48]. Pancreas homogenates were incubated in 50 mM 

potassium phosphate buffer (pH 7.8) containing 1 mM diethylen-etriaminepentaacetic 

acid (DETAPAC) (Sigma Aldrich, St. Louis, MO #D6518), 0.13% BSA, 1 unit/ml 

catalase (Sigma Aldrich, St. Louis, MO, #C-40), 56 μM NBT (Sigma Aldrich St. Louis, 

MO, #N6876), 0.1 mM xanthine (Sigma Aldrich St. Louis, MO, #X0125), and 50 μM 

bathocuproine disulfonic acid (Sigma Aldrich, St. Louis, MO, #146625) for 30 min. 

Xanthine oxidase (Sigma Aldrich St. Louis, MO, #X187) was added to give an NBT 

reduction rate of 0.015–0.025/min at 560 nm. One minute after sample solution was mixed 

with 0.01 units/ml xanthine oxidase, the absorbance was measured at 560 nm for 2 min at 15 

s intervals. To assay MnSOD, 5 mM NaCN (Sigma Aldrich, St. Louis, MO, #380970) was 

added to the buffer and allowed to incubate for 1 hr. One unit of SOD activity was defined as 

the quantity of protein required for half of the maximal inhibition of NBT reduction.

Glutathione peroxidase (GPx) activity assay.

The measurement of GPx activity [49] is based on the coupled reaction of GPx with 

reduction of oxidized glutathione by glutathione reductase consuming nicotinamide adenine 

dinucleotide phosphate hydrogen (NADPH), and oxidation of NADPH to NADP+ that 
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results in decrease of absorbance at 340 nm. Pancreas homogenates were mixed with 50 

mM potassium phosphate buffer (pH 7) containing 1 mM ethylenediaminetetraacetic acid 

(EDTA) (Sigma Aldrich, St. Louis, MO, #E9884), 1 mM sodium azide (Sigma Aldrich 

St. Louis, MO, #2002), 0.2 mM NADPH (Sigma Aldrich, St. Louis, MO, #N-6505), 1 

E.U./ml glutathione reductase (Sigma Aldrich, St. Louis, MO, #G-4759), 1 mM GSH 

(Sigma Aldrich, St. Louis, MO, #G-4759) and 0.25 mM H2O2 (Fisher Scientific, Waltham, 

MA, #H-325). The absorbance of the reaction mix was recorded at 340 nm for 5 min with 

30 s intervals. Glutathione peroxidase activity was expressed as Unit/mg tissue or Unit/μg 

protein where 1 unit of GPx was equal to the amount of protein required to oxidize 1 μM 

NADPH/min.

In situ measurement of superoxide (O2
•−).

This technique measures oxidation of dihydroethidium (DHE) (Thermo Fisher Scientific, 

Waltham, MA, #D11347) to its fluorescent product as a surrogate marker for superoxide 

[50,51]. Frozen pancreas tissue slides (thickness 6 μm) or islets cultures were used. The 

neonatal islets were handpicked and cultured in glass bottom dishes coated with collagen at 

37 °C 5% CO2 overnight, then moved to room temperature (about 25 °C) without additional 

CO2. After addition of 10 μM of DHE, slides were allowed to incubate 30 min at 37 C in 

a humidified chamber, then rinsed with cold PBS and images were immediately acquired 

at excitation/emission wavelength of 405/570 nm using a Zeiss 710 confocal microscope. 

The fluorescent intensity of image was quantified with ImageJ. To confirm that the DHE 

signal was due to superoxide, frozen pancreas tissue slides were also exposed to 500 nM 

of the selective SOD mimetic GC4401 or its inactive analogue GC4404 (courtesy of Galera 

Therapeutics, Creve Coeur, MO) before staining with DHE [52].

Neonatal islet culture and insulin secretion studies.

