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Abstract
Patterns of species diversity provide fundamental insights into the underlying mechanisms and processes that regulate
biodiversity. The species–time relationship (STR) has the potential to be one such pattern; in a comparable manner to its
more extensively studied spatial analogue, the species–area relationship (SAR), which has been pivotal in the development
of ecological models and theories. We sought to determine the mechanisms and processes that underpin STR patterns of
temporal turnover by sampling bacterial communities within ten water-filled tree-holes on the same European beech tree
through the course of a year. We took this natural model system to represent an archipelago of islands of varying sizes and
with shared common immigration sources. We observed an inverse relationship between STR-derived turnover rates and
island size. Further, turnover was related to island size and not island isolation within the study system as indicated by a low
frequency of dispersal limitation and high homogenizing dispersal. Compared to SARs, STRs are understudied, as such, the
findings from the current study should provide a renewed interest in STR-based patterns and processes.

Introduction

A fundamental objective of ecology is to understand how
biodiversity is accumulated and maintained across space
and time [1]. Patterns of species diversity provide important
insights into the underlying mechanisms that regulate bio-
diversity [1]. One such pattern, which is one of the few
generalizations in ecology, is the relationship between
species richness and area size [2]. The species–area rela-
tionship (SAR) has been central to the development of
ecological models and theories, such as the theory of island

biogeography and the unified neutral theory of biodiversity
and biogeography [1, 3, 4]. Moreover, the SAR provided
the foundation and impetus for the study of microbial bio-
geography on island and contiguous habitats [2, 5].

In contrast, the manner in which species richness chan-
ges with time has received less attention than that of the
SAR. The SAR is well described with the power law
equation S= cAz, where S is the number of observed species
in area A, c is an empirically derived taxon- and location-
specific constant and z is the slope of the line or spatial
scaling exponent [4]. Increasing values of z can be taken as
greater rates of turnover or accumulation with area [1].
Originally proposed by Preston [6], the species-time rela-
tionship (STR) describes how the observed species richness
of a community in a fixed area increases with the length of
time over which the community is monitored [6, 7]. The
species–area power law can be modified to describe the
relationship between species richness and time, T. For
clarity, the scaling exponent is changed from z to w, so that
the STR power law becomes S= cTw [7, 8].

The steepness of the STR slope (w) can be used to
describe how local communities turnover in time [8–10].
This is analogous to the SAR slope (z) that describes how
local assemblages differ in space [1]. A meta-analysis of
STRs from ecological communities from a wide variety of
eukaryotic organisms (including algae, zooplankton,
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invertebrates insects, fish, birds, plants mammals, and cor-
als), and from a range of aquatic and terrestrial ecosystems,
found a remarkable degree of regularity in STR scaling
exponents. Values of w typically ranged between 0.2 and
0.4, with a minimum of 0.10 and maximum of 0.51 [10]. In
agreement, meta-analyses of a wide range of microbial
STRs found temporal scaling exponents were also typically
within this range [8, 9]. It is also notable that scaling
exponents for animal, plant, and microbial communities are
also similar despite differing methods used to construct
STRs (e.g., cumulative moving window [8] or every pos-
sible window [10] approaches), varying lengths in time
series, and diverse sampling methods and depths (from
classical ecological census techniques to high-throughput
sequencing methods) [9, 11]. Interestingly, it has been
demonstrated that STRs can be used as informative indi-
cators of biological integrity and ecosystem health follow-
ing anthropogenic disturbance, including decreasing
temporal scaling exponents in response to increasing
selection pressure and increasing pollutant concentration in
environmental perturbations [8, 12, 13].

Crucially, the ecological processes and mechanisms that
underpin the empirical STR patterns of temporal turnover
remain to be determined [14]. To address this knowledge
gap, we sampled bacterial communities within ten water-
filled tree-holes on the same tree through the course of a
year. We took this natural model system to represent an
archipelago of islands of varying habitat size and with
shared common immigration sources. Rainwater accumu-
lates in bark-lined pans formed by buttressing at the base of
large European beech trees (Fagus sylvatica) to form small
but often permanent bodies of water [2]. Each of these
islands houses a micro-ecosystem that derives its nutrients
and energy from decomposing leaf litter [15]. Vitally, for
the current study, tree-holes have been used previously as
tractable experimental microcosms in microbial ecology to
address questions of fundamental ecological importance,
e.g., [2, 12, 16, 17]. In addition, we also investigated the
effects of using differing approaches to construct STRs, and
implications sampling depth and time-series length had on
the resulting STRs and temporal scaling exponents (w),
providing recommendations for further study.

