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Abstract

Pericyclic reactions are among the most powerful synthetic transformations to make multiple 

regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied 

for the synthesis of biologically active complex natural products containing contiguous stereogenic 

carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three 

naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and 

Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-

L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, 

bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-

sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the 

fungal natural product leporin10. Combined in vitro enzymatic characterization and computational 

studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein 

LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct 

recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to 

converge to the desired biosynthetic end product. This work highlights that LepI is the first 

example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest 

that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the 

intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile 

cofactor SAM in enzyme catalysis.
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Naturally existing enzymatic pericyclic reactions are rare12–14. Indeed, only a handful of 

enzymes that can catalyse these reactions have been characterized over past five decades 

(Fig. 1a)7–9,12–14, even though pericyclic reactions have been proposed as key 

transformations in the biosynthesis of many polycyclic natural products12, 15–16. We sought 

an inverse electron demand hetero-DA (HDA) reaction17 that constructs heterocycles in 

natural products (Fig. 1a). The HDA reaction has been proposed as a key biotransformation 

yielding dihydropyran cores, which are prevalent structural features in natural products, 

including the cytotoxic leporin B (1) from Aspergillus species (Fig. 1b)10,15–16,18. The 

biomimetic synthesis of the pyran core in leporin using the E/Z geometric mixture of the 

unstable o-quinone methide19 intermediate 5 generated from the dehydration of the alcohol 

4, was found to give a mixture of the minor desired HDA adduct leporin C (2) and major 

other regio- and stereoisomeric IMDA and HDA adducts (Fig. 1c)20. It was therefore 

proposed that an enzyme must be encoded in the biosynthetic pathway of leporins to 

catalyse the HDA cycloaddition in a stereoselective fashion and to suppress the IMDA 

reaction to afford the pyran core in 2 (Fig. 1c)14.

The biosynthetic gene cluster of leporin B (1) in Aspergillus flavus was reported and 

genetically verified (Fig. 1c)10. However, no clear enzyme candidate that can catalyse the 

pericyclic reaction was apparent in the cluster. To identify the enzyme responsible for this 

biotransformation, we heterologously reconstituted leporin B (1) biosynthetic pathway in 

Aspergillus nidulans (Fig. 1c–d)21. As shown in Fig. 1d, coexpression of the polyketide 

synthase−nonribosomal peptide synthetase (PKS−NRPS) LepA, the partnering enoyl 

reductase (ER) LepG, the ring-expansion P45022 LepH led to the biosynthesis of the ketone 

3. Additional coexpression with the short chain dehydrogenase/reductase (SDR) LepF, 

which is hypothesized to reduce 3 into the alcohol 4, led to a mixture of HDA products 

including the desired pyran 2 as a minor product and the diastereomer 9; as well as the 

spirocyclic IMDA products 6–8 (Fig. 1c-d). Among these products, 2 and 6 are proposed to 

be derived from the quinone methide (E)-5, while 7–9 are from (Z)-5 (Fig. 1c). These results 

are consistent with biomimetic synthetic observations, and indicate that in order to 

biosynthesize 2 as the desired pericyclic reaction product, enzymatic stereocontrol of 

dehydration of 4 to (E)-5, as well as control of the subsequent pericyclic reaction is required.

The only remaining annotated enzyme in the gene cluster is LepI, which is predicted to be 

an O-methyltransferase (OMT) with a well-conserved S-adenosyl-L-methionine (SAM) 

binding site even though no O-methylation step is required for leporin B (1) biosynthesis. 

When lepI was introduced into the A. nidulans strain that produced the various pericyclic 

products derived from reduction of 3, we were surprised to observe the exclusive production 

of 2 without any other products (Fig. 1d). Further addition of the P450 lepD yielded the final 

product 1, thereby completing heterologous pathway reconstitution (Fig. 1c-d). To first 

verify the function of SDR LepF, recombinant protein was expressed from Saccharomyces 
cerevisiae and assayed in the presence of 3 and NADPH, which yielded a single product 4 
corresponding to the reduced compound (Extended Data Fig. 1). To obtain sufficient 4 for 

assay with LepI, we reduced 3 with NaBH4 which gave both 4 and diastereomer 4′ in a ~1:1 

ratio (Extended Data Figs. 1–2). Each isomer was isolated and immediately added to assay 

with LepI expressed and purified from Escherichia coli. Both 4 and 4′ dehydrated 
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spontaneously in the absence of LepI and afforded the mixture of the IMDA (6–8) and HDA 

(2 and 9) products, with 2 being a very minor product (Fig. 2a). However, when LepI was 

added to 4, complete conversion to 2 was accomplished in the absence of any added 

cofactors (Fig. 2a). In contrast, addition of LepI to 4′ had only a small effect on product 

profile. The collective in vivo and in vitro data therefore points to LepI being solely 

responsible for formation of 2 starting from 4, which requires stereoselective dehydration to 

yield (E)-5 and subsequent HDA reaction to 2.