On the ninth day of culture, approximately 500–600 islets were selectively removed with 

a small glass pipette, washed, and divided into 2 equal-sized matched groups for each 

genotype and then incubated in RPMI 1640 containing 1.67 mM glucose, 2 mM l-glutamine, 

and 0.5% BSA for 1 hour at 37 °C. To initiate the insulin secretion experiment, islets 

were then transferred into 1 ml of fresh RPMI 1640 medium containing 1.67 mM or 16.7 

mM glucose for 1 hour at 37 °C. The media and islets were then collected, and total 

insulin was quantified in both by ELISA. Insulin was measured using an ELISA kit that 

is specific for bovine and porcine fully processed insulin and does not cross-react with 

proinsulin or C-peptide. The amount of insulin secreted into the media during the 1 hour 

and that remaining in the islets was used to calculate the percent insulin secretion (% insulin 

secretion = secreted insulin in the media/total insulin in the media and islets at the end of 

the experiment). Secretory index (SI) was calculated as percent insulin secretion at 16.7 

mM glucose divided by percent insulin secretion at 1.67 mM glucose. For apocynin studies, 

matured islets were treated for 24 hours with 0.2 mM apocynin + 0.1% DMSO or 0.1% 

DMSO alone. Hand-picked islets were moved to a perifusion device (Biorep Technologies, 

Miami Lakes, FL), using 500–600 islets per channel and a flow rate of 0.12 mL/min [53]. 

Islets were perifused for 52 min in KRB buffer containing 1.67 mmol/L glucose, followed 

thereafter by 16.7 mmole/L glucose. Insulin content in the eluate was normalized to the total 

islet insulin content collected from the channel.
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Immunohistochemical staining for 3-nitrotyrosine-modified proteins.

CF and non-CF pig pancreas pieces cut ~4 mm3 were placed into 4% paraformaldehyde for 

a minimum of 2–4 days. Tissues were processed with standard IHC protocols. Testicular 

hyaluronidase (H3884: Sigma Aldrich, St. Louis, MO) was used for antigen retrial as 

previously described [54] and blocked in blocking solution (1% BSA with 1 % goat serum 

and 0.5% tween 20 in PBS). Slides were incubated with primary antibody, anti-3NT (06–

284: Sigma Aldrich, St. Louis, MO) overnight at 4 °C. Next, goat anti-rabbit IgG (H+L) 

biotinylated (BA-1000: Vector Laboratories, Burlingame, CA) secondary antibody was 

added for 40 min followed by additional of avidin-biotin complex with a ABC-HRP kit 

(PK-4000: Vector Laboratories, Burlingame, CA) for 30 min. Samples were developed with 

a DAB kit (SK-4100: Vector Laboratories, Burlingame, CA). A common color threshold was 

used to extract the brown staining of the DAB kit in the images and the hue saturation over 

each pixel in the total tissue area was averaged.

Amplex Red assay.

The oxidation sensitive fluorescent probe, Amplex Red (Invitrogen #A12222) was utilized 

to estimate production of peroxides by islets. This assay is based on the oxidation of 

10-acetyl-3,7 dihydroxypenoxazine, which is catalyzed by horseradish peroxidase (HRP) 

to produce a red florescent oxidation product, resorufin, at 1:1 ratio [55]. The reaction 

buffer (pH=7.2) contained 129 mM NaCl, 2.4 mM K2HPO4, 0.6 mM K2H2PO4, 2.5 mM 

CaCl2, 1.2 mM MgCl2, 1.67 mM glucose, 20 μm Amplex Red, 5 units/ml horseradish 

peroxidase (Sigma #P8375–1KU). After culturing for 9 days, islets were hand-picked and 

placed in 96 well optical plates (Thermo Scientific #165305), mixed with the reaction buffer. 

The fluorescence intensity of all wells was measured at excitation/emission wavelength of 

560/590 nm using a plate reader (Molecular Devices, Spectra Max M2).

Statistical Analysis.

Statistical analysis was performed by Mann-Whitney test for all tests except analysis of 

islet perifusion studies was done using 2-way ANOVA to assess the impact of CF-status, 

antioxidant treatment, and their interaction. When appropriate unpaired Student’s t test 

or one-way ANOVA were used. Unless otherwise specified, statistical significance was 

determined as p<0.05.

