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In past decades, meat quality traits have been shaped by human-driven selection in the
process of genetic improvement programs. Exploring the potential genetic basis of artificial
selection and mapping functional candidate genes for economic traits are of great
significance in genetic improvement of pigs. In this study, we focus on investigating
the genetic basis of five meat quality traits, including intramuscular fat content (IMF), drip
loss, water binding capacity, pH at 45 min (pH45min), and ultimate pH (pH24h). Through
making phenotypic gradient differential population pairs, Wright’s fixation index (FST) and
the cross-population extended haplotype homozogysity (XPEHH) were applied to detect
selection signatures for these five traits. Finally, a total of 427 and 307 trait-specific
selection signatures were revealed by FST and XPEHH, respectively. Further bioinformatics
analysis indicates that some genes, such as USF1, NDUFS2, PIGM, IGSF8, CASQ1, and
ACBD6, overlapping with the trait-specific selection signatures are responsible for the
phenotypes including fat metabolism and muscle development. Among them, a series of
promising trait-specific selection signatures that were detected in the high IMF
subpopulation are located in the region of 93544042-95179724bp on SSC4, and the
genes harboring in this region are all related to lipids and muscle development. Overall,
these candidate genes of meat quality traits identified in this analysis may provide some
fundamental information for further exploring the genetic basis of this complex trait.
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INTRODUCTION

The most important purpose of pig breeding is the genetic improvement of important economic
traits (Price 1999; Zhang et al., 2020). In past decades, the aim of genetic improvement of pig
breeding has mainly focused on improving meat production through growth rate and feed efficiency,
lean percentage, and decreasing backfat thickness. As expected, the genetic gain of these traits is
successful in most selection programs. Simultaneously, human-driven selection has also indirectly
shaped the meat quality traits, such as intramuscular fat content (IMF), pH values, drip loss (DL),
and meat color (Herault et al., 2018). From the perspective of population genetics, the effect of
human-driven selection as well as natural selection would leave detectable signatures in the genome.
Therefore, detecting the selection signatures of these important economic traits can provide an
insight into molecular mechanisms by which genomic fragments shape phenotypic diversity
(Qanbari and Simianer 2014).
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Although genomic selection has been widely applied in animal
breeding in recent years, it is still difficult to carry out genetic
improvement of meat quality traits in pigs (Zhan et al., 2021). The
most critical factor is the high cost of measuring meat quality
traits, which makes it difficult to build a large enough reference
population. Therefore, marker-assisted selection (MAS) based on
functional candidate genes is still an important choice for genetic
improvement of meat quality traits. So far, genome-wide
association analysis (GWAS) has been conducted to reveal
some functional candidate genes, such as PRKAG3, MC4R,
and PIT1, which have been identified in different populations
to be related to meat quality traits (Yu et al., 1999; Milan et al.,
2000; Lopez et al., 2015; Zhang et al., 2019). In addition, there are
a lot of quantitative trait loci (QTL) associated with meat quality
in pig QTLdb, more specifically, 1092 QTLs are associated with
drip loss, 851 QTLs are associated with intramuscular fat content,
and 667 QTLs are associated with meat color (http://www.
animalgenome.org/QTLdb/SS/index) (Hu et al., 2019).
However, it is still a challenge to reveal the exact genetic
mechanism of meat quality traits.

To further explore the genetic mechanism of meat quality traits,
we put forward a hypothesis: although the allele frequency has
increased underlying human-driven selection, the loci related to
meat quality traits are still polymorphic (Ma et al., 2019). Here, we
construct three phenotypic gradient differential population pairs
based on phenotype and use population differentiation–based
methods to detect selection signatures associated with meat
quality traits. If successful, the results can provide more
information for understanding the genetic mechanism of meat
quality traits and facilitate the genetic improvement ofmeat quality
traits through marker-assisted selection.

MATERIALS AND METHODS

Animals and Phenotypes
In this study, a total of 233 castrated large white pigs were used.
The experimental pigs were raised in the same farm, had a
common diet, and drank water freely. The same standard
management conditions were applied in the whole process of
the experiment. Antibiotics are banned in the 3 months before
slaughter. Finally, healthy individuals were chosen and slaughtered
at around 90 Kg weight. The meat samples of longissimus
lumborum from all pigs were collected for measuring meat
quality traits, including IMF, DL, water binding capacity
(WBC), pH45min, and pH24h (Horwitz and Latimer, 1995;
Cherel et al., 2011; Zhan et al., 2021; Zhang et al., 2019).