We performed a reaction time-course analysis using LepI with 4 to capture any possible 

reaction intermediates. We observed the (E)-5 derived IMDA product 6 at early time points, 

which subsequently converted to 2 when all 4 was consumed (Fig. 2b-c). This result 

demonstrates that even in the presence of LepI, after the dehydration of 4 to (E)-5, both 

IMDA and HDA reactions could take place simultaneously to give 6 and 2, respectively, 

hence enzymatic control of the HDA reaction is not absolute. More surprisingly, it suggests 

that LepI may further catalyse the retro-Claisen rearrangement of 6 to 2 (Fig. 2e, Extended 

Data Fig. 3), a pericyclic transformation that has not been observed in the enzymatic 

realm12,14. To confirm this activity, we incubated LepI directly with 6. While we observed 

very slow spontaneous conversion of 6 to 2 (knon = 2.0 × 10−5 s−1), rapid conversion of 6 to 

2 was observed in the presence of LepI with a rate enhancement (kcat, LepI versus knon) of 

approximately 1.8 × 105-fold (Fig. 2c-d, Extended Data Fig. 5). LepI also displayed 

stereoselectivity towards 6 as other DA products such as 7 and 8 were not converted to the 

corresponding pyran products (Extended Data Fig. 4a), although 7 inhibited the conversion 

of 6 to 2 (Extended Data Fig. 4b). These results indicate that LepI catalyses the retro-Claisen 

rearrangement, in addition to the dehydration and the IMDA/HDA reactions (Fig. 2e).

Given that the SAM-binding motif (GXGXG) of LepI is strictly conserved with other 

methyltransferases, we next probed the involvement of SAM in the LepI-catalysed 

reactions7, 23–24. Since no exogenous SAM was added in the assays, we investigated if SAM 

copurified with LepI and remained bound. SAM was detected in the supernatant of 

denatured LepI by LC-MS and estimated to be retained by ~ 90% of purified LepI 

(Extended Data Fig. 6)25. We then performed the LepI enzymatic assays in the presence of 

the SAM competitive inhibitor, S-adenosyl-L-homocysteine (SAH)26. SAH (250 μM) 

showed significant inhibition of both the dehydration of 4 and the retro-Claisen 

rearrangement of 6 (Fig. 3a–b, Extended Data Figs. 7–8). Inhibition of both reactions can be 

nearly completely rescued by adding SAM (100 μM) to the reaction (Fig. 3a-b, Extended 

Data Figs. 7–8). These observations demonstrate that SAM is an essential component of 

LepI catalytic activities, and led us to hypothesize that the positive charge of SAM that is 

absent in SAH may be required for these reactions (Fig. 3e). We then tested sinefungin27, a 

positively-charged (ammonium) analogue of SAM (sulfonium) in the competition assays. 

Sinefungin (100 μM) can similarly rescue inhibition of dehydration and retro-Claisen 

rearrangement by SAH (250 μM) in a comparable manner to that of SAM (Fig. 3a–b, 

Extended Data Figs. 7–8).

In the presence of 250 μM SAH, at least 90% of retro-Claisen rearrangement activity of LepI 

is inhibited at shorter time points (Fig. 3b), which provides a quantitative measure of the 

product distribution result from IMDA vs HDA reactions in the presence of LepI (~ 1:1 
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periselectivity) (Fig. 3c-d, Extended Data Fig. 9a). In contrast, in the absence of LepI, we 

have shown that the periselectivity between IMDA and HDA is ~ 94:6 (Fig. 3d, Extended 

Data Fig. 9b). Therefore, while LepI exerts significant influence towards formation of the 

HDA product 2, it cannot completely suppress the formation of the IMDA product 6 (Fig. 

3c-d, Extended Data Fig. 9a). To understand the mechanism of the LepI-catalysed reactions, 

we performed density functional theory (DFT) calculations28. As expected, the activation 

barrier for conversion of (E)-5 to 2 via endo-transition state (TS) is much lower than 

conversion of (Z)-5 to 2 via the exo-TS, supporting the surmise that enzymatic dehydration 

of 4 leads to (E)-5 (Fig. 4a and 4c). Our calculations showed that the transition states of the 

endo-mode IMDA and HDA reactions to form 6 and 2 from (E)-5 are one and the same 

(TS-1); this is a novel biosynthetic example of an ambimodal TS29 (Fig. 4a). An ambimodal 

TS is a normal saddle point with partially formed bonds that can lead to either of two 

different pericyclic reaction products. Such an ambimodal TS is followed by a bifurcation 

occurring after the TS on the potential energy surface (PES). This accounts for the 

simultaneous production of IMDA and HDA adducts from (E)-5 (Fig. 4b). The preference 

for the IMDA adduct under non-enzymatic conditions is consistent with the shorter C-C 

bond (2.91Å) compared to the C-O (3.34Å) in TS-1 (Fig. 4b). We confirmed this conclusion 

by performing quasi-classical molecular dynamics (MD) simulations following the 

procedure described previously28 (see Supplementary Information); 50 trajectories gave the 

DA adduct (39 trajectories) plus 11 recrossing trajectories for the transition state in the gas 

phase. Water catalysis should shift this more towards the HDA adduct as found 

experimentally (Fig. 3d). To change the outcome of this reaction, LepI must control the post-

ambimodal TS bifurcation dynamics while accelerating the reaction by lowering the 

activation barrier of TS-130. The electrostatic catalysis by either sulfonium or ammonium 

ions with the amide carbonyl in TS-1 decreases the C-O bond length (3.05–3.07Å range) 

and increases C-C bond length (3.07–3.21Å range), resulting in an increased preference for 

the HDA reaction (Fig. 4b, Extended Data Fig. 10)29. Therefore, LepI shifts the post-

ambimodal TS bifurcation toward the HDA adduct more effectively in the active site as 

compared with spontaneous reaction in water (Fig. 4b). Indeed, MD with the 

trimethylsulfonium catalyst gave a 34:7 ratio of HDA:DA adducts, along with 9 recrossing 

trajectories. The role of the sulfonium and ammonium interactions with 6 were also 

predicted to substantially lower the barrier (TS-2) of the retro-Claisen rearrangement of the 

IMDA adduct 6 to the final HDA product 2 by 2.4 or 3.4 kcal/mol (100–1000-fold 

acceleration), which supports the catalytic role of the positively charged SAM (Fig. 4c, 

Extended Data Fig. 10).