Results

CF pig pancreas demonstrates oxidative stress.

To determine whether oxidative stress could be present in newborn CF pig pancreas, 

pancreatic GSH and glutathione disulfide (GSSG), the major soluble thiol redox couple 

that is very sensitive to changes indicative of oxidative stress was assessed. Total GSH and 

GSSG levels were higher but the GSH:GSSG ratio was not significantly decreased in CF pig 

pancreas compared to non-CF (Fig. 1), supporting the presence of oxidative stress in a major 

thiol redox pool that was compensated for by increased GSH synthesis and metabolism.
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CF pig pancreas has decreased antioxidant activities.

The activities of catalase, glutathione peroxidase (GPx1) and SOD (total, CuZnSOD and 

MnSOD) (Table 1) were assessed to determine if any of the major antioxidant enzymes 

responsible for superoxide and hydrogen peroxide were compromised. All these antioxidant 

enzymes activities were significantly lower in CF pancreas compared to non-CF if measured 

per mg of tissue wet weight, probably because of significant parenchymal loss in CF. Once 

samples were normalized to μg protein per sample, the most significant changes were the 

decreases in total SOD and CuZnSOD activities in the CF pancreas.

CF pig pancreas shows evidence of increased pro-oxidant production and oxidative 
stress.

In-situ generation of pro-oxidants was assessed in the fresh frozen neonatal CF pig pancreas 

using fluorescent confocal microscopy. DHE oxidation was used as a surrogate marker 

of superoxide levels and was significantly increased in CF pig pancreas samples at birth 

compared to non-CF (Fig. 2). The DHE oxidation signal was also inhibited by the SOD 

mimetic GC4401, but not by the inactive analogue GC4404 (Fig. 3), confirming that the 

increased DHE oxidation was derived from increased levels of superoxide in the CF pig 

pancreas samples. To explore further whether CF pancreas led to oxidative stress in vivo, 

we measured 4-HNE-modified protein content, a common lipid peroxidation by-product 

that reacts with proteins by Michael addition reactions and represents a stable mark of 

oxidative damage. As demonstrated in Fig. 4A, 4-HNE modified proteins were significantly 

elevated in CF pancreas homogenates compared to non-CF when measured using slot 

blotting techniques. Using immunohistochemistry, we also observed a significant increase in 

3-nitrotyrosine-modified proteins in CF pancreas compared to non-CF (Fig 4B–D). These 

data demonstrate significant oxidative damage and evidence for superoxide and nitric oxide 

mediated oxidative stress in the CF pancreas.

CF islets have increased pro-oxidant production.

When isolated and cultured porcine pancreatic islet cells were assessed for DHE oxidation 

on the ninth day of culture, CF islets demonstrated significantly increased DHE oxidation 

as compared to non-CF islets (Fig. 5). This demonstrates an increased level of pro-oxidants 

in cultured CF islets compared to non-CF, similar to what was seen in the experiments with 

pancreas frozen sections in Fig. 3.

Insulin secretion is impaired in CF islets.

To determine whether CF pig islets demonstrated impaired glycemic responses, glucose-

stimulated insulin secretion (GSIS) studies were conducted on cultured islets. Following 

stimulation with 16.7 mM glucose, non-CF islets demonstrated a significant induction in 

percent insulin secretion (p < 0.001), while the percent insulin secretion for CF islets was 

not significantly different (p > 0.05) (Fig. 6). Interestingly, insulin hyposecretion in CF islets 

was not reversed by GC4401, an SOD mimetic (Fig. 7).
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Apocynin does not reverse insulin secretion in perfused islets.

We next examined whether a NADPH oxidase-2 inhibitor, apocynin would reverse the 

insulin secretory defects in CF islets. As expected, insulin secretion was impaired in CF 

islets compared to non-CF islets. However, incubation with apocynin for 24 hours in culture 

did not ameliorate the insulin secretion defects in CF islets (Fig. 8).

Peroxide levels are increased in CF islets.