Here, IMF was measured as percentage of lipid (lipid weight
per 100 g of muscle tissue). Correspondingly, the Soxhlet
extraction method was used following the standard AOAC
Official method in foods (Horwitz and Latimer, 1995). The
pH values of each sample were measured by a waterproof
meat pH meter (Hanna, Romania). The electrode of the pH
meter was calibrated in buffers at pH 7.00 and 4.00 before pH
measurement. To calculate DL, we first measured the weight of
the meat sample with 2.5 cm thickness at the 12th rib. Second, the
final weight was measured, and after that, the meat sample was

suspended in a sealed tube for 48 h at 4°C. Finally, the formula of
(original weight—final weight)/original weight × 100 was applied
to predict the DL. WBC was evaluated according to the
Graua–Hamma method (Hamm, 1986). In this study, all five
traits were measured in triplicate to reduce random error, and
mean values were applied to the following analysis.

Genotyping and Quality Control
In this study, genomic DNA was extracted from ear tissue using a
standard phenol-chloroform method. All 233 castrated large
white pigs were genotyped using Illumina PorcineSNP60
BeadChips, which includes 62,163 single nucleotide
polymorphisms (SNPs). Then, quality control was performed
using the following criteria: i) SNP missing rate <0.05, ii)
individual call rate >0.90, iii) SNPs in Hardy–Weinberg
equilibrium (p > 10e–6), iv) SNP minor allele frequency ˃0.05,
v) autosomal SNPs with known positions extracted. After quality
control, 11,624 SNPs with minimum allele frequency less than
0.05 were deleted, and 42 markers were deleted after the
Hardy–Weinberg test (p ≤ 10e-6). Finally, the data set
contained 37,061 autosome SNPs with an average inter-marker
spacing of 62.06 kb. The genotype data can be downloaded from
Figshare (https://figshare.com/s/cd815d8930c75561392c). The
BEAGLE software was then applied to impute the missing
genotypes and infer haplotypes (Browning and Browning
2016). The PLINK (Version 1.90) software was used to
measure the linkage disequilibrium and allele frequency in
large white pigs (Purcell et al., 2007). Principal component
analysis (PCA) was further performed using the PLINK
(Version 1.90) software. To visualize the LD decay, the r2
values for 1 kb distance bins were averaged and drawn using
the R program.

Detection of Trait-Specific Selection
Signatures
To reveal trait-specific selection signatures, we construct three
phenotypic gradient differential population pairs based on
phenotype first and then identify selection signatures using
population differentiation–based methods in this study. The
detailed analysis flow applied the following steps: i) ranking by
phenotypic values of each trait; ii) based on the rank of
phenotypic values, we equally divided the source population
into high and low phenotypic subpopulations and recorded
them as first population pair; iii) based on step ii, we chose 75
individuals with a higher phenotype from the high phenotype
subpopulation and 75 individuals with a lower phenotype from
the low phenotype subpopulation to create the second population
pair; iv) similarly, we further chose 45 individuals with a higher
phenotype and 45 individuals with a lower phenotype from the
second population pair subpopulations to create the third
population pair; v) population differentiation–based methods
XPEHH and FST were separately applied to identify selection
signatures in three phenotypic gradient differential population
pairs (Sabeti et al., 2007; Weir and Cockerham 1984).

In this analysis, the XPEHH scores do not need to be
standardized. The empirical p-values were generated by
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genome-wide ranking of FST and XPEHH scores, respectively.
The trait-specific selection signatures were defined using the
following two criteria: i) the SNPs with p-value < .01 were
considered as significant loci; ii) from first to second to third
population pair, the FST or XPEHH scores of each significant
locus displayed a gradient change.

Functional Annotation for Trait-Specific
Selection Signatures
To reveal the potential biological functions of trait-specific
selection signatures, we defined the trait-specific selection
region as the genomic region within a distance of 200 kb
around the trait-specific selection signatures. The BioMart
program in ensembl (https://www.ensembl.org/index.html) was
employed to search the genes and their orthologous genes of
mouse harboring the trait-specific selection signature regions.
Then, the database of Mouse Genome Informatics (MGI) was
used to perform functional annotation (Dickinson et al., 2016).
The trait-specific selection signature regions were also annotated
using pigQTLdb in this analysis. Based on the genes harboring in
trait-specific selection signature regions, GO and pathway
analysis was used for the functional annotation and
classification using DAVID 6.8 (https://david.ncifcrf.gov/)
(Huang et al., 2009). The GO terms and pathways with
p-value < .05 were considered as significant after Bonferroni
correction.