Materials and methods

Sampling procedure

All samples were taken from a single mature European
Beech tree (Fagus sylvatica) located in the grounds of
Silwood Park, Ascot, UK (51° 24’ 29.52”, −0° 38’ 42.72”).
A number of tree-holes were identified within the root
system, of which ten were deemed suitable (i.e., not

connected, and able to hold water and detritus) for inclusion
in the survey. Samples were collected from November 2014
to November 2015. From each tree-hole, surface area of the
tree-holes was determined as an ellipsoid, by measurement
of the perpendicular radii. The volume of all tree-holes was
measured by homogenizing the water and sediment con-
tained within the tree-holes and siphoning the liquid into
measuring cylinders, as previously described [2]. Samples
of ≈5 g of the homogenized slurry were taken and frozen for
molecular analysis at −80 °C. Metadata, including dates
and days of sampling, sample durations, tree-hole surface
areas, and volumes for each tree-hole are available at fig-
share.com under https://doi.org/10.6084/m9.figshare.
10320713.v1.

Sequencing

Nucleic acids were extracted from the samples using
the protocol previously described [18]. Quantification
of total nucleic acids was approximated using a
Take3 Micro-Volume plate (BioTek, Swindon, UK) and
Synergy2 spectrophotometer (BioTek). Samples were dilu-
ted to 10 ng/μL using Starlet Micropipetting liquid handling
system (Hamilton Robotics, Reno, NV, USA) and custom
protocols. The V4 region (~250 bp) of the bacterial 16S
rRNA genes were amplified using the dual indexing PCR
protocol described in [19], allowing 364 samples to be
uniquely indexed. Briefly, 1 μL nucleic acids (~10 ng) were
used as the template in a 50 μL reaction volume consisting
of 0.5 μL Q5 High Fidelity Taq (2000 unit ml−1), 10 μL
10X reaction buffer, 10 μL GC enhancer, 1 μL 10 mM
dNTP, 22.5 μL molecular grade water and 5 μL of dual
indexed primer (0.125 μM of each forward and reverse
primer). Parameters for the PCR were as follows; initial
denaturing at 95 °C for 2 min followed by 25 cycles of 15 s
at 95 °C, 15 s at 55 °C and 30 s at 72 °C, with a final
extension time of 10 min at 72 °C. Amplifications were
confirmed on 1% agarose gel stained with GelRed (Bioti-
nium, Inc. Fremont, CA, USA). Amplicons were normal-
ized to up to 25 ng per sample using SequalPrep
Normalization Plate Kit (Thermo Fisher Scientific, Lough-
borough, UK) and libraries were pooled per plate (up to
96 samples per plate). The four libraries were quantified
using Qubit High Sensitivity (Thermo Fisher Scientific) and
pooled in equal concentration. 400 pM library and 40 pM
PhiX (Illumina, Inc., San Diego, CA, USA) control were
prepared and denatured with 2 μL 2 N NaOH (Sigma-
Aldrich, Gillingham, UK) for 5 min at room temperature
then neutralized with 2 μL 2 N HCl (Sigma-Aldrich). An 8
pM library with 10% PhiX control was created with
chilled HT1 buffer and loaded into the V3 chemistry
MiSeq cartridge (Illumina, Inc.) to achieve 2 x 300bp
sequencing reads.
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Sequence analysis

Sequenced paired-end reads were joined using PEAR [20],
quality filtered using FASTX tools (Hannon, http://ha
nnonlab.cshl.edu), presence of PhiX and adapters were
checked and removed with BBTools (jgi.doe.gov/data-
and-tools/bbtools), and chimeras were identified and
removed with VSEARH_UCHIME_REF [21] using
Greengenes Release 13_5 (97%) [22]. Singletons were
removed and the resulting sequences were clustered into
operational taxonomic units (OTUs) with VSEARCH_-
CLUSTER_FAST [21] at 97% sequence identity [23].
Representative sequences for each OTU were tax-
onomically assigned by RDP Classifier with the bootstrap
threshold of 0.8 or greater (Wang et al, 2007) using
Greengenes Release 13_5 [22] as the reference. Resultant
OTUs were combined to create phylotypes, associated at
the 97% identity similarity cut-off, which roughly corre-
sponds to a species/genus level [23]. Bioinformatics code
is provided in the Supplemental materials. The raw
sequence data reported in this study have been deposited in
the European Nucleotide Archive under study accession
number PRJEB35208. Metadata, including sample identi-
fications relating to the sequences accessions, is available
at figshare.com under https://doi.org/10.6084/m9.figshare.
10320713.v1.