We hypothesized that the lack of response to an SOD mimetic and apocynin may be due 

to peroxide production from a non-apocynin sensitive source in CF islets. To determine 

whether the CF islets have increased production of peroxides, we performed the Amplex 

Red assay as a surrogate marker for peroxides. Amplex red oxidation was linear over time 

in CF islets, with no increase in non-CF (Fig. 9A). Compared to non-CF, there was a 

significantly increased oxidation of Amplex red in CF islets at 120 min (Fig. 9B).

Discussion

The current results demonstrated significantly decreased CuZnSOD activity, increased pro-

oxidant production (presumably superoxide and other peroxides derived from reactions 

of superoxide) and increased oxidatively modified proteins in the pancreas of a well-

established CF porcine model. Increased pancreatic DHE oxidation levels were seen in 

frozen CF pancreatic tissue sections and staining for this was inhibited by a selective 

SOD-mimetic, suggesting the signal was generated by superoxide. Increased levels of pro-

oxidants (presumably superoxide and peroxides derived from superoxide), also occurred in 

cultured newborn CF pig islets while insulin secretion and secretory index were significantly 

reduced compared to non-CF. These results suggest increased oxidative stress in CF pig 

pancreas and islet cells that may be contributing to glycemic changes and insulin secretion 

defects in people with CF.

Oxidant-related damage and disruptions in glutathione metabolism has previously been 

shown in the lungs of humans with CF as well as other model systems [56,57], but not 

the pancreatic tissue. Oxidative stress was postulated as playing a role in CFRD because 

the blood levels of 4-HNE-modified proteins were elevated in children with CF and their 

concentrations correlated with the degree of impaired glucose tolerance [42]. Our study 

shows for the first time, the direct evidence of oxidative stress in CF pancreas in a well-

established large animal model. This study suggests that oxidative stress may be playing 

a role in CFRD pathogenesis, as it is recognized as a major factor in the development of 

impaired insulin secretion in type 2 diabetes [58–66] as well as a tumor suppressor in cancer 

development [67].

GSH, a major redox buffer in cells, is particularly important for oxidative and 

immunological responses in CF. GSH is low in the airway surface liquid (ASL) and plasma 

of patients with CF [68–72] possibly because of abnormal GSH transport due to defective 

CFTR [39]. A low GSH found in the ASL of children with CF, irrespective of oxidation 

supports an inherent glutathione deficiency in CF [41]. Our study demonstrates an increase 

in total GSH (GSH+GSSG) and an increase the level GSSG in CF pancreas, all indicative 
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of a redox stress and compensatory response by the glutathione synthetic pathways. Thiol 

redox stress and alterations in GSH metabolism in CF may be directly linked to CFTR 

activity and abnormal antioxidant defenses as well as priming and perpetuating excessive 

inflammation in CF.

The pancreatic β-cells may be susceptible to oxidative stress because of their low enzymatic 

antioxidant capacity (CuZnSOD, MnSOD, catalase, GPx) to detoxify excess superoxide 

and hydrogen peroxide [30–33]. This may explain why the degree of insulin secretion 

impairment correlates with the concentrations of oxidative damage markers in type 2 

diabetes [58,73,74]. We found significant pro-oxidant generation in the CF pancreas that 

could be inhibited by the antioxidant enzyme, SOD. suggesting increased production of 

O2
●−. CuZnSOD activity was significantly decreased in CF pancreas, suggesting that 

the ability to detoxify superoxide in the cytosol and mitochondrial inter-membrane space 

was impaired. We found no difference in pancreatic catalase, GPx and MnSOD between 

CF and non-CF pancreas. Superoxide dismutase catalyzes dismutation of superoxide to 

H2O2. Hydrogen peroxide is then detoxified by catalase or GPx to oxygen and water. We 

found increased generation of peroxides in CF islets suggesting production of H2O2, lipid 

hydroperoxides and peroxynitrite [75,76], all implicated in CF disease pathogenesis [77,78]. 