RESULTS

Phenotypes Among Phenotypic Gradient
Differential Population Pairs
Figure 1 shows the descriptive statistics of five meat quality traits of
large white pigs. As shown in Supplementary Table S1, there was a
significantly positive association between DL and the other traits.
However, IMF only has a significant positive correlation with WBC.
For each trait, all 233 pigs were divided into two subpopulations:
high and low phenotype value groups. Then, the extreme individuals
were chosen to construct three phenotypic gradient differential
population pairs based on the ranking of phenotype values. As
expected, the average phenotype value of the high phenotypic
subpopulation increased sequentially from the first to the third
population pair. Correspondingly, the average phenotype value of
low phenotypic subpopulation decreased sequentially. As expected,
the average phenotypic value of population pairs for all five meat
quality traits are significant differences (p < .01).

Genomic Characters Among Phenotypic
Gradient Differential Population Pairs
To explore the influence of population division in this analysis,
minor allele frequency, and linkage disequilibrium were
investigated among different populations. As expected, the
distribution of the minor allele frequency (MAF) in each

FIGURE 1 | The phenotypic distribution of five meat quality traits and the
tendency of phenotypic values in phenotypic gradient differential population
pairs. The left is a box-whiskers plot. The right line graph displays a gradual
change tendency of phenotypic mean value from the source population
to first through third population pairs.
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subpopulation is similar to the results using all 233 large white pigs
(Figure 2). The proportion of MAF between 0 and 0.1 increases
slightly as the sample size of each subpopulation decreases.
Simultaneously, the trend of linkage disequilibrium decay is
similar in all subpopulations (Supplementary Figure S1). The
results show that the genomic characters of each subpopulation
in the three phenotypic gradient population pairs have little
difference. Therefore, the population division would not affect the
identification of selection signatures. Further PCA analysis indicated
that the population division for each trait will not cause population
stratification (Supplementary Figures S2–S6). Overall, the results
can prove that the trait-specific selection signatures revealed in this
study are caused by phenotypic differences rather than an accidental
genomic structural difference because of population division.

Trait-Specific Selection Signatures
Based on the constructed population pairs with extreme
differences in phenotypes, XPEHH and FST were employed to
identify positive selection signatures. In this analysis, about 370
positive selection signatures were detected by each method in
each population pair for each trait (Supplementary Table S2).
Then, these positive selection signatures with gradient changes in
three phenotypic gradient differential population pairs were
defined as trait-specific selection signatures. Finally, 55, 49, 43,
111, and 49 trait-specific selection signatures were detected in DL,
IMF, pH45min, pH24h, and WBC using FST test, respectively.

Similarly, the XPEHH test revealed 59, 102, 159, 43, and 64 trait-
specific selection signatures in DL, IMF, pH45min, pH24h, and
WBC, respectively (Figure 3, Supplementary Figures S7–S10).

Candidate Genes Overlapping With
Trait-Specific Selection Signatures
Based on the trait-specific selection signatures, the genes
overlapping with the potential selection regions were
determined using the pig reference genome (Sscrofa11.1).
Enrichment analysis showed that no significant biological
terms may be associated with five meat quality traits after
multiple correction in this study (Supplementary Table S3).
Nevertheless, we note that genes harboring trait-specific
selection signatures are related with muscle morphology by
functional annotations based on the MGI database (Table 1).
For example, the SCYL3 gene that overlaps with the DL-specific
selection signatures is related to abnormal morphology of mouse
skeletal muscle fibers through orthologous alignment and MGI
annotation (Dickinson et al., 2016). ENSSSCG00000027613 genes
were found overlapping with the IMF-specific selection signature.
Note that the ortholog gene of ENSSSCG00000027613 is Trdn in
the mouse, which is related to abnormal skeletal muscle fiber triad
morphology (Oddoux et al., 2009). The previous study indicates
that this gene plays an important role in skeletal muscle function

FIGURE 2 | The proportion of each MAF bin in each subpopulation for five meat quality traits. The total represents the proportion of each MAF bin in source
population. Similarly, H.3 (H.2, H.1) and L.3 (L.2, L.1) represent the proportion of each MAF bin in the two subpopulations of third (second and first) population pair.
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and structure. In addition, the ortholog gene FBX O 32 and
CASQ1 are separately related to reducing the susceptibility to
inducedmuscle atrophy and abnormal muscle physiology (Mosca
et al., 2016; Singh et al., 2017). Both of them were identified as a
potential selection signatures in the IMF content trait.