Our results showed that LepI is a multifunctional SAM-dependent enzyme that catalyses the 

stereoselective dehydration of 4 to (E)-5; an ambimodal IMDA and HDA reaction of (E)-5 to 

6 and 2, respectively; and the first enzymatic example of retro-Claisen rearrangement of 6 to 

2 (Fig. 4c). The enzyme can control the post-TS bifurcation dynamics by altering the energy 

surface such that the steepest downhill path from the transition state leads to the catalysed 

product(s) (Fig. 4b). While formation of the undesirable IMDA product cannot be 

completely suppressed due to the ambimodal nature of the TS, LepI relies on the additional 

retro-Claisen activity to convert 6 to the desired product 2. This represents a kinetic 

“byproduct recycle” process to overcome thermodynamic limitations and fully arrive at the 
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desired biosynthetic end product. Lastly, the discovery of a SAM-dependent enzyme 

provides additional evidence of the versatility and importance of SAM in metabolism.

Online Content

Methods, along with any additional Extended Data display items and Source Data, are 

available in the online version of the paper; references unique to these sections appear only 

in the online paper.

Methods

Material, fungal strains and culture condition

A. flavus NRRL3357 was obtained from Agricultural Research Service Culture Collection 

(NRRL). A. nidulans FGSC A1145 was obtained from the Fungal Genetics Stock Center 

(http://www.fgsc.net/). A. flavus was maintained on PDA (potato dextrose agar, BD) for 3 

days for sporulation or in liquid PDB medium (PDA medium without agar) for isolation of 

genomic DNA. A. nidulans was maintained on Czapek-Dox (CD) agar for sporulation or in 

liquid CD–ST medium for gene overexpression, compound production and RNA extraction 

(http://www.fgsc.net/).

General DNA manipulation technique

E. coli TOP10 and E. coli XL-1 were used for cloning, following standard recombinant 

DNA techniques. DNA restriction enzymes were used as recommended by the manufacturer 

(New England Biolabs, NEB). PCR was performed using Phusion High-Fidelity DNA 

Polymerase (NEB). The gene-specific primers are listed in Supplementary Information. PCR 

products were confirmed by DNA sequencing. E. coli BL21(DE3) (Novagen) was used as 

the E. coli host for protein expression. Saccharomyces cerevisiae strain BJ5464-NpgA 

(MATα ura3-52 his3-Δ200 leu2-Δ1 trp1 pep4::HIS3 prb1 Δ1.6R can1 GAL) was used as the 

yeast host for protein expression31 and in vivo homologous recombination to construct the 

A. nidulans overexpression plasmids.

Heterologous expression of lep in A. nidulans21

A. nidulans A1145 was initially grown on CD agar plates containing 10 mM uracil, 0.5 

μg/mL pyridoxine HCl and 2.5 μg/mL riboflavin at 30 °C for 5 days. Fresh spores of A. 
nidulans were inoculated into 25 mL liquid CD media (1 L: 10 g Glucose, 50 mL 20× 

Nitrate salts, 1 mL Trace elements, pH 6.5) in 250-mL Erlenmeyer flask and germinated at 

30 °C and 250 rpm for approximately 16 h. For the preparation of 20 × Nitrate salts, 120 g 

NaNO3, 10.4 g KCl, 10.4 g MgSO4 · 7H2O, 30.4 g KH2PO4 were dissolved in 1 L double 

distilled water. The 100 mL trace elements with pH 6.5 contains 2.20 g ZnSO4 · 7H2O, 1.10 

g H3BO3, 0.50 g, MnCl2 · 4H2O, 0.16 g FeSO4 · 7H2O, 0.16 g CoCl2 · 5H2O, 0.16 g 

CuSO4•5H2O, and 0.11 g (NH4)6Mo7O24 · 4H2O. Mycelia were harvested by centrifugation 

at 3,500 rpm for 10 min, and washed with 10 mL Osmotic buffer (1.2 M MgSO4, 10 mM 

sodium phosphate, pH 5.8). Then the mycelia were transferred into 10 mL of Osmotic buffer 

containing 30 mg lysing enzymes from Trichoderma and 20 mg Yatalase in a 125-mL flask. 