These results suggest that the detoxification reactions of superoxide in the cytosol and 

intermembrane space of the mitochondria may be compromised and accumulated products 

may cause oxidative stress. Also superoxide reacts with Fe and Cu to generate increased 

levels of both pools and redox cycling metal ions as well as causes the release of Fe from 

Ferritin which could exacerbate oxidative damage through Fenton chemistry [79–83]. These 

previous observations taken together with the data in the current report on pro-oxidant 

production, antioxidant capacity, and oxidative damage markers are consistent with the 

hypothesis that Fenton chemistry involving hydroperoxides could contribute to injury in 

islets from pigs expressing CFTR mutations.

Early exocrine pancreatic disease is a risk factor for CFRD [84], thus it is expected that 

the exocrine pancreas will have an impact on islet cell function in CF. We previously 

demonstrated impaired insulin secretion in CF pigs using intravenous glucose tolerance 

test (IV-GTT) [16]. In this study, insulin secretory defects were confirmed in cultured CF 

newborn islets. With high levels of superoxide, and peroxides and no compensatory increase 

in GPx or catalase activity to inhibit H2O2, CF islets are at risk for the deleterious effects 

of pro-oxidants. Low levels of pro-oxidants likely help mediate and regulate GSIS, but at 

higher concentrations, they inhibit insulin secretion from the islets, probably by directly or 

indirectly disturbing the integrity and physiological function of cellular macromolecules, 

such as DNA, lipids and proteins [85–90]. Consistent with this, prior in vitro studies of 

cultured CF islets have concluded that their damage and dysfunction originate from factors 

produced by exocrine pancreas cell types [91–93].

A dysfunctional CFTR and aberrant GSH function may be another source of the oxidative 

stress observed. Other sources to consider are ROS generated by tissue infiltrating 

inflammatory cells as is the case with CF lungs [94,95]. NADPH oxidase is likely not 

the source of ROS generation in CF islets because the insulin secretory defects were not 

reversed with apocynin. The source of ROS may be islet cells or ductal epithelial cells 
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as the islet cultures may contain CFTR-expressing ductal cells [91,92] and are devoid of 

inflammatory cells. Free radicals released in the pancreas can cause islet cell damage [27,28] 

but at least in the newborn period, there was no evidence of widespread islet cell loss in CF 

pigs [16].

Conclusions

To the best of our knowledge, this is the first study demonstrating the direct evidence of 

oxidative stress in CF pancreas with a loss of cytosolic and mitochondrial intermembrane 

space SOD1 activity. Although short term treatments with two ROS-inhibitors failed to 

restore islet dysfunction, whether pro-oxidants contribute to long term islet dysfunction in 

CF remains to be determined. Our study suggests that oxidative stress, specifically peroxides 

formed from peroxidases, may contribute to the CF pathology. Further investigation into the 

ROS species, source and impact on pancreatic function is warranted.
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Fig. 1. 
GSH is oxidized to GSSG in neonatal CF pig pancreas. (A) Total GSH, (B) total GSSG, (C) 

%GSSG and (D) GSH:GSSG ratio were measured in newborn pig pancreas homogenates 

using spectrophotometric detection of GSH oxidation by the sulfhydryl reagent 5,5′-dithio-

bis(2-nitrobenzoic acid) (DTNB) forming the yellow derivative 5′-thio-2-nitrobenzoic acid 

(TNB). Values for all graphs show the mean +/− SEM from independent animals. P values 

are shown (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.).
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Fig. 2. 
CF pancreas shows increased levels of ROS in situ. Pig pancreata were harvested within 12 

h after birth and immediately frozen in OCT compound. Samples were cryo-sectioned onto 

microscope slides and stained with 5 μM dihydroethidium for 30 min at 37 °C. At least three 

images per tissue section (average 4 sections per tissue) were captured at 200x and 630x 

using a Zeiss 710 confocal microscope. Image fluorescence intensity was quantified using 

Image J. Pictures shown in (A) and (B) are representative of quantified data shown in (C). P 
value is shown.
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Fig. 3. 
Increased levels of ROS in situ in CF pancreas can be inhibited with SOD mimetic 

compounds. Pig pancreata were harvested and cryo-sectioned as in Fig. 2, but some 

specimens had 500 nM GC4401, an SOD mimetic, or GC4404, an inactive analogue, 

included in the reaction during the DHE staining. Cells were then analyzed as in Fig. 2. 