Statistical analyses

Three differing methods were used to construct STRs;
termed here as the ‘moving window’, ‘cumulative moving
window’ [8], and ‘every possible window’ [10] approaches.
Note, in all approaches, new taxa were defined as the
number of taxa present in the last sample of a window, but
not observed in the first sample or cumulative samples as a
window was moved sequentially along a time series. For the
‘moving window’ (MW) approach, adjoining sample time
points were taken pairwise moving along the time series,
with the richness of the first sample added to the number of
new taxa found in the second. For example, in a 20-time
point time series, richness in sample 1 is added to the new
taxa observed in 2, then 2 and 3, 3 and 4, 4 and 5, etc., up to
19 and 20. The ‘cumulative moving window’ (CMW) dif-
fered from the ‘moving window’ approach in that only the
first appearance of each bacterial taxon was used, despite
that some taxa emerged and disappeared multiple times
across a time series within a given tree-hole [8]. Specifi-
cally, taxa richness in sample 1 is added to the number of
new taxa in sample 2, then (1, 2) + new taxa in 3, (1, 2, 3)
+ 4, (1, 2, 3, 4) + 5, etc., up to (1, 2, 3 …. 17, 18, 19) +
new taxa in 20. For the ‘every possible window’ (EPW)
approach, change in taxa richness was determined for every
possible window of all potential time spans, and the mean

new species value recorded at each sampling point. Hence,
the 20-time point time series example is broken down into
20-time point windows, 19 two-time point windows, 18
three-time point windows, etc. [10]. This results in taxa
richness being recorded for each sample in the 20 single
time point windows, after which, taxa richness of the first
sample (or cumulative samples) was added to the number of
new taxa in the subsequent sample of that sequence as the
window moves through the time series. Hence, for the two
time point/paired windows: richness in sample 1 was added
to the number of new taxa present in sample 2, the window
then moved onto samples 2 and 3, 3 and 4, and so on up to
samples 19 and 20. For the three time point windows: the
taxa richness in samples 1 and 2 have the new taxa in
sample 3 added, then (2, 3) + 4, (3, 4) + 5, etc., up to (18,
19) + 20. For the four time point windows: (1, 2, 3) + new
taxa in 4, then (2, 3, 4) + 5, (3, 4, 5) + 6, etc., up to (17, 18,
19) + 20. Window size continued to increase sequentially
in that manner until arriving at the final twenty point win-
dow, e.g. (1, 2, 3 …. 17, 18, 19) + new taxa in 20. These
values were then averaged within each time span prior to
plotting the STR [10]. All STRs were constructed and
plotted in Microsoft Excel (Microsoft Corporation, Red-
mond, Washington, USA). All regression analyses, coeffi-
cients of determination (R2), degrees of freedom, F-
statistics, and significance (P) were calculated using
XLSTAT v2018.1 (Addinsoft, Paris, France).

To test to what extent temporal turnover within each of
the tree-hole communities were accounted for by Vellend’s
rationalized ecological processes [14], local communities
were compared using a Monte Carlo procedure (1000 ran-
domizations) to determine whether any two communities
were more or less similar than expected by chance using the
Raup and Crick probability-based index of similarity (SRC)
[24]. For each tree-hole, the ‘regional’ species pool was
defined as all species that occurred through the time series
for all tree-holes. The SRC probability-based index, which is
independent of sample size and based on presence–absence
data, was rescaled to range from 1 to −1 [24], but, contrary
to Chase et al., maintained as an intuitive measure of
similarity and not dissimilarity. Pairwise SRC indices of
≥0.95 and ≤−0.95 are significantly similar or dissimilar,
respectively, than expected by chance, and SRC indices
between 0.95 and −0.95 indicate similarity no greater than
expected by chance [24]. Recently, this has been extended
to quantify which ecological processes shape differences
between local communities [25]. When SRC is used as a
similarity index, values near 1 (0.95–1) indicate homo-
genizing dispersal, values near −1 (−0.95 to −1) indicate
dispersal limitation (selection), and values between 0.95 and
−0.95 indicate drift. SRC indices were calculated using
PAST v3.25 (https://www.nhm.uio.no/english/research/
infrastructure/past/).
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Fig. 1 Species-time relationships for the tree-hole bacterial com-
munities. A, B, and C represent species–time relationships (STR)
constructed using every possible window, cumulative moving win-
dow, and moving window approaches, respectively. Given in each

