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SUMMARY

The diffuse-type gastric cancer (DGC) constitutes a subgroup of gastric cancer with poor prognosis

and no effective molecular therapies. Here, we report a phosphoproteomic landscape of DGC derived

from 83 tumors together with their nearby tissues. Based on phosphorylation, DGC could be classified

into three molecular subtypes with distinct overall survival (OS) and chemosensitivity. We identified

16 kinases whose activities were associated with poor OS. These activated kinases covered several

cancer hallmark pathways, with the MTOR signaling network being the most frequently activated.

We proposed a patient-specific strategy based on the hierarchy of clinically actionable kinases for pri-

oritization of kinases for further clinical evaluation. Our global data analysis indicates that in addition

to finding activated kinase pathways in DGC, large-scale phosphoproteomics could be used to classify

DGCs into subtypes that are associated with distinct clinical outcomes as well as nomination of kinase

targets that may be inhibited for cancer treatments.
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INTRODUCTION

Gastric cancer (GC), one of the most common and fatal diseases in East Asian, is a heterogeneous disease

with diverse histological and molecular characteristics (Wang et al., 2011; Cancer Genome Atlas Research

Network, 2014). The widely used Lauren classification stratifies GC into diffuse-type, intestinal-type, and

mixed types (Wu et al., 2019). Diffuse-type gastric cancer (DGC) has the worst prognosis and lacks treat-

ment options, particularly for targeted therapy.

Over the past decades, genomic landscapes of GC has been mapped (Cancer Genome Atlas Research

Network, 2014; Tan et al., 2011; Cristescu et al., 2015). The Cancer Genome Atlas (TCGA) project uncovered

four molecular subtypes of gastric cancer. The Asian Cancer Research Group (ACRG) also described four

molecular subtypes based on gene expression data of GC (Cancer GenomeAtlas Research Network, 2014).

Previously, we mapped the proteomic landscape of DGC of 84 paired tumors and their nearby tissues and

showed that based on the altered protein expression alone, DGC could be subtyped into three major clas-

ses (PX1-3) that are associated with clinical outcomes (Ge et al., 2018). Our study allowed the nomination of

more than 20 proteins that function in cancer growth, ROS and metabolism, cell-cell adhesion and adjunc-

tion, as well as immune-response pathways as potential drug targets.

The rapid development of kinase inhibitors raised the hope for targeted therapy and even truly individu-

alized therapy (Ferguson and Gray, 2018). The concurrent development of phosphoproteomics that

focused on identification and quantification of phosphorylated amino acid residues in proteins in biolog-

ical specimens provided a needed support for the utilization of kinase inhibition as a therapy (Casado et al.,

2017; Wu et al., 2019). The state-of-the-art phosphoproteomics now can measure tens and thousands of

phosphorylation sites, from which kinase activities can be inferred and targeted kinase therapies may be

developed (Casado et al., 2017; Wu et al., 2019). Large-scale mappings of phosphorylation landscapes

were carried out in several cancers including breast cancer (Mertins et al., 2016), ovarian cancer (Mertins

et al., 2016), prostate cancer (Drake et al., 2016), lung cancer (Rikova et al., 2007), blastoma brain cancer

(Liu et al., 2018), gastric cancer (Mun et al., 2019), and hepatocellular carcinoma (Jiang et al., 2019). But

the utilization of the phosphoproteomics data was poor, and there were few reports of using
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phosphoproteomics to subtype cancers to predict patient prognosis or nominate kinase targets for treat-

ments in a systematic manner.

Here, we report the phosphorylation landscape of DGC as a part of a concerted effort of the Chinese

Human Proteome Project (CNHPP). We carried out a quantitative measurement of phosphoproteomics

of 83 DGC tumors and their matching nearby tissues. Applying an unbiased bioinformatics analysis work-

flow that we developed recently (Tong et al., 2018), we showed that using phosphoproteomics data alone,

DGC could be classified into three subtypes that associated with distinct clinical outcomes and we

nominated druggable kinase candidates for each individual patient, allowing for drug prioritization on

an individualized basis for DGC patients.

RESULTS

General Features of the DGC Phosphoproteome

We enriched phosphopeptides with TiO2-coupled beads from tryptic digests of tumor samples and their

nearby tissues of 83 DGC patients obtained from the tumor tissue bank of Beijing Cancer Hospital

(Ge et al., 2018) (Table S1) and measured enriched phosphopeptides with LC-MS/MS. Phosphorylation

was identified through database using a data analysis platform Firmiana (Feng et al., 2017) (Figure 1A).

After quality control including the false discovery rate (FDR) of peptides and Mascot delta score (Wu

et al., 2011) for phosphorylation sites (Figure 1B), 28,016 phosphorylation sites were used for subsequent

analysis (Figure S1, Table S2), which include 22,744 (81.18%) phosphoserine sites, 4,889 (17.45%) phospho-

threonine sites, and 383 (1.37%) phosphotyrosine sites (Figure 1C).

Among the 28,016 phosphorylation sites in the DGC phosphoproteomics, 21,282 sites were found in both

tumors and nearby tissues; 4,447 sites and 2,287 sites were detected only in tumors and nearby tissues,

respectively (Figure S1B). Principle component analysis (PCA) revealed that tumors could be separated

from the nearby tissues based on phosphorylation profiles (Figure 1D). An SAM (significance analysis of

microarray) analysis (Tusher et al., 2001) identified 445 upregulated and 819 downregulated phosphoryla-

tion sites in tumors compared with nearby tissues (FDR <0.01 by SAM and differential expression percent-

age >0.5 or <�0.5, Figure S2A, Table S3). Proteins with upregulated phosphorylation in tumors were

enriched in cell-cycle-related pathways (DNA replication and cell division), cell-cell adhesion, DNA repair,

and mRNA splicing pathways (Figure 1E, Table S4), whereas proteins with upregulated phosphorylation in

the nearby tissues were enriched in cell-cell adhesion, gastric acid secretion, and regulation of Rho protein

signal transduction.