A Highlighted IMF-specific Selection
Signature Region in Chromosome 4
MF is one of the most important meat quality traits in pig breeding
programs. Here, a promising genomic region (SSC4

93544042–95179724bp) that was detected by XPEHH and FST
simultaneously is associated with high IMF content. Based on the
pigQTLdb, we found that 10 QTLs related to meat quality and fat
metabolism are harbored in this genomic region (Supplementary
Table S4). Further bioinformatics annotation in this region found
that USF1, NDUFS2, PIGM, IGSF8, and CASQ1 gene can be
considered as functional candidate genes for meat quality. Among
them, the USF1 gene plays an important role in lipid homeostasis;
PIGM is related to lipid metabolism and catabolism; IGSF8 and
CASQ1 are related to muscle development; NDUFS2 is related to the
synthesis of energy metabolism (Table 2) (Kim et al., 2015).

FIGURE 3 | Visualization of trait-specific selection signatures for DL. The colored dots represent trait-specific selection signatures.

TABLE 1 | The summary of functional annotation of the trait-specific selection signatures.

Chr Position (bp)a XPEHH (FST) Scores
b Genesc Trait MGI phenotype

10 20392326–20707474 (0.03 < 0.07 < 0.11) DENND1B -,DL MP:0001257_increased body length
12 51773420–51794447 −0.26 > −0.35 > −0.67 SCIMP High, DL MP:0001260_increased body weight
4 81133591–81176676 (0.05 < 0.07 < 0.13) SCYL3 -,DL MP:0003084_abnormal skeletal muscle fiber

morphology
5 46244283–46274049 0.31 < 0.52 < 0.75 ENSSSCG000000005(Smco2) Low, DL MP:0003960_increased lean body mass
1 39180526–39339224 (0.06 < 0.09 < 0.12) ENSSSCG0000002761(TRDN) -,IMF MP:0009411_abnormal skeletal muscle fiber

triad morphology
10 25822287–25826726 0.30 < 0.41 < 0.55 ENSSSCG00000010936(Fabp3) Low, IMF MP:0002118_abnormal lipid homeostasis
10 25707711–25735067 0.30 < 0.42 < 0.55 ZNF367(Zfp367) Low, IMF MP:0005553_increased circulating creatinine

level
4 15895092–15930934 (0.04 > 0.09 > 0.13) FBXO32 -, IMF MP:0004064_decreased susceptibility to

induced muscular atrophy
4 90275213–90294819 −0.38>−0.46>−0.66 CASQ1 High, IMF MP:0002106_abnormal muscle physiology
7 25751185–25808637 0.31 < 0.44 < 0.64 GFRAL Low, IMF MP:0001259_abnormal body weight
11 23237692–23894699 (0.05 < 0.08 < 0.14) ENOX1 -,pH45m MP:0000062_increased bone mineral density
11 68920906–69301332 0.53 < 0.62 < 0.96 PCCA Low,

pH45m
MP:0001429_dehydration

7 114035383–114541592 −0.41 < −0.48 < −0.55 (0.06 <
0.11 < 0.18)

RIN3 High,
pH45m

MP:0005560_decreased circulating glucose
level

3 24815010–24835836 0.33 < 0.36 < 0.55 CRYM Low,
pH24h

MP:0005472_abnormal triiodothyronine level

4 123674697–123779615 (0.05 < 0.08 < 0.12) FNBP1L -,pH24h MP:0003961_decreased lean body mass
1 268581835–268590836 −0.35 > −0.46 > −0.55 (0.04 <

0.07 < 0.11)
PTGES2 High, WBC MP:0001785_edema

8 132035777–132200420 (0.03 < 0.06 < 0.08) PTPN13 -,WBC MP:0001261_obese

aThis column is the position of candidate genes.
bThis column is the XPEHH(FST) scores of three phenotypic gradient change population pairs.
cThe gene in brackets is the mouse ortholog gene.
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DISCUSSION

In this study, we planned to map some candidate genes of meat
quality using population differentiation–based selection
signature methods through constructing phenotypic gradient
difference population pairs. In theory, meat quality traits are
quantitative traits, controlled by minor-effect polygenes, and
their genetic mechanisms are complex (Falconer and Mackay,
1960; Hill et al., 2007). Although these loci are related to the
complex traits, they are not easy to detect through genome-wide
association analysis because of their small effect, especially after
multiple correlations. However, these loci have been shaped by
human-driven selection; they can be detected through sweep
analysis from the perspective of population genetics (Qanbari
and Simianer 2014). Therefore, it is theoretically feasible to use
population differentiation–based selection signature methods to
identify trait-specific selection signatures through constructing
phenotypic gradient population pairs. The results of the
functional annotation also support this hypothesis. A series
of genes and QTLs harboring trait-specific selection
signatures are related with meat quality traits (Table 1,
Supplementary Table S4). There is no doubt that this
strategy also has a shortcoming that the fixed loci caused by
selection will not be identified after MAF quality control. In
addition, both the sample size of the third population pair and
the gradient across different population pairs are at least 40
unrelated individuals according to our previous study (Ma et al.,
2015). Although small sample sizes appear to be sufficient in the
detection of selection signatures according to simulation
research, there is no doubt a larger sample size will
contribute to decrease the risk of detection bias.