instance is the tree-hole number (TH1–TH10) and the STR power law
equation. All STRs were significant (P < 0.001). Full regression
summary statistics are provided in Table S1.
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Results and discussion

The underpinning method employed to construct a STR may
affect the shape, scaling exponent (w), and fit of the STR
power function. Here we used three differing approaches to
construct STRs; including, what we term in this study, the
‘every possible window’ (EPW) [10], ‘cumulative moving
window’ (CMW) [8], and ‘moving window’ (MW) approa-
ches. The differences in each method are extensively detailed
in the Material and Methods. The STRs for the bacterial
communities within each of the tree-hole islands were plot-
ted, of which all relationships were significant (Fig. 1 and
Table S1). Overall, the resulting STR power law exponents
(w) were found to range from 0.048 to 0.350 (Fig. 1) and
were typically within the exponent ranges observed from
meta-analyses of STRs for a wide range of animals, plants,
and microbial communities [9–11]. However, these values
varied by the approach used to construct STRs (Fig. 2A). The
EPW based w values ranged from 0.048 to 0.128, with a
mean w of 0.088 ± 0.029 (mean ± SD). The CMW w values
ranged from 0.073 to 0.150, with a mean w= 0.111 ± 0.029.
Whereas, the MW minimum and maximum w values were
0.223 ± 0.350, with a mean of 0.289 ± 0.044 (Fig. 2A). The
EPW and CMW w values were significantly lower than the
MW w values (Fig. 2A). However, they were not sig-
nificantly different from each other, despite that EPW values
were uniformly lower (Fig. 2A).

A key difference between the EPW and CMW approa-
ches when compared to the MW is the former only used the
first appearance of each bacterial taxon, even though taxa
can emerge and disappear multiple times across a time
series for a given tree-hole. Conversely, the MW approach
does incorporate multiple immigrations and extinctions of
the same taxa through time, which would be anticipated in a
time series of this study’s extent. This would result in higher
turnover, as observed here, and could therefore provide
rational explanation for the higher residuals observed
towards the latter portions of the MW STRs (Fig. 1C).
However, to ascertain whether higher residuals are a general
phenomenon or specific to the study system, and hence
whether a power function is best to describe an empirical
STR, would require wider comparative testing of the STR
construction methods across a broad range of microbial
communities from different habitats. Regardless of the STR
construction method used, variation in w values across the
tree-holes mirrored each other (Fig. 2A); all were significant
and highly correlated between each approach (Fig. 2C–D).
Previously, a fundamental reason for only using the first
appearance of each taxon was due to the detection limits
within the underpinning method used to survey microbial
communities. For example, earlier work on STRs used
fingerprinting methods, such as Denaturing Gradient Gel
Electrophoresis, which were known to be affected by

detection thresholds e.g., [8, 11–13]. In which, the dis-
appearance and reappearance of a bacterial taxon could
have been due to dropping below the detection threshold as
opposed to going locally extinct. Whereas, this is now less
of an issue with the high-throughput sequencing approaches
and therefore a higher degree of confidence can be taken
when assessing local immigration and extinction.
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Next, we investigated the possible influence of time series
length and sampling depth on the resulting temporal scaling
exponents. Within the current study, sampling duration var-
ied from a minimum of 280 days to a maximum of 364 days,
mean= 339.8 ± 32 days. Likewise, mean sequencing depth
varied across the tree-holes, with a minimum of 33893 and
maximum of 47283 sequence reads, and mean of 41521.3 ±
4147.7 sequence reads. Subsequent analysis revealed STRs,
regardless of construction method, were not related to var-
iation in study duration or sequencing depth (Figure S1:
EPW with time, R2= 0.16, F1,18= 1.58, P= 0.245; CMW
with time, R2= 0.14, F1,18= 1.34, P= 0.281; and MW with
time, R2= 0.28, F1,18= 3.12, P= 0.115; EPW with mean
sequence depth, R2= 0.001, F1,18= 0.001, P= 0.953; CMW
with mean sequence depth, R2= 0.01, F1,18= 0.001, P=
0.948 and MW with mean sequence depth, R2= 0.002, F1,18