Subtypes of DGC and Their Associations with OS and Chemosensitivity

Based on the intensity of 28,016 phosphorylation sites in the tumors (Figure 1B, Table S2), we employed

consensus clustering (Wilkerson and Hayes, 2010) to identify DGC subtypes. Three clusters (Ph1-3) were

apparent (Figures S2B, S2E, and S3A). We further identified 302 differentially phosphorylated sites in

tumors among the subtypes (Anova, FDR<0.001, Table S4). As shown in Figure 2A, hierarchical clustering

revealed four groups of phosphorylated sites (Tables S5 and S6). To investigate subtype-specific pathway

alterations, we further identified significantly altered phosphorylation sites between tumors and nearby tis-

sues within the same subtype (FDR <0.01 by SAM and differential expression percentage >0.5 or <–0.5,

Table S7). Ph1 to Ph3 contained 28, 133, and 5 uniquely upregulated phosphorylation sites in tumors,

respectively, and many phosphorylation sites were downregulated in tumor (Figure 2B). These dysregu-

lated phosphoproteins suggested that the Ph1 subtype was more or less normal in the basic function of

the stomach while upregulated rRNA processing and RNA polymerase II promoter activity (Figures 2C

and 2D, Table S7). The Ph2 subtype mainly upregulated DNA metabolic process and DNA repair while

losing the basic function of the stomach including gastric acid secretion (Figures 2C and 2D, Table S7).

The Ph3 subtype upregulated chromosome segregation and mainly lost cell-cell interaction and commu-

nications (Figures 2C and 2D, Table S7)

We further investigated the OS of these patients. The Ph1 subtype had the best OS, whereas both Ph2 and

Ph3 had worse survival (logrank p=0.012, Figure 2E). Moreover, we found that the Ph2 patients tend to be

more sensitive to chemotherapy (logrank p = 0.044, Figure 2F), but the Ph1 and Ph3 groups exhibited no

statistically significant prognosis improvement by chemotherapy (logrank p> 0.1, Figure 2F). In addition, a

multivariable Cox analysis showed that the phosphoproteomics subtyping remained significantly associ-

ated with patients’ OS after adjusting for age, gender, adjuvant chemotherapy, tumor site, stage, and
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Figure 1. A Summary of Phosphoproteome Analysis of Diffuse-Type Gastric Cancer

(A) General workflow of the phosphopeptide enrichment and quantitative mass spectrometry protocol.

(B)Phosphoproteomic datasets filtered at different levels for various statistical analyses.

(C) Distribution of modification types.

(D) Principal component analysis (PCA) to visualize tumor and nearby tissue samples.

(E) Top ranked pathways that are significantly altered in tumors compared with nearby tissues (FDR<0.1, the minimum

proteins in one pathway is 5). Yellow words represent the pathways enriched by the proteins with upregulated

phosphorylation sites in tumors compared with nearby tissues; blue words represent the pathways enriched by the

proteins with downregulated phosphorylation sites in tumors compared with nearby tissues.

Also see Figure S1.
TP53 (using Ph1 as the reference, HR = 8.67, p = 0.038 for Ph2; HR = 9.87, p = 0.029 for Ph3, Table 1). Other

clinical characteristics were also associated with the Ph1–3 subtypes. Firstly, age (R50 years vs <50 years),

stage (I/II/III/IV), and MSI status (microsatellite unstable vs microsatellite stable) in each subtype were

significantly different (Table S8, Figure S3B, Fisher-test, p<0.05). The Ph1 subtype contained younger
46 iScience 22, 44–57, December 20, 2019
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Figure 2. Phosphoproteome Subtyping of DGC with Different Overall Survival and Chemosensitivity

(A) 301 sites differentially phosphorylated among the subtypes (Anova, FDR<0.001).

(B) The number of differentially expressed phosphorylation sites in tumors compared with nearby tissues for each type.

(C and D) Heatmaps of selected phosphoproteins representing major altered signaling pathways in each type.

(E) The association of molecular subtypes with overall survival of patients; Kaplan-Meier analysis, p value from logrank test.

(F) The association of adjuvant chemotherapy with overall survival in each subtype. Only the patients who have the chemotherapy information were shown.

(G–I) Other clinical parameters across 83 patients in Ph1–3. Intratumoral TILs, intratumoral tumor-infiltrating lymphocytes.

Also see Figures S2 and S3.
patients (<50 years), as well as early stage (stage II) patients, whereas Ph2 and Ph3 contained older and

more advanced stage (stage III–IV) patients. Cancer driver genemutation rate that wemeasured previously

(Ge et al., 2018) seemed to be higher in Ph1 than in Ph2 and Ph3 (Figure 2G, p = 0.044, Wilcox test), for

example, the Ph1 subtype contained three out of five patients with MSI. Secondly, Ph1 was enriched

with higher intratumoral TILs (tumor-infiltrating lymphocytes) and mesenchymal cells than Ph2 and Ph3

(p<0.05, Wilcox test Figures 2H and 2I). It has been reported that increasing intratumoral TILs implies a bet-

ter prognosis in GC (Kang et al., 2017; Yu et al., 2016; Grogg et al., 2003). These correlations were consistent

with and may explain the OS difference between the three molecular subtypes. Previously, we subtyped

DGC of the same samples into three subtypes (PX1-3) based on protein profiling alone (Ge et al., 2018).

As showed in Figure S3B, most of the patients with worse survival in the Ph2 and Ph3 (85.25%) were also

classified to PX2-3, demonstrating that the two methods reached good agreement. Moreover, Ph1 ap-

peared to include more patients with better survival than PX1 did, suggesting that phosphoproteomics-

based subtyping may be superior to that from protein profiling for correlation with OS.