The flask was kept in shaker at 80 rpm for overnight at 30 °C. Cells were collected in a 30 
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mL Corex tube and overlaid gently by 10 mL of Trapping buffer (0.6 M sorbitol, 0.1 M Tris-

HCI, pH 7.0). After centrifugation at 3,500 rpm for 15 min at 4 °C, protoplasts were 

collected in the interface of the two buffers. The protoplasts were then transferred to a sterile 

15-mL falcon tube and washed by 10 mL STC buffer (1.2 M sorbitol, 10 mM CaCl2, 10 mM 

Tris-HCI, pH 7.5). The protoplasts were resuspended in 1 mL STC buffer for 

transformation. Then, the plasmids (see Supplementary Information) were added to 100 μL 

protoplast suspension and the mixture incubated 60 min on ice. Then 600 μL of PEG 

solution at pH 7.5 (60% PEG, 50 mM calcium chloride and 50 mM Tris-HCl) was added to 

the protoplast mixture, and the mixture was incubated at room temperature for additional 20 

min. The mixture was spread on the regeneration dropout solid medium (CD solid medium 

with 1.2 M sorbitol and appropriate supplements) and incubated at 30 °C for 2 to 3 days. 

The transformants were grown in liquid CD-ST (1 L: 20 g starch, 20 g casamino acids, 50 

mL 20 × nitrate salts, 1 mL trace elements) medium for 3 to 4 days before extraction.

Analysis of metabolites and isolation of compounds

For small scale analysis, the transformants of A. nidulans strains were grown for 3 to 4 days 

in 20 mL liquid CD-ST and then extracted with 10 mL ethyl acetate. The organic phase was 

dried by speed vacuum and dissolved in methanol for analysis. LC–MS analyses were 

performed on a Shimadzu 2020 EV LC–MS (Kinetex 1.7 μm C18 100 Å, LC Column 100 × 

2.1 mm) using positive-and negative-mode electrospray ionization with a linear gradient of 

5–95% acetonitrile MeCN–H2O with 0.5% formic acid in 15 min followed by 95% MeCN 

for 3 min with a flow rate of 0.3 ml/min. The results are shown in Fig. 1d.

For isolation of compounds, the transformants of A. nidulans strains were grown for 84 h in 

4 × 1 L liquid CD-ST and then filtered to collect the cells from liquid culture. The cells were 

extracted with 1 L acetone and the extracts were evaporated to dryness and partitioned 

between ethyl acetate/H2O two times. After evaporation of the organic phase, the crude 

extracts were separated by silicagel chromatography. Fractions containing the target 

compounds were combined and used for further purification by HPLC with a semi-

preparative C18 column of Kinetics New column, 5μm, 10 × 250 mm. For elucidation of 

chemical structures, 1D and 2D NMR spectra were obtained on Bruker AV500 spectrometer 

at the UCLA Molecular Instrumentation Center. High resolution mass spectra were obtained 

from Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source at the 

UCLA Molecular Instrumentation Center.

Protein expression and purification of LepI from E. coli. BL21 (DE3)

The open reading frame of lepI was amplified using cDNA from the transformant of A. 
nidulans as a template by PCR with primers of pMO0048-f1/r1 and ligated with linear 

pet28b expression vector which is amplified using it by PCR with pMO0048-f2/r2 to 

generate pMO0048 using GeneArt Seamless Cloning and Assembly kit (Thermo Fisher 

Scientific). The identity of the resulting vector pMO0048 was confirmed by DNA 

sequencing. This plasmid was used to express LepI for preparing purified samples of 

recombinant LepI to be used in in vitro assays.
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Overexpression and subsequent protein purification of LepI was performed as follows: BL21 

(DE3) harboring plasmid pMO0048 was grown overnight in 2 × 5 ml of LB medium with 50 

μg/ml kanamycin at 37 °C. Each 2 × 1 L of fresh LB medium with 50 μg/ml kanamycin was 

inoculated with 5 ml of the overnight culture and incubated at 37 °C until the optical density 

at 600 nm (OD600) reached 0.6. Then expression of the gene was induced with 50 μM 

isopropylthio-β-D-galactoside (IPTG) at 16 °C. Incubation was continued for another 20 h, 

after which pellets were collected by using centrifuge and resuspended in lysis buffer (10 

mM imidazole, 50 mM Tris-HCl, 500 mM NaCl, pH 8.0) and lysed on ice by sonication. 

The lysate was centrifuged at 15,000 × g for 30 min at 4 °C to remove the cellular debris. 

One-step purification of the recombinant His6-tagged fusion LepI from soluble protein by 

affinity chromatography with Ni-NTA agarose resin (Qiagen) was carried out according to 

the manufacturer’s instructions. Purified LepI were concentrated and exchanged into storage 

buffer (50 mM Tris-HCl, 100 mM NaCl, 10% glycerol, pH8.0) with Centriprep filters 

(Amicon). The purified LepI was checked by SDS-PAGE. Bradford Protein Assay (Bio-Rad) 

was used to calculate protein concentration. Protein expression and purification of LepF 

from BJ5464-NpgA was described in Supplementary Information.

Activity of LepF-catalysed reaction using the ketone 3 as the substrate

Assays for LepF activity with 100 μM 3 in Tris-HCl buffer (50 mM Tris-HCl, 100 mM 

NaCl, 10% glycerol, 10 mM NADPH, pH 8.0) were performed at 100 μL scale with 100 μM 

LepF, at 30 °C for 1 h. Then the reaction was quenched with the equal volume of cold 

acetonitrile. Protein was precipitated and removed by centrifugation and the supernatant 

analyzed by LC–MS. LC–MS analyses were performed on a Shimadzu 2020 EV LC–MS 

(Kinetex 1.7 μm C18 100 Å, LC Column 100 × 2.1 mm) using positive- and negative-mode 

electrospray ionization with a linear gradient of 5–95% acetonitrile MeCN–H2O with 0.5% 

formic acid in 15 min followed by 95% MeCN for 3 min with a flow rate of 0.3 ml/min. The 

result is shown in Extended Data Fig.1.