GC4401 was able to inhibit greater than 75% of the signal from DHE oxidation under these 

conditions, supporting the hypothesis that superoxide levels are increased in CF pancreas.
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Fig. 4. 
4-Hydroxynonenal modified proteins and 3-Nitrotyrosine as determined by immuno-blotting 

in pancreatic tissue. (A) Pancreatic tissue from pigs with non-CF (N = 7), or CF (N = 5) 

were probed for 4-HNE expression using immuno-slot-blotting. 4-HNE was significantly 

elevated in CF pig pancreas relative to non-CF (p<0.01). Data shown were the average 

staining of samples from three separate blots normalized to total protein via ponceau 

staining and reported with SEM. Micrographs of pancreatic tissue from (B) non-CF (N 

= 5) and (C) CF (N = 4) pigs probed for 3-NT-modified protein using immunohistochemistry 

and (D) quantified according to staining intensity per area. CF pig pancreas displayed 

significantly increased (p < 0.01) 3-NT staining throughout the pancreas. Data shown are the 

average of at least 6 sites selected randomly from each tissue section and reported with SD.
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Fig. 5. 
CF Islets have increased levels of ROS. (A) Islets were isolated and cultured in glass bottom 

dishes overnight at 37 °C, 5% CO2. The images were acquired immediately after addition 

of 10 μM of DHE at room temperature (about 25 °C) without additional CO2, at excitation/

emission wavelength of 405/570 nm, using a Zeiss 710 confocal microscope. Images for 

WT and CF islets were obtained at the exact same gain setting on the microscope. (B) 

The fluorescent intensity of the images was quantified using ImageJ. Data shown are 

representative of three separate experiments.
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Fig. 6. 
Glucose stimulated insulin secretion (GSIS) from CF and non-CF pig islets. Insulin 

secretion from cultured neonatal (A) non-CF and (B) CF pig islets at 1.67 mM to 16.7 

mM glucose. (C) A reduction in the insulin secretory index (SI) was observed in CF as 

compared to non-CF cultured neonatal pig islets. Values for all graphs show the mean +/− 

SEM from independent animals. P values are shown.
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Fig. 7. 
GC4401 does not reverse insulin secretory defects in CF islets. The insulin secretory index 

at 1.67 mM versus 16.7 mM glucose is shown. CF and non-CF pig islets were treated with 

GC4401 where indicated. The mean +/− SEM from independent animals is shown. The dots 

indicate independent islet preparations, with differing colors indicating separate animals. * 

P<0.05 for both CF groups versus non-CF, as determined by ANOVA followed by Tukey’s 

posthoc testing.
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Fig. 8. 
Apocynin does not reverse insulin secretory defects in perifused CF islets. Glucose 

stimulated insulin secretion was impaired in CF compared to non-CF cultured neonatal 

islets (A). 24 h culture with apocynin (apo) failed to impact insulin secretion in CF islets 

(B) or non-CF islets (C). Likewise, glucose stimulated insulin secretion as measured as 

incremental area under the curve (iAUC) was impaired in CF versus non-CF animals, but 

was not impacted by apocynin (D). Values for all graphs show the mean +/− SEM from 

independent animals. * p<0.05 for indicated time points (A) or iAUC (D), as assessed by 

2-way ANOVA.

O’Malley et al. Page 25

Adv Redox Res. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
CF islets have increased peroxide production. (A) Time course of the change in the 

fluorescence of 20 μM Amplex Red at 590 nm of CF and non-CF islets following 9 days in 

culture. (B) Fluorescence measurements taken at 2h after exposing islet cultures to Amplex 

Red. The data points are the mean ± SD of individual experiments isolated from independent 

animals, n = 3; Non-CF, n = 4 CF; * p <0.05 (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.).
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