Nomination of Kinases as Potential Therapeutic Targets

As the activity of a kinase can be inferred by the intensity of its substrates (Casado et al., 2013), we built a

kinase-substrate dataset that contained 3,321 substrates and 250 kinases to find activated kinases from the

measured substrates (Table S9, Figure 3A). Our DGC phosphoproteomes contained 1,896 protein sub-

strates in the kinase-substrate database (see Methods, Table S9). For each kinase, the average number

of substrate sites is 13 and themedian number is 4 (Figure S4, Table S9). We then calculated the normalized

value of p-site-FOTTiO2/protein-FOTprofiling to correct for altered protein expression (Wu et al., 2011) and

obtained a normalized ratio of p-site between tumor and nearby tissue for each patient. We used the

average fold difference for all detected substrate sites for the same kinase as a measurement of the kinase

activation/inhibition (Table S10). The highly activated kinases (with top ranked values of average fold dif-

ference and top frequencies detected in the patients) included PRKACA, CSNK2A1, CDK1/2, MAPK1/3,

GSK3B, PRKCA, AKT1, CDK4, and CDK6 (Figure S5A). We also adapted three other methods including

Z-test, kinase substrate enrichment analysis (KSEA), and themultiple linear regression (MLR) model to iden-

tify more activated kinases (Hernandez-Armenta et al., 2017) (Figure 3A, see Methods). We computed

‘‘kinase activity’’ using each of these four methods for every patient and generated a kinase-patient matrix,

respectively (Figure 3A).

In order to evaluate the accuracy of the four prediction methods, we calculated correlation of the predicted

kinases activities with phosphorylation intensities of the kinase activation loops. Phosphorylation of the

activation loop is often critical in regulating kinase activity in many cases (Nolen et al., 2004). We found

that the kinase activities predicted by the four methods were positively correlated with the intensities of

the 43 activation loop phosphorylation sites that we could measure (Figure 3A, panel 2; Figure S6). The

Mean value, KSEA, and regression methods performed significantly better than the Z-test method (Wilcox

test p<0.05; Figure 3A, panel 2) and were retained for subsequent analysis.

We then postulated that activated kinases might be therapeutic targets if their activities are associated with

poor OS. We stratified patients into two groups according to high and low kinase activity. The cut-off value

was individually determined by the lowest p value of OS according to the logrank test (Figure 3A, panel 3;

Table S11). We identified 19 kinases whose activities were significantly associated with poor OS (10 from the

mean value method, 7 from MLR, and 8 from KSEA) (Figure 3A, panel 4). At least two substrates were

identified for each kinase with a fold change of >1.5 between tumor and the near-by tissues. Finally, 16

non-overlap kinases were found after controlling the logrank p value <0.05 at least in three continuous

cut-offs, which was to reduce the false-positive rate of the survival analysis (Figures S6–S8). The higher

activities of these kinases were significantly associated with poor OS (logrank p<0.05, HR>2, Figure 3B,

Table 2). We thus nominated these 16 kinases as potential therapeutic kinase targets (PTKT). Using the
48 iScience 22, 44–57, December 20, 2019



Characteristics (n) Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Agea 1.033 (1.002–1.065) 0.036 1.039 (0.99–1.08) 0.054

Gender

Male (50) 1 0.68 (0.30–1.55) 0.36

Female (31) 0.662 (0.323–1.36) 0.26

Adjuvant chemotherapy 0.60 (0.23–1.58) 0.3

Without (17) 1

Withb (64) 0.439 (0.201–0.961) 0.04

Tumor site

Cardia, GEJ (19) 1

Body (32) 1.484 (0.569–3.870) 0.42 1.62 (0.53–4.98) 0.4

Antrum (26) 1.342 (0.487–3.696) 0.57 1.27 (0.38–4.27) 0.7

Clinical stagea

(Ib to IV) 1.82 (1.01–3.29) 0.048 2.09 (1.12–3.88) 0.02

TP53 mutation

Wild-type (45) 1

Mutant (36) 1.23 (0.60–2.51) 0.58 1.10 (0.53–2.31) 0.79

Phosphoproteome cluster

Ph1 (22) 1

Ph2 (32) 10.53 (1.39–79.64) 0.023 8.67 (1.12–67.01) 0.038

Ph3 (27) 11.64 (1.52–89.14) 0.018 9.86 (1.26–76.95) 0.029

Table 1. Univariate and Multivariate Analysis of Overall Survival in 81 Patients

GEJ, gastroesophageal junction; HR, hazard ratio; CI, confidence interval.
aContinuous variable.
bPatients proceed at least one cycle of adjuvant chemotherapy. Significant data are emphasized in bold.
same strategy, we could identify only two kinases, namely SRPK2 and MAPKAPK2, whose increase in pro-

tein abundance correlated with poor OS (Table S11, Figure S9). SRPK2 was the only kinase that was iden-

tified as PTKT based on activity or abundance. Therefore, using kinase activity could identify more PTKTs.
Major Dysregulated Kinase Pathways in DGC

The above 16 PTKTs could be classified into seven pathways: (1) MTOR signaling, (2) cell cycle and

apoptosis, (3) MAPK signaling, (4) cell adhesion and actin organization, (5) microtubule affinity, (6) RNA

splicing, and (7) G protein-coupled receptor (Figure 4A). The MTOR signaling pathway contained six

PTKTs, including PDPK1, MTOR, RPS6KB1, RPS6KA3, PKN1, and STK11, representing the most frequently

dysregulated pathway in DGC (Figure 4A). It was reported that overexpression of PDPK1 was associated

with poor OS in gastric carcinoma (Gagliardi et al., 2018). The cell cycle pathway ranked the second highly

dysregulated pathway including PLK1, CDK7, CDK4, and CDK6. Upregulation of PLK1 and CDK7 in gastric

cancer correlated with poor OS (Otsu et al., 2016; Wang et al., 2016). Moreover, CDK4/6 inhibitors demon-

strated significant activity against several solid tumors (Goel et al., 2017). Recently, it was reported that

MTORC1-S6K1 and CK1 phosphorylate SRPK2 to induce its nuclear translocation and turn on a splicing

program to activate lipid metabolism to fuel cancer growth (Lee et al., 2017). Our findings that the activities

of MTOR as well as its downstream kinases RPS6KB1/RPS6KA3 and SRPK2 were associated with poor OS

(Figure 3B) strongly support the notion that the MTOR-S6K1-SRPK2 signaling is at work in DGC
iScience 22, 44–57, December 20, 2019 49
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Figure 3. Nominating Potential Druggable Kinases for DGC

(A) The workflow of the identification of druggable kinases.