Activity assay of LepI using the alcohol 4 and 4′ as the substrate

Preparation of compound 4 and 4′ was performed as follows. To the solution of compound 

3 (3.5 mg, 10 μmol) in 0.5 mL EtOH was added NaBH4 (4.0 mg, 100 μmol) at 0 °C and the 

mixture was stirred at room temperature for 15 min. The reaction mixture was quenched 

with 0.5 mL 1 M HCl, and the whole was extracted with 0.5 mL ethyl acetate twice. The 

extract was concentrated and the residue was purified with a semi-preparative C18 column 

of Kinetics New column, 5 μm, 10 × 250 mm. The using separation conditions was a linear 

gradient of 40–95% acetonitrile MeCN–H2O in 15 min followed by 95% MeCN for 3 min 

with a flow rate of 3.0 ml/min. The fractions containing 4 and 4′ were not concentrated and 

immediately used as the substrate solution, because the dehydration takes place during 

concentration.

Assays for LepI activity with 4 and 4′ in phosphate buffer (20 mM Na2HPO4, 50 mM NaCl, 

pH 8.0) were performed at 50 μL scale with 3.0 μM LepI, at 30 °C for 0.5 h. Then the 

reaction was quenched with the equal volume of cold acetonitrile. Protein was precipitated 

and removed by centrifugation, and then the supernatant was analyzed by LC–MS as 

described above. These results are shown in Fig. 2a.
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Time-course analysis of LepI-catalysed reactions using the alcohol 4 as the substrate

To a solution containing 300 nM LepI in phosphate buffer (20 mM Na2HPO4, 50 mM NaCl, 

pH 8.0) at 30 °C was added 240 μM 4 in order to initiate the enzymatic reaction (total 

volume was 500 μL). The concentration of 4 was estimated by product concentration based 

on the standard curves of 2 and 6. In the case of cofactors (SAM, SAH, and sinefungin) 

adding assay, the reaction mixture containing 300 nM LepI and 250 μM SAH with or 

without 100 μM SAM or 100 μM sinefungin was incubated at room temperature for 10 min. 

Then, 240 μM 4 was added to the reaction mixture to initiate the enzymatic reaction (total 

volume was 500 μL). At each given time point (0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, and 10 

min), a 50 μL aliquot of the reaction mixture was taken and quenched by mixing with 50 μL 

of cold acetonitrile. After centrifugation, the supernatant was subjected to HPLC analysis 

using a C18 column (Phenomenex Luna C18 (2) 5 μm, 2.0 × 100 mm) with isoclatic 

conditions (45% of H2O in CH3CN). The standard curves of 2 and 6 was generated based on 

peak areas at 243 nm by HPLC. The products concentarations of 2 and 6 were estimated 

based upon the standard curves of 2 and 6, respectively. The error bars represent standard 

deviation (s.d.) of three independent replicates. These results are shown in Figs. 2b, 3a, 3c-d 

and Extended Data Figs. 7a, 9a.

In vitro reaction of LepI using 7–9 as the substrates

50 μL reaction mixture containing the desired compound (7–9) in phosphate buffer (20 mM 

Na2HPO4, 50 mM NaCl, pH 8.0) was incubated with 30 μM LepI at 30 °C for 12 h. Then 

reaction was quenched with 50 μL acetonitrile. Protein was precipitated and removed by 

centrifugation and the supernatant analyzed by HPLC using a C18 column (Kinetex 1.7 μm 

C18 100 Å, LC Column 100 × 2.1 mm) with a linear gradient of 5–95% acetonitrile MeCN–

H2O with 0.5% formic acid in 15 min followed by 95% MeCN for 3 min with a flow rate of 

0.3 ml/min. The results are shown in Extended Data Fig 4a.

Evaluation of inhibitory activity of 7 against LepI-catalysed retro-Claisen rearrangement

To 50 μL solution containing 300 nM LepI in phosphate buffer (20 mM Na2HPO4, 50 mM 

NaCl, pH 8.0) was added DMSO or 7 (1–500 μM) dissolved in DMSO. Then reactions were 

initiated by the addition of 100 μM 6. After 10 min at 30 °C, reactions were quenched by the 

addition of 50 μL of cold acetonitrile. Protein was precipitated and removed by 

centrifugation and the supernatant analyzed by HPLC using a C18 column (Phenomenex 

Luna C18 (2) 5 μm, 2.0 × 100 mm) with isoclatic conditions (50% of H2O in CH3CN). 

Results were quantified by a standard curve of product 2. Final results were calculated as 

percent of DMSO treated controls. Data fitting was performed using GraphPad Prism 6 and 

IC50 value represents mean ± standard deviation (s.d.) of three independent replicates. This 

result is shown in Extended Data Fig. 4b.