The genetic mechanism of meat quality traits is complex.
The candidate genes related to meat quality traits discovered
in this study may have pleiotropism effects. As shown in
Table 1, some orthologous genes, such as SCIMP,
ENSSSCG00000000550, GFRAL, and FNBP1L, are related to
the body weight and lean body weight of mice (George et al.,
2014; Tsai et al., 2019). We found that some genes overlapping
with meat quality traits–specific selection signatures are
also associated with lipid traits, such as
ENSSSCG00000010936 and PTPN13. Simultaneously, the
orthologous gene of ZNF367 that was considered an IMF-
specific selection signature is related to the increase in
circulating levels of creatinine in mice, which is consistent
with the fact that creatinine has flavor properties. After the
annotation of pigQTLdb, we note that trait-specific selection

signals are mainly associated with QTLs for meat quality traits,
but there are also QTLs related to backfat thickness, body
weight, and body length (Supplementary Table S4). In
general, there is a negative correlation between backfat
thickness and meat quality traits, especially DL and IMF.
This result indicates that the artificial selection of backfat
thickness and body size in recent pig breeding programs
should have a significant impact on meat quality traits.

Because the XPEHH method can identify the selected
population, this study can further study the complex genetic
mechanism of meat quality traits (Sabeti et al., 2007). In general,
the artificial selection of economic traits shows a single direction
of phenotypic changes, but the corresponding genetic basis
changes are in two directions: increasing and decreasing
effects. Taking IMF as an example, 48 and 54 selection
signatures were separately detected in low and high IMF
subpopulations (Supplementary Table S5). Note that the
biological phenotypes of the CASQ1 and
ENSSSCG00000010936 genes identified in the high and low
IMF subpopulations are abnormal muscle physiology and
abnormal lipid homeostasis based on MGI annotation
(Dickinson et al., 2016). In addition, 115 trait-specific selection
signatures detected in the low pH45min subpopulation are more
than 44 trait-specific selection signatures detected in the
high pH45min subpopulation. This is consistent with the fact
that the breeding direction of lean pigs under artificial
selection leads to a decrease in water holding capacity and a
rapid decrease in muscle pH after slaughter in recent
years. However, 37 trait-specific selection signatures detected
in the low DL subpopulation are more than 22 trait-specific
selection signatures detected in the high DL subpopulation
(Supplementary Table S5). This further indicates the
complexity of the genetic mechanism of meat quality
traits. Meat quality traits are affected by many factors,
including fat metabolism, transportation, muscle fiber
formation, and physiological conditions. Therefore, it can be
inferred that further multi-omics integrated analysis is an
important way to analyze the genetic mechanism of meat
quality traits in the future.

CONCLUSION

In this study, we propose a new strategy to identify trait-specific
selection signatures. The application in five meat quality traits in
large white pigs indicate that this strategy is promising in gene

TABLE 2 | The annotation of seven potential candidate genes in SSC4 (Kim et al., 2015).

Chr Position (bp)a XPEHH (FST) Scores
b Trait Genes Function

4 89395156–89401258 −0.42 > −0.50 > −0.64 (0.04 < 0.06 < 0.15) High, IMF USF1 Lipid homeostasis
4 89247150–89262159 −0.42 > −0.50 > −0.64 (0.04 < 0.06 < 0.15) High, IMF NDUFS2 Integration of energy metabolism
4 90461734–90467492 −0.34 > −0.43 > −0.61 High, IMF PIGM Lipid metabolism and catabolism `
4 90370235–90405480 −0.34 > −0.44 > −0.64 High, IMF IGSF8 Muscle development
4 90275213–90294819 −0.38 > −0.46 > −0.66 High, IMF CASQ1 Muscle development

aThis column is the position of candidate genes.
bThis column is the XPEHH(FST) scores of three phenotypic gradient change population pairs.
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mapping. Furthermore, we detected a series of genomic selection
signatures and identified some genes related to meat quality traits,
such as USF1, NDUFS2, PIGM, IGSF8, and CASQ1, which
provide a reference for future pig breeding.
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