(B) Survival curves of the four kinases and boxplots of the kinase substrates in the phosphoproteome and proteome data. Low (Kinase = 0)/high (Kinase = 1):

patients with kinase activity lower/above than cut-off. For kinases were both identified by more than one kinase activity prediction method, only the smallest

p value of the kinase was shown.

Also see Figures S4–S10.
tumorigenesis. SRPK2 was reported to be overexpressed in several cancer types (Lee and Abdel-Wahab,

2016) including leukemia, lung, colon, and head and neck squamous cell carcinoma; its overexpression

in gastric cancer was not reported yet. Summaries of other kinases are provided in Table 2. Table S12 dis-

played the support validation evidences for kinases in published paper and the immunohistochemistry re-

sults of kinases in 11 stomach cancer tissues from human protein atlas (https://www.proteinatlas.org).

Among the 16 kinases we identified, 10 kinases have been validated as potential targets in different

cancers.

In addition, we identified 287 unfavorable prognostic phosphorylation sites, for which higher expression of

a given phosphorylation site was correlated with a poor patient survival outcome (FDR<0.1, Table S13). The

best ratio cut-offs were determined using the same strategy as the kinase identification. Interestingly, we

found these unfavorable prognostic phosphorylation sites had three co-expression modules (Figure 4B). A

functional gene ontology (GO) analysis and kinase enrichment (see Methods) were performed for the mod-

ules (Table S14). The Module1 was related to Rho protein signal transduction and cell-cell adhesion. Mod-

ule 2 contained many phosphorylation sites associated with RNA splicing. These phosphorylation sites

included S312-THOC5, S597-SRRM1, S549-SRRM1, S965-SCF1, and S796-SCAF11 (Figure 4B). The Module

3 enriched in cell growth and regulation of small GTPase-mediated signal transduction pathways. Three

representative phosphorylation sites, S1507-AKAP13, S1261-MTOR, and T1353- MYO9B, were displayed

in Figure 4B. Many kinases such as AKT1, RPS6KB1, RPS6KA1, RPS6KA3, PRKCA, PRKCD, RAF1, and

PAK4 were enriched. These co-expression modules results confirmed that Rho protein signal transduction,

cell-cell adhesion, MTOR signaling pathway, and RNA splicing were major altered pathways in DGC.
Nomination of PTKTs and Inhibitors for Individual Patients

To help nominate PTKTs for DGC patients, we calculated kinase activity for each individual patient. We

then selected the top three PTKTs according to their activated kinase activities for the 83 patients (Fig-

ure 4B). It was evident that each patient had a unique pattern of activation for the top three PTKTs. The

most frequently activated PTKT, CSNK2A1, was identified in 42/83 (50%) of the patients, whereas the sec-

ond most frequently activated kinases MTOR, MAPK3, and GRK6 were each identified in 25/83 (30%) of the

patients and the least frequently activated PTKT, PDPK1, was only identified in 4/83 (5%) of the patients.

Silmitasertib, the CSNK2A1 inhibitor, was in several clinical trials for treating cancers as a single agent or in

combination with chemotherapy (Chon et al., 2015). Thus, we nominated Silmitasertib as an actionable re-

agent. The second best available actionable kinase inhibitors were theMTOR inhibitor, everolimus, and the

MAPK3 inhibitor Ulixertinib. The oral MTOR inhibitor everolimus was evaluated in the phase III GRANITE-1

(First Gastric Antitumor Trial With Everolimus; Clinical Trial No. NCT00879333) (Ohtsu et al., 2013) and did

not significantly improve OS for advanced gastric cancer. We speculate that inhibition of MTOR might be

more effective if patients with hyperactive MTOR were selected in the trial. Ulixertinib is a potent and

selective small molecule inhibitor of ERK1 and ERK2. It holds promise as a treatment for ERK-dependent

cancers including colon cancer and melanoma with BRAF mutation (Germann et al., 2017). Although the

frequency of BRAF mutation is rare in DGC, its downstream effector MAPK3 kinase activity is elevated,

rendering them amenable to Ulixertinib treatment. Given the diverse PTKT activation profile of the 83

DGC patients, we propose that kinase inhibitions as a means of cancer treatment needs to be done on

an individual basis for this cohort of patients.
Validation of CSNK2A1 Inhibition with Silmitasertib in GC Cell Lines

To test the hypothesis that the computed kinase activity from phosphoproteomics data could predict

sensitivity to kinase inhibition, we repeated the above approach in gastric cancer cell lines so that we could

carry out experimental validation. We measured ten GC cell lines and obtained a quantitate proteome of

8,973 proteins and a phosphoproteome of 10,332 phosphorylation sites (seeMethods, Tables S15 and S16,

Figures S11 and S12). We then measured IC50 values of Silmitasertib in the ten GC cell lines. The activity of
iScience 22, 44–57, December 20, 2019 51
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Kinases Method HR p Valuea #Patientsb Summary

PI3K/AkT/mTOR pathway

PDPK1 KSEA 2.85 0.0031 24 AKT1 activation

MTOR Regression 2.54 0.0091 32 Cell growth and metabolism

RPS6KB1 Regression 2.29 0.021 27 Cell growth and proliferation

RPS6KA3 Mean values 2.69 0.0051 29 Cell growth and proliferation

PKN1 Mean values 3.18 0.00136 33 Phosphorylated by PDPK1

STK11 KSEA 2.58 0.0084 34 A tumor suppressor

Cell cycle; apoptosis

CDK7 Mean values 2.66 0.012 15 Cell cycle

CSNK2A1 KSEA; regression 2.25;

2.45

0.028; 0.014 22; 21 Cell cycle; apoptosis

CSNK2A2 Mean values 2.39 0.016 22 Cell cycle; apoptosis

ATM Mean values 3.3 0.0007 29 DNA damage

MAPK pathway

MAPK3 Mean values 2.67 0.0066 35 Proliferation, differentiation, and

survival

MAP3K7 Regression 3.35 0.0012 15 Proliferation, differentiation, and

survival

Cell adhesion and actin organization

PAK4 Regression 2.49 0.013 17 Actin organization and cell adhesion

Microtubule affinity

MARK2 Mean values;

regression

3.22;

2.39

0.00096;