Activity assay and kinetic analysis of LepI using compound 6 as a substrate

Assays for LepI activity with 6 in phosphate buffer (20 mM Na2HPO4, 50 mM NaCl, pH 

8.0) were performed at 50 μL scale with 300 nM LepI, 30 °C for 3 min. Then the reaction 

was quenched with the equal volume of cold acetonitrile. Protein was precipitated and 

removed by centrifugation and the supernatant analyzed by HPLC using a C18 column 
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(Phenomenex Luna C18 (2) 5 μm, 2.0 × 100 mm) with isoclatic conditions (50% of H2O in 

CH3CN). These results are shown in Fig. 2c. To determine the kinetics of LepI, the assays 

were performed at 50 μL scale with 150 nM LepI and 3.0–300 μM 6 in phosphate buffer (20 

mM Na2HPO4, 50 mM NaCl, pH 8.0) at 30 °C for 3 min. The reactions were quenched by 

adding 50 μL acetonitrile. After centrifugation, supernatant was analyzed by HPLC as 

mentioned above. Data fitting was performed using GraphPad Prism 6, and KM and kcat 

values represent mean ± standard deviation (s.d.) of three independent replicates. The result 

is shown in Fig. 2d.

The confirmation of SAM presence in LepI and quantification of the efficiency of SAM 
presence in LepI

300 μM LepI in 20 μL storage buffer (50 mM Tris-HCl, 100 mM NaCl, 10% glycerol, 

pH8.0) was denatured by adding 60 μL acetonitrile. 300 μM LepI in 50 μL storage buffer (50 

mM Tris-HCl, 100 mM NaCl, 10% glycerol, pH8.0) and 100 μM SAM in water was boiled 

at 95 °C for 10min. Then, the solutions were centrifuged and the supernatants analyzed by 

LC–MS. The standards of SAM and MTA were also analyzed by HPLC using a C18 column 

(Kinetex 1.7 μm C18 100 Å, LC Column 100 × 2.1 mm) with a linear gradient of 5–95% 

acetonitrile MeCN–H2O with 0.5% formic acid in 15 min followed by 95% MeCN for 3 min 

with a flow rate of 0.3 ml/min. UV detection was performed at 258 nm. To estimate the 

efficiency of SAM presence in LepI, the concentration of MTA from boiled LepI was 

quantified by the standard curve of MTA that was generated based on peak areas at 258 nm 

by HPLC. The concentration of MTA was estimated to more than 250 μM in 300 μM LepI. 

These results are shown in Extended Data Fig. 6 and Supplementary Fig. 8.

Time-course analysis of LepI-catalysed reactions using 6 as a substrate

To a solution containing 300 nM LepI in phosphate buffer (20 mM Na2HPO4, 50 mM NaCl, 

pH 8.0) at 30 °C was added 140 μM 6 in order to initiate the enzymatic reaction (total 

volume was 500 μL). In the case of cofactors (SAM, SAH, and sinefungin) adding assay, the 

reaction mixture containing 300 nM LepI and 250 μM SAH with or without 100 μM SAM 

or 100 μM sinefungin was incubated at room temperature for 10 min. Then, 140 μM 6 was 

added to the reaction mixture to initiate the enzymatic reaction (total volume was 500 μL). 

At each given time point (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, and 10 min), a 50 μL aliquot of 

the reaction mixture was taken and quenched by mixing with 50 μL of cold acetonitrile. 

After centrifugation, the supernatant was subjected to HPLC analysis using a C18 column 

(Phenomenex Luna C18 (2) 5 μm, 2.0 × 100 mm) with isoclatic conditions (45% of H2O in 

CH3CN). The products concentaration of 2 was estimated based upon the standard curve of 

2. The error bars represent standard deviation (s.d.) of three independent replicates. These 

results are shown in Fig. 3b and Extended Data Figs. 5, 7b.

Evaluation of dose-dependency of SAH-inhibited and SAM-rescued activities against LepI-
catalysed retro-Claisen rearrangement

To 50 μL solution containing 300 nM LepI in phosphate buffer (20 mM Na2HPO4, 50 mM 

NaCl, pH 8.0) was added diffferent concentration of SAH (0–500 μM) or 250 μM SAH with 

different concentration of SAM (0–100 μM) and incubated at r.t. for 10 min. Then 100 μM 6 
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was added to the reaction mixture to initiate the enzymatic reaction. After 5 min at 30 °C, 

reactions were quenched by the addition of 50 μL of acetonitrile. Protein was precipitated 

and removed by centrifugation and the supernatant analyzed by HPLC using a C18 column 

(Phenomenex Luna C18 (2) 5 μm, 2.0 × 100 mm) with isoclatic conditions (45% of H2O in 

CH3CN). Results were quantified by the standard curve of product 2. Final results were 

calculated as percent of controls. The error bars represent standard deviation (s.d.) of three 

independent replicates. Data fitting was performed using GraphPad Prism 6. The results are 

shown in Extended Data Fig. 8.