= 0.002, P= 0.902). Therefore, this would indicate that any
influence based on sampling was negligible, as has been
observed previously [9]. Although there is an observed reg-
ularity in the STR exponents, found here and more broadly,
there remains variability within that range. It has been pre-
viously posited that finding patterns within that variability
could provide a better understanding of the processes
underpinning STRs, and hence temporal turnover within
ecological communities [10].

For island-based communities, theory predicts that
turnover rates should be inversely related to island size and
to island isolation [4, 26]. For the latter, we presume that
isolation from source of immigration for the tree-hole
islands was approximately equivalent and hence would
have limited effect on turnover rates; as the main routes of
bacterial immigration would be via falling leaf matter pre-
dominately from the host tree, and rainwater running down
the trunk of the tree from the canopy above. Before a
relationship between turnover and island size could be
tested, the best measure of island size had to be determined.
Although island area has been the traditional measure [1, 4],
volume has been found to be a better measure of island size
in microbial studies based in aquatic habitats [2, 27, 28].
We tested this by plotting the SAR and species–volume
relationship across the tree-hole communities, accounting

for variation in area, volume, and richness over time, and
found volume to be the better predictor (Fig. 3A&B). Using
volume as the measure of island size, a significant inverse

Fig. 2 Comparison of temporal scaling exponents (w) between
STR construction methods. A w values plotted by tree-hole and STR
construction method: Every possible window (EPW) approach, unfil-
led circles; cumulative moving window (CMW), grey circles; and
moving window (MW), black circles. Relationships between (B)
CMW and EPW, (C) MW and EPW, and (D) MW and CMW w-
derived exponents. One-way ANOVA summary statistics (A): EPW vs
CMW, F1,18= 2.74, R2= 0.13, P= 0.115; EPW vs MW, F1,18= 87.1,
R2= 0.88, P < 0.0001; and CMW vs MW, F1,18= 99.9, R2= 0.85, P
< 0.0001. Regression statistics (C–D): CMW and EPW, R2= 0.97,
F1,8= 286.7, P < 0.0001; MW and EPW, R2= 0.91, F1,8= 82.7, P <
0.0001; MW and CMW, R2= 0.90, F1,8= 71.4, P < 0.0001. Island size A (cm2)
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relationship with temporal turnover was observed (Fig. 3C).
In agreement with theoretical predictions for island bio-
geography, we found that smaller islands had lower taxa
richness, but, with higher turnover, whereas larger islands
had greater richness with reduced turnover over time
(Fig. 3B&C).

There is a need to understand the mechanisms and pro-
cesses that underpin microbial community assembly, and
which determine the spatial and temporal distributions of
different microbial taxa [29, 30]. A plethora of potential
ecological processes that could explain such patterns have
been distilled into the influence and interplay between four
basic processes; selection, dispersal, drift, and speciation
[14]. This simplified framework of ecological processes has
been strongly advocated as informative for microbial ecol-
ogy [29, 30]. In brief, dispersal limitation, or selection,
results from biotic and abiotic pressures causing minimal
exchange of organisms between communities. Homo-
genizing dispersal is the degree to which individuals of
species move between and successfully establish in local
communities. Drift results from stochastic changes in
population sizes, and speciation is the evolution of new
species [14, 25].

Here the Raup and Crick probability-based index of
similarity (SRC) was used to test to what extent ecological
processes (homogenizing dispersal, dispersal limitation/
selection, and drift) accounted for temporal turnover within
each tree-hole community [24]. This index has long been
used to examine the influence of deterministic and sto-
chastic factors on community assembly e.g., [8, 24, 31]. It
has been noted that some ecological processes of commu-
nity assembly [14] can map easily onto this deterministic-
stochastic framework [32]. To that end, we used SRC values
that were deterministically similar (SRC ≥ 0.95) or dissimilar
(SRC ≤−0.95) than expected by chance to infer the deter-
ministic processes of homogenising dispersal and dispersal
limitation (selection), respectively [32]. In addition, we used
SRC values that indicated similarity no greater than expected
by chance (SRC >−0.95 and <0.95) to infer the stochastic
process of drift [24, 25].