0.014

20; 27 Controls the stability of microtubules

RNA splicing

SRPK2 Regression 2.66 0.0090 16 Pre-mRNA splicing; cell cycle

regulation and cell apoptosis

G protein-coupled receptor

GRK6 Mean values 2.75 0.011 47 G protein-coupled receptor kinase

Table 2. Kinases Associated with Overall Survival of DGC Patients
aLogrank p values.
bNumber of patients with a kinase activated.
CSNK2A1 for each cell line was calculated by the mean value method based on the phosphoproteomics

data. It was evident that the computed CSNK2A1 activity in cancer cell lines was negatively correlated

with the IC50 value of Silmitasertib (Spearman, R = �0.47, p = 0.04, Figure 5). We also found that the abun-

dance of CSNK2A1 in the ten gastric cancer cell lines was also negatively correlated with IC50 value of the

Silmitasertib (Spearman, R = 0.69, p = 0.013, Figure 5). It seems that both the activity and abundance of

CSNK2A1 could predict Silmitasertib sensitivity of GC cell lines.

DISCUSSION

We measured phosphoproteomes of 83 DGC patients to paint the phosphoproteomic landscape of DGC.

Using a global phosphoproteomics data analysis workflow that we developed recently (Tong et al., 2018),

we demonstrated that large-scale phosphoproteomics alone could be used to classify DGCs into subtypes

that are associated with distinct clinical outcomes as well as nomination of kinase targets for further clinical

evaluation.
52 iScience 22, 44–57, December 20, 2019
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Figure 4. Major Pathways Mapped by the Kinases Activated in DGC

(A) Potential kinase targets in DGC.

(B) Coexpression modules of unfavorable phosphorylation sites prognostic markers.

(C) Survival curves of the phosphorylation sites within the three modules.
We previously subtyped the same DGC patients with protein profiling data (PX1–3) (Ge et al., 2018). Our

current study suggests that subtyping with phosphoproteomics data may be more accurate, as the Ph1

group that is associated with best OS retrieved some patients assigned to the PX2 and PX3 groups but

with better OS. It remains to be tested whether the accuracy of prediction for OS and chemosensitivity

can be further improved by using both whole proteomics and phosphoproteomics data. It will be a signif-

icant challenge to translate the current findings into clinical practice.
Figure 5. A Patient-Specific Strategy for Nomination of Kinases

(A) Patient-specific kinase inhibitors for DGC.

(B) The relationship of CSNK2A1 activity with the IC50 of Silmitasertib.

Also see Figures S11 and S12.
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Protein kinases have become a major class of drug targets, and kinase inhibitors have demonstrated their

efficacy in the treatment of many cancers (Wu et al., 2015, 2016; Fabbro et al., 2015). In this study, we inves-

tigated kinase activation in a systematic manner to handle large-scale phosphoproteomics data. Our

analyses successfully dysregulated kinase pathways in DGC that conformed to the general conceptual

framework of cancer hallmarks. In addition to the finding that the MTOR signaling network was indeed

the key for DGC signaling as expected, the finding that SRPK2 kinase was activated in DGC on both protein

abundance and kinase activity suggests that RNA splicing may play a significant role in DGC. It is necessary

to delineate the exact signaling pathways to pinpoint the substrates of SRPK2 and what downstream

biochemical pathways they regulate.

Noticeably, clinical trials of kinase inhibitors of HER2, EGFR, AKT1, and MTOR have been successfully used

in other cancer treatment but failed in DGC (Choi et al., 2016). We speculate that one of the major causes

might be the selection of patients in the clinical trials. Take MTOR as an example: among the 25 DGC

patients whose MTOR kinase activity was among the top three most activated in our cohort, only eight

were the number one most activated potential therapeutic kinases. Stratifying patients with activated

MTOR activity might increase the success rate for MTOR inhibition to work in DGC patients.

It is exciting to find about 50% of the DGC patients with hyperactivation of CSNK2A1 and an actionable

inhibitor, Silmitasertib, is available. This suggests the possibility of translating this finding into clinical

actions. Moreover, we validated such a finding in 10 gastric cancer cell lines that calculated CSNK2A1

kinase activity from our bioinformatics workflow could predict the sensitivity to CSNK2A1 inhibition with

Silmitasertib. Recently, a more potent CSNK2A1 inhibitor was reported to have anticancer activity in cell

line and mouse models (Oshima et al., 2019). Given that DGC patients lack any targeted therapy options,

it is worthy trying in a preclinical setting to test whether CSNK2A1 inhibition would demonstrate efficacy.

The goal of individualized treatment in cancer is paradoxical in practice. It is more accurate and elegant to

perform analysis of each individual tumor to find the druggable targets, but it is almost cost prohibitive to

do so in clinical practice. The best compromise would be to find activated kinases with high frequency in a

cohort of cancer, demonstrate their preclinical efficacy, and then develop a practical companion test for

each high-frequency kinase so that a clinical trial can be carried out selecting the right patients. This

work is the first step in this line of approach, as we have identified and nominated a collection of kinases

that activated with high frequency and are correlated with OS in DGC.
Limitations of the Study

Our current bioinformatics workflow only used less than 20% of the data due to the limitation of the kinase-

substrate database, in which we could only analyze phosphorylation data included in the database. How to

make use of the rest of the 80% of data would further strengthen the utility of themethod as well as enhance

our understanding of DGC and hold the promise to find novel pathways and drug targets. We note that it is

necessary to further develop the current method to use in a clinical setting. Biopsy samples instead of the

resected samples, for example, from stomach endoscopy may be used to acquire the phosphoproteomics

data. An improvement of the current methodology is to make use of tiny amount of the biopsy samples to

acquire data and be able to analyze the data for cancer molecular subtyping and nomination of actionable

kinase targets.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplementary Information 

Transparent Methods 
Patient samples  

Tumor samples and their nearby tissues of 83 DGC patients were collected from the 

tumor tissue bank of Beijing Cancer Hospital after being evaluated by pathologists. The 

details of the biospecimen collection and clinical data annotation were described in the 

previous study (Ge et al., 2018). 