Computational calculations

The DFT calculations were performed with Gaussian 0932. Geometry optimizations of all 

the minima and transition state structures were carried out at the B3LYP-D3 level of theory 

with the 6–31G(d) basis set. Vibrational frequencies were computed at the same level to 

verify that optimized structures are energy minima or transition states and to evaluate zero-

point vibrational energies (ZPVE) and thermal corrections at 298 K. A quasi-harmonic 

correction was applied during the entropy calculation by setting all positive frequencies that 

are less than 100 cm−1 to 100 cm−1. Solvation energies were evaluated by a self-consistent 

reaction field (SCRF) using the CPCM model with a larger basis set, 6–311+G(d,p). Single 

point energy calculations were carried out at other levels of theory, such as M06-2X and 

wB97XD; systematic shifts in energies were observed, while the relative energetics 

remaining the same. The results are shown in Fig. 4, Extended Data Fig. 10 and 

Supplementary Figs. 11–17.
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Extended Data

Extended Data Figure 1. 
LC–MS analysis of in vitro reaction of 3 with LepF. The extracted ion chromatograms 

(EICs) under positive ionization are shown. The molecular weight of alcohol 4 and 4′ is m/z 
354 under positive ionization. Because the enzymatic activity of LepF is low and the alcohol 

4 is very unstable, we were not able to obtain sufficient amount of 4 as the substrate for in 
vitro reaction of LepI. Thus, we obtained the alcohol 4 by using the chemical reduction of 

the ketone 3 with NaBH4. Since NaBH4 reduces the ketone 3 non-stereoselectively, 4 and 

diastereomer 4′ were formed. After the isolation of 4 and 4′ by HPLC, the fractions 

containing 4 and 4′ were not concentrated and were immediately used as the substrate. The 

stereochemistry of the secondary alcohol in 4 and 4′ is not determined.
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Extended Data Figure 2. 
HPLC analysis of chemical reduction of 3 with NaBH4. The reaction mixture containing 1 

mM 3 and 10 mM NaBH4 with EtOH (50 μL) was incubated at 0 °C for 1 min. Then, the 

reaction was quenched with water. After centrifugation, the supernatant was analyzed by 

HPLC. The reduction of 3 gave the alcohol 4 and diastereomer 4′. The spontaneous 

dehydration of both alcohols resulted in the formation of HDA and IMDA products via the 

E/Z mixture of quinone methide 5. The isolated 4 and 4′ also readily dehydrated and 

converted to the mixture of the desired HDA and the undesired HDA and IMDA products, 
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showing the instability of these compounds. The structures show the relative 

stereochemistry.

Extended Data Figure 3. 
Reaction analysis of 6–9 under heating condition. 6 (dissolved in 5% DMSO with H2O) was 

boiled at 95 °C for 1 h. 7–9 (dissolved in 5% DMSO with H2O) were boiled 95 °C for 10 h. 

6 was completely converted to 2 via [3,3]-sigmatropic retro-Claisen rearrangement. This 

reaction is irreversible under the conditions. It should be noted that the conversion of 6 to 2 
via cycloreversion can be ruled out, since 6 was completely converted to 2 without any other 

IMDA/HDA side products. No reactions occurred in the case of 7. 8 and 9 can be 

interconvertible via Claisen rearrangement. In this case, retro-Claisen rearrangement (8 to 9) 
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is more preferable than forward Claisen rearrangement (9 to 8). The structures show the 

relative stereochemistry.

Extended Data Figure 4. 
Analysis of the substrate specificity of LepI. (a) In vitro reactions of other IMDA products 

7–9 with 30 μM LepI for 12 h. (i) 8 in buffer, (ii) 8 with LepI, (iii) 7 in buffer, (iv) 7 with 

LepI, (v) 9 in buffer, (vi) 9 with LepI. The experimental details are described in Methods. (b) 

Elucidation of inhibitory activity for retro-Claisen rearrangement of 7 against LepI. The 

experimental details are described in Methods. IC50 value is mean ± standard deviation (s.d.) 

of three independent experiments. The structures show the relative stereochemistry.
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Extended Data Figure 5. 
Time-course analysis of LepI-catalysed retro-Claisen rearrangement of 6 to 2. The 

experimental details are described in Methods. The data represent one representative 

experiment from at least three independent replicates.
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Extended Data Figure 6. 
HPLC analysis showing that purified LepI retains SAM. SAM was detected from the 

supernatant of denatured LepI by acetonitrile. When LepI was denatured by heating the 

sample at 95 °C for 10 min, a single peak corresponding to 5′-deoxy-5′-

(methylthio)adenosine (MTA), a major degradation product of SAM25, was also detected 

from the supernatant of boiled LepI. Since SAM to MTA conversion is nearly quantitative 

and an MTA standard curve can be readily constructed, we quantified that ~90% of LepI still 

retains SAM after purification. HPLC profiles of (i) denatured LepI by acetonitrile, (ii) 

boiled LepI at 95 °C for 10 min, (iii) the authentic reference of SAM, (iv) boiled SAM at 

95 °C for 10 min, and (v) the authentic reference of MTA. The experimental details are 

described in Methods.
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Extended Data Figure 7. 
HPLC analysis of SAM-dependent LepI-catalysed reactions (a) Analysis of in vitro reaction 

of 240 μM 4 with 300 nM LepI at 30 °C for 5 min in the presence and absence of cofactors. 

The concentrations of SAH, SAM, and sinefungin used in this experiment are 250 μM, 100 

μM, and 100 μM, respectively. The data represent one representative experiment from at 

least three independent replicates. (b) Analysis of in vitro reaction of 140 μM 6 with 300 nM 

LepI at 30 °C for 4 min in the presence and absence of cofactors. The concentrations of 

SAH, SAM, and sinefungin used in this experiment are 250 μM, 100 μM, and 100 μM, 
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respectively. The data represent one representative experiment from at least three 

independent replicates.