Cell lines and reagents 

Ten GC cell lines were purchased from Cobioer Biosciences Co., Ltd (Nanjing, Jiangsu, 

China). NUGC3, MKN45, SNU16, AGS, MGC803, SNU1, MKN1 and HGC27 were 

cultured in RPMI 1640 medium (Gibco, USA) supplemented with 10% FBS, while 

KATOIII and SNU5 were cultured in IMDM medium (Gibco, USA) supplemented 

with 20% FBS. All cell lines were maintained at 37◦C with 5% CO2. To perform MTT 

assay, cells were plated in tissue culture treated 96-well plates. After overnight adhesion 

to the plate, cells were incubated with the indicated concentrations of Silmitasertib 

(MedChem Express, USA) for 48 h. Cell Counting Kit-8 reagent (MedChem Express, 

USA) was added to 10% and incubated for 1.5 h at 37◦C before reading the absorbance 

at 450 nm on a plate reader. MTT assay was performed to determine the half-maximal 

inhibitory concentration (IC50) of Silmatisertib in the GC cells.  

Phosphopeptide enrichment and analysis by mass spectrometry.  

Tissue samples were minced and lysed in lysis buffer (8M Urea, 100mM Tris 

Hydrochloride, pH8.0) containing protease and phosphatase Inhibitors (Thermo 

Scientific) followed by 1 min sonication (3s on and 3s off, amplitude 25%). The lysate 



was centrifuged at 16,000g for 10 min at 4 °C and the supernatant was collected as 

whole tissue extract. Protein concentration was determined by Bradford protein assay. 

Extracts from each sample (2 mg protein) was reduced with 10 mM dithiothreitol (DTT) 

at 56°C for 30 min and alkylated with 20 mM iodoacetamide (IAA) at room temperature 

in the dark for additional 30 min. Samples were then digested using the FASP 

method(Wisniewski et al., 2009) with trypsin; tryptic peptides were separated in a 

home-made reverse-phase C18 column in a pipet tip. Then, 15mg TiO2-coupled beads 

were incubated with 500ul Binding Buffer(BB) at RT for 10min. Separate TiO2 into 

three 1.5ml EP tubes equally, 5mg for each and centrifuge 2,000g for 2min. The 

peptides were re-solved digested peptides with 6ul BB and combine with 5mg 

incubated TiO2 at RT for 30 min and centrifuge 1,000g for 2min. Repeat the solved 

procedures for the dried phospho-/peptides twice with the 5 mg TiO2 and then discard 

the supernatant. Peptides were eluted and separated into 6 fractions using a stepwise 

gradient of increasing acetonitrile (0%, 2%, 5%, 8%, 10%, 40%) at pH 10. The 6 

fractions were combined to 3 fractions, dried in a vacuum concentrator (Thermo 

Scientific). 

Then the tumor tissue samples were analyzed by Orbitrap Fusion mass 

spectrometers (Thermo Fisher Scientific, Rockford, IL, USA) coupled with an Easy-

nLC 1000 nanoflow LC system (Thermo Fisher Scientific). The injected peptides were 

separated on a reverse-phase nano-HPLC C18 column (precolumn, 3 μ m, 120 Å, 2 cm 

×100 μ m i.d.; analytical column, 1.9 μ m, 120 Å, 12 cm ×150 μ m i.d.) at a flow rate 

of 500 nL/min with a 75 min gradient of 5−30% solvent B (0.1% formic acid in 



acetonitrile). For peptide ionization, 2000 V was applied and a 320 ° C capillary 

temperature was used. For detection with Fusion mass spectrometry, a precursor scan 

was carried out in the Orbitrap by scanning m/z 300 -1400 with a resolution of 120,000 

at 200 m/z. The most intense ions selected under top-speed mode were isolated in 

Quadrupole with a 1.6 m/z window and fragmented by HCD with normalized collision 

energy of 35%, then measured in the linear ion trap using the rapid ion trap scan rate. 

Automatic gain control targets were 5×105 ions with a max injection time of 50 ms for 

full scans and 5×103 with 35 ms for MS/MS scans. Dynamic exclusion time was set as 

18s.  

For cell line samples, a total of 0.5mg cell protein lysates were digested with 

trypsin for phosphorylated peptides enrichment. 0.15ml binding buffer (80% ACN, 5% 

trifluoroacetic acid (TFA (Sigma-Aldrich)), and 1M lactic acid (Sigma-Aldrich)) was 

added to the digested peptides. Vortex vigorously at room temperature for 1min and 

centrifugated 10min at 14000g. Supernate was transferred to a new tube and 3mg TiO2 

beads were added. Incubation was processed at room temperature for 30min on rotor 

with middle speed. Then beads were collected by centrifugation for 2min at 2000 × g, 

and the supernatant was used to repeat the enrichment for twice with new TiO2. Beads 

were combined and wash in a clear tube with 500uL wash buffer (50% ACN and 5% 

TFA) for 5times. After that, beads were transferred into a 0.2ml StageTip with two 

pieces of C18. Another twice wash was proceed in tip with 100uL wash buffer per time. 

Phosphorylated peptides were eluted five times with 100uL elution buffer (40% ACN, 

and 18% aqua ammonia) per time. Peptide samples were concentrated in a SpeedVac. 



The cell lines samples were analyzed by the same Orbitrap Fusion mass spectrometers. 

The injected peptides were separated on a reverse-phase nano-HPLC C18 column 

(precolumn, 3 μ m, 120 Å, 2 cm ×100 μ m i.d.; analytical column, 1.9 μ m, 120 Å, 30 

cm ×150 μ m i.d.) at a flow rate of 600 nL/min with a 150 min gradient of 6−40% 

solvent B. Dynamic exclusion time was set as 25s.  

MS data processing  

All the MS data were processed in the Firmiana database(Feng et al., 2017). Raw files 

were searched against the human National Center for Biotechnology Information 

(NCBI) Refseq protein database (updated on 07-04-2013, 32015 entries) by Mascot 2.3 

(Matrix Science Inc). The mass tolerances were 20 ppm for precursor and 0.5 Da for 

product ions for Fusion. Up to two missed cleavages were allowed. The search engine 

set cysteine carbamidomethylation as a fixed modification and Phospho(ST), 

Phospho(Y), Acetyl (Protein N-term) and Oxidation(M), as variable modifications. The 

data were also searched against a decoy database so that peptide identifications were 

accepted at a false discovery rate (FDR) of 1%. Peptides with 1% FDR and Mascot ion 

score greater than 20 were selected for further analysis. Proteins with at least 2 unique 

peptides with 1% FDR at the peptide level and Mascot ion score greater than 20 were 

remained. Phosphorylation sites were reported when phosphopeptides showed a delta 

score >10, otherwise the precise modification site was deemed ambiguous(Savitski et 

al., 2011). For the peptide’s quantification, we used the area under the curve of a peptide 

feature. Label-free protein quantifications were calculated using a label-free, intensity-

based absolute quantification (iBAQ) approach(Schwanhausser et al., 2011). The 



fraction of total (FOT) was used to represent the normalized abundance of a particular 

protein/peptide across samples. FOT of peptide was defined as a peptide’s peak area 

value divided by the total area values of all identified peptides within one sample. FOT 

of protein was defined as a protein’s iBAQ divided by the total iBAQ of all identified 

proteins within one sample. The FOT was multiplied by 106 for the ease of presentation 

(Supplementary Table S2). 

The following filter criterias were applied for each statistical analysis shown in 

Fig. 1B: 1) Dataset 1 (D1) included all 37,354 identified phosphorylation sites on 1% 

of global FDR and Mascot ion score greater than 20. 2) For dataset 2 (D2), we excluded 

phosphorylation sites whose maximum FOT in all experiments less than the 3rd quartile 

value. The missing data were imputed with the minimum values. After missing value 

imputation, phosphorylation sites were quantile normalized. For the Proteomics data, 

the same filter criteria was used. 

Statistical analysis 

Principle Component Analysis (PCA) was performed to visualize separation of tumors 

and nearby tissues. Significance Analysis of Microarray (SAM) (samr R package) 

(Tusher et al., 2001) was performed to find differentially expressed phosphorylation 

sites between tumors and paired nearby tissues of all 83 patients and within each 

clusters. Data type was set as two class paired. Delta value was set respectively to meet 

FDR<0.01. The differentially expressed phosphorylation sites defined here must meet 

the following criteria: 1) q value less than 0.01, 2) differentially expressed percentage 

larger than 50%, which was calculated using the following formula: 



                   (1) 

where N"#$%&	#(	means the number of patients with Tumor-Nearby tissue ratio lager 

than 3, N"#$%&	)%*+	means the number of patients with Tumor-Nearby tissue ratio less 

than 1/3,	N"%",-	)."./".)	 means the number of patients with the phosphorylation site 

detected. To generate an appropriate list for the function enrichment, phosphorylation 

sites with FDR <0.01 by SAM and differential expression percentage >0.5 or < -0.5 

were selected. The corresponding proteins with the phosphorylation sites were used to 

perform pathways enrichment on the David website(Huang da et al., 2009).  

Consensus clustering was performed using the R package ConsensusClusterPlus 

(Wilkerson and Hayes, 2010). Fisher’s exact test and Wilcoxon rank-sum test were 

used to assess different frequencies of clinical characteristics between groups. Kaplan-

Meier method was used to perform the survival analysis and the difference was tested 

using the log-rank test. Coefficient value, which equals to ln (Hazard Ratio), was 

calculated from Cox proportional hazards regression analysis. P values less than 0.05 

were considered as significantly different. Overall survival was used as primary 

endpoint. Clinical variables analyzed with P value less than 0.05 using single variant 

analysis were chosen to enter Cox regression multivariate analysis. The R package 

‘survival’ was used for survival statistical tests. The multivariate Cox proportional-

hazards regression model was used to evaluate the independent prognostic value of the 

signature after adjusting for clinical factors including tumor stage, adjuvant 

chemotherapy age, gender, tumor sites, and TP53 mutation. 

tumor up tumor down

total detected

Differentially expressed percentage
N N

N
-
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     All statistical analyses were performed using the R 3.31 and Python 3.6.2 (with 

Anaconda 5.1.0) 

Construction of kinase–substrate interaction dataset 

The comprehensive kinase–substrate interaction dataset was constructed through 

integration of the data from the four public human protein databases; PhosphoSitePlus, 

Phospho.ELM, PhosphoNetworks and UniprotKB, leading to generation of 15,530 

non-redundant interactions (Supplementary Table S9), which were validated in Swiss-

Prot database. We then expanded the kinase-substrate relationships for other sites in the 

DGC dataset based on the Position weight matrixes (PWMs) score and protein-protein 

interactions collected from eight public databases: BioGrid, PioPlex, CCSB, DIP, 

HPRD, IntAct, MINT, and PINA. Briefly, if a phosphorylation site meets both of the 

following criteria, it will be predicted as the substrate site of a specific kinase: 1) similar 

sequence pattern with known substrate sites of the kinase; 2) the substrate protein 

interacted with the kinase. 

Nominate kinases as potential therapeutic targets 

Based on the assumption that the activation of a kinase is reflected by the 

phosphorylation state of its substrates, four different methods including Mean values, 

multiple linear regression (MLR) model, KSEA algorithm and Z-test (Hernandez-

Armenta et al., 2017) were used to estimate the kinase activity after normalization of 

phosphopeptide abundance by protein abundance.  



   If phosphosite j was a substrate of kinase i, otherwise 0. i ranged from 1 to n (n = 

250 for all 250 kinases), y1	was the relative value of phosphosite j, and was computed 

as below: 

                                           (2) 

𝑇1 and 𝑁1 were quantitative values of phosphosite j in tumor and nearby tissue; 𝑇𝑃1 

and 𝑁𝑃1 were the quantitative values of the protein corresponding to phosphosite j in 

tumor and nearby tissue. To smooth categorical data, 𝑇1 + 1 instead of 𝑇1 was used 

to calculate 𝑦1.  

For each kinase, the predicted kinase-patient matrix of activity was used to classify 

the patients into two groups: patients with higher kinase activity and patients with lower 

kinase activity. The activity cut-off value of each kinase was determined by the lowest 

log-rank P value of overall survival (Fig.3A). Then, the significance of the overall 

survival between the two groups was tested by log-rank test.  