Extended Data Figure 8. 
SAH is a competitive inhibitor of LepI retro-Claisen rearrangement. (a) Dose-dependent 

inhibition of retro-Claisen rearrangement by SAH. (b) Dose-dependent recovery of retro-

Claisen rearrangement by SAM in the presence of 250 μM SAH. The experimental details 

are described in Methods. Error bars represent standard deviation of three independent 

experiments.
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Extended Data Figure 9. 
Time-course analysis of relative production ratio of 2 over sum of 2 and 6. The substrate 

used in this study is alcohol 4. (a) LepI-catalysed reaction with or without SAH (250 μM). 

(b) non-enzymatic reaction. The initial production ratio between LepI-catalysed and non-

catalysed reaction are clearly different. This data supported that LepI catalysed the 

competitive IMDA/HDA reactions by changing the preference of the outcome.

Extended Data Figure 10. 
Calculated free energies and bond distances of ambimodal TS (TS-1) and the retro-Claisen 

rearrangement TS (TS-2), uncatalysed and with various catalysts, calculated with B3LYP-

D3/6-311+G(d,p)//6-31G(d), CPCM water.
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Figure 1. 
Enzyme-catalysed pericyclic reactions and the proposed inverse electron demand hetero-

Diels-Alder (HDA) reactions in Nature. (a) Examples of enzymatic pericyclic reactions. (b) 

The structures of natural products containing dihydropyran, which would be biosynthesized 

by HDA reaction. Variecolortide A is naturally racemic; the relative stereochemistry of 

epipyridone and leporin B are shown. (c) The putative leporin biosynthetic gene cluster in A. 
flavus and assignment of encoded genes and biosynthetic pathway of leporins. PKS–NRPS, 

polyketide synthase–nonribosomal peptide synthetase; TF, transcription factor; MCT, 

monocarboxylate transporter; SDR, short-chain dehydrogenase/reductase; ER, 

enoylreductase; OMT, O-methyltransferase. The structures show the relative 

stereochemistry. (d) Analysis of metabolites from the transformants of A. nidulans. The peak 
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at 12 min correspond to the tetramic acid product that is biosynthesized by LepA (PKS-

NRPS) and LepG (ER).
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Figure 2. 
HPLC analysis showing the reactions catalysed by LepI. (a) in vitro reaction analysis of 4 
and 4′ with 3 μM LepI for 0.5 h. (i) 4 in buffer, (ii) 4 with 3 μM LepI, (iii) 4′ in buffer, (iv) 

4′ with 3 μM LepI. *6 is overlapped with 4′. (b) Time-course analysis of the conversion of 

240 μM 4 to 2 in the presence of 300 nM LepI. (c) in vitro reaction analysis of 6 with 300 

nM LepI for 3 min. (i) 6 in buffer, (ii) 6 with LepI. (d) Kinetic analysis of LepI-catalysed 

retro-Claisen rearrangement. (e) Scheme for putative LepI-catalysed retro-Claisen 

rearrangement. The structures show the relative stereochemistry.
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Figure 3. 
LepI-catalysed reactions are SAM-dependent. (a) Time-course analysis of the consumption 

of 240 μM 4 in the presence of 300 nM LepI with or without cofactors; SAM (100 μM), 

SAH (250 μM), sinefungin (100 μM). (b) Time-course analysis of the conversion of 140 μM 

6 to 2 in the presence of 300 nM LepI with or without cofactors; SAM (100 μM), SAH (250 

μM), sinefungin (100 μM). (c) Time-course analysis of the production of 2 and 6 from 240 

μM 4 in the presence of 300 nM LepI with or without 250 μM SAH. (d) Analysis of the 

relative production ratio of HDA adduct 2 and IMDA adduct 6 from 240 μM 4. In the case of 

nonenzymatic reaction, the reaction time is 10 min. In the case of LepI (300 nM)-catalysed 

reactions with or without SAH (250 μM), the reaction time is 4.0 min. Cont. means LepI 

without cofactors. (e) Structures of SAM, SAH, and sinefungin.
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Figure 4. 
Energetics and transition states of the ambimodal IMDA/HDA, and retro-Claisen pericyclic 

reactions leading to formation of 2 from 4. (a) Free energy diagram for the non-enzymatic 

formation of 2 from (E)-5 and (Z)-5 calculated with B3LYP-D3/6-31G(d), gas phase. Gibbs 

free energies in kcal/mol. The ambimodal TS-1 gives both 6 and 2. (b) (i) Asymmetrical 

bifurcating PES for the formation of HDA adduct 2 and IMDA adduct 6 from (E)-5. (ii) 

Catalysed ambimodal TS (TS-1) structure with coordination of a trimethylsulfonium ion 

model. The same shift towards preference for HDA occurs with ammonium ion catalysis. (c) 

Summary of LepI-catalysed reactions cascade leading to 2 from 4 via the formation of (E)-5: 

dehydration and the subsequent reactions, 1) “direct” path (HDA reaction), 2) “byproduct 

recycle” path (IMDA reaction/retro-Claisen rearrangement). Gibbs free energies (kcal/mol) 

of TS-1 and TS-2 are calculated with B3LYP-D3/6-311+G(d,p)//6-31G(d), CPCM water. 

The structures show the relative stereochemistry.
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