Enrichment of kinases in co-expression modules 

For each kinase with more than 30 substrates, distribution of PWM scores of 

phosphosites in different modules was calculated, and distributions of PWM scores of 

all detected phosphosites were regarded as the background. Kinases with significantly 

higher PWM scores compared with background distribution (One-tail Mann-Whitney 

U test ,P value <0.01) in each module were selected. 

Data and Software Availability 

All raw data and the Mascot output tables have been deposited to iProX (http://www. 

iprox.org/) and can be accessed with the accession IPX0001234000. 
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Supplementary figures and legends 

 

 

 

 

 



Fig. S1. Global phosphorylation sites identifications in DGC, Related to Figure 1. 

A. The number of phosphorylation sites detected in 83 patients; B. Numbers of 

phosphorylation sites detected in tumors and nearby tissues; C. Distribution of log2 

transformed FOT of the phosphorylation sites in 166 samples; D. Global tumor to 

nearby tissue ratios distributions for 83 patients; E. Ranks of the phosphorylation sites 

based on the FOT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



Fig. S2.Consensus clustering based on the phosphorylation sites, Related to 

Figure2. 

A. A volcano plot for differentially expressed phosphorylation sites between tumors 

and nearby tissues; B. Consensus matrices of the 83 patients from k=2 to k=4; C. The 

cumulative distribution function (CDF) plots; D. Principal component analysis (PCA) 

to visualize the Ph1-Ph3 subtypes; E. The silhouette plots of the three subtypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



Fig. S3.Other clinical characteristics among the three subtypes, Related to Figure2. 

A. Clusters assigned by consensus clustering with different number of phosphorylation 

sites with different thresholds (all, top3/4, top1/2 and top1/4); B. Other clinical 

parameters across 83 patients in Ph1-3. CD8+ T-high, CD8 positive T cells number ≥ 

298 per μm2; MSI-H, microsatellite instability high; EBV, Epstein-Barr virus status; C. 

Mutation genes in the three subtypes;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S4. Numbers of substrates detected for each kinase, Related to Figure 3. 

 

 



 

Fig. S5. Kinome tree and kinase activity pattern in DGC, Related to Figure3. 

A. Kinome tree annotated using Kinome Render from Cell Signalling Technology, 

Inc.(www.cellsignal.com); B. The average fold difference for all detected substrate 

sites for the same kinase. 

 



 

Fig. S6. Linear regression results of the activation loop phosphorylation sites, 

Related to Figure 3. 

Examples for the correlations between the kinases activities predicted by the A. Mean 

values B. KSEA C. regression methods with the intensities of the activation loop 

phosphorylation sites. R2: r square in the linear regression analysis. 



Fig.S7. Cutoff curves of kinase activity predicted by the mean value (A) and KSEA 

methods (B), Related to Figure 3. 

Each P-value was obtained by the log-rank test between the patients with kinase activity 

above the cut-off and the patients with kinase activity below the cut-off. 



Fig.S8. Cutoff curves of kinases activity predicted by the Ridge (A) and Z-test 

methods(B), Related to Figure 3. 

 

 



 

 

Fig.S9. Heatmaps of substrates phosphorylation difference in two prognostic 

group, Related to Figure 3. 

 

 



 

 

 

 



Fig.S10. Two kinases whose overexpressed protein abundance as measured in the 

profiling experiments associated with overall survival, Related to Figure 3. 

A.Survival and B. Cutoff curves of the 2 kinases; Low(Kinase=0)/high(Kinase=1): 

patients with kinase abundance lower/above than cut-off; Each P-value was obtained 

by the log-rank test between the patients with kinase abundance above the cut-off and 

the patients with kinase abundance below the cut-off.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.S11.Global phosphorylation sites and proteins identifications in gastric cancer 

cell lines, Related to Figure 5. 

A. The number of phosphorylation sites detected in gastric cancer cells; B. The number 

of proteins detected in gastric cancer cells. 



 

 



Fig.S12. PCA analysis of gastric cancer cells in both the proteomes and 

phosphoproteomes data, Related to Figure 5. 

The phosphorylation sites or the proteins with higher abundance, whose maximum 

intensity in all experiments ranked in the top 75% were used for the PCA analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Tables 

Table S1: Clinical characteristics of 83 patients, Related to Table 1.  

Table S2: iFOT of 28,016 phosphorylation sites in the DGC phosphoproteome 

after quality control, Related to Figure 1. 

Table S3: Anotation of phosphorylation sites and the corresponding proteins for 

all samples/Ph1/Ph2/Ph3, Related to Figure 1 and Figure 2. 

Table S4: Pathways that are significantly altered in tumors compared with nearby 

tissues (FDR<1%), Related to Figure 2. 

Table S5: The log2iFOT in tumors after quantile normalization of 302 

phosphorylation site identified by anova analysis of three subtypes (FDR<0.001) , 

Related to Figure 2. 

Table S6: Pathways and kinases that are enriched with phosphorylation sites 

clustrered by the anova analysis(P<0.05) , Related to Figure 2. 

Table S7: Pathways that are significantly altered in tumors compared with nearby 

tissues for each subtype (P<0.05) , Related to Figure 2. 

Table S8: Baseline Characteristics of the Ph1,Ph2 and Ph3 subtypes(n=83) , 

Related to Figure 2. 

Table S9: Kinase-substrate relationships from public databases, Related to 

Figure3. 

Table S10: Kinases with average log2ratios of sustrates from 83 DGC patients, 

Figure 3. 



Table S11: Nomination of kinases as potential therapeutic targets, Related to 

Figure 3. 

Table S12: The validation results of candidate kinase targets from published 

paper and the immunohistochemistry results from Human protein atlas database, 

Related to Figure 3. 

Table S13: 287 unfavorable phosphorylation sites (FDR<0.1) , Related to Figure4. 

Table S14: Pathways and kinases that are enriched with coexpression phos-

phorylation sites, Related to Figure 4. 

Table S15: The characteristics of gastric cancer cells, Figure 5. 

Table S16: The proteomes and phosphoproteomes data of gastric cancer cells, 

Related to Figure 5. 
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