Strikingly, similar patterns of pairwise SRC frequencies
were observed within all of the tree-hole communities
(Fig. 4A). Communities were mainly characterized by the
deterministic process of homogenizing dispersal (mean SRC
= 96.1, SD ± 2.5%), and to a lesser extent by drift (3.3 ±
2.0%) and then dispersal limitation (0.6 ± 1.4%). Speciation

Fig. 3 Island size relationships with taxa richness and turnover.
Given are taxa richness relationships with (A) tree-hole surface area, A,
and (B) tree-hole volume, V, as measures of island size. Also given, in
each instance, are the power law equations for the species–area and
species–volume relationships. Regression summary statistics: (A) R2

= 0.30, F1,8= 3.4, P= 0.104; and (B) R2= 0.52, F1,8= 8.8, P=
0.018. C–E Relationship between taxa turnover (w) and island size (V)
for different STR construction approaches: (C) w values derived from
every possible window approach (R2= 0.60, F1,8= 12.2, P= 0.008);
(D) cumulative moving window approach (R2= 0.59, F1,8= 11.1, P
= 0.01); and (E) moving window approach (R2= 0.64, F1,8= 14.4, P
= 0.005). Vertical and horizontal error bars represent standard devia-
tion of the mean of richness and island size, respectively, over
census time.
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Fig. 4 Ecological process relationships with island size and taxa
turnover. (A) Percentage frequency of Raup and Crick probability-
based index pairwise values, for each tree-hole, assigned to dispersal
limitation, drift, and homogenizing dispersal. Tree-holes (TH) are
presented from TH1, as the outmost circle, through to TH10, as the
innermost. Also given for each tree-hole are the percentage frequency
values accounted for by each of the ecological processes. B, C are the
relationships between island size (volume, V) with (B) drift and
homogenizing dispersal, respectively. Regression statistics: (B) R2=
0.71, F1,8= 20.1, P= 0.0002; and (C) R2= 0.72, F1,8= 20.5, P=
0.0002. The relationship between V and dispersal limitation was non-
significant and is not shown: R2= 0.04, F1,8= 0.4, P= 0.560. Hor-
izontal error bars represent standard deviation of the mean of V over
census time.
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is not explicitly accounted for using the SRC index, but can
cause differences in diversity among sets of communities
that do not exchange through dispersal [14]. Therefore,
speciation should have negligible influence within a set of
communities where individuals disperse among local com-
munities within a metacommunity, as was the case in this
study [25]. Moreover, here speciation should be negligible
given the survey’s timeframe and the method used to define
taxa (i.e., 16 S rRNA amplicon sequencing and grouping in
97% OTUs).

The low frequency of dispersal limitation and high
homogenizing dispersal indicated that island isolation was
unimportant, as postulated earlier (Fig. 4A). Therefore,
turnover was related to island size and not island isolation
within the study system. We posit that the large degree of
homogenizing dispersal was due to the negligible effect of
isolation from the immigration sources and the relatively
small distances between islands in this tree-hole archipe-
lago, with the minimum and maximum distance between
any two adjoining tree-holes was 12.5 and 217 cm,
respectively (mean 59.7 ± 62.9 cm). In support of this view,
a recent study experimentally demonstrated dispersal
homogenized bacterial communities via immigration, and
not through weakening selection, within a metacommunity
at small spatial scales [33].

To examine the influence of island size further, we
explored associations with ecological processes
(Fig. 4B&C). We found a significant inverse relationship
between drift and island size (Fig. 4B) and, conversely, a
significant positive relationship between homogenizing
dispersal and island size (Fig. 4C). Theory predicts that
species turnover will be higher on smaller islands than on
larger islands, as was the case in the current study (Fig. 3C),
[1, 4, 26]. This can be due to islands of decreasing size
having an increased probability of chance events [1, 4].
Such stochastic events include death, reproduction, and
migration, which underpin the stochastic-based process of
drift [14, 24]. Hence, we posit this may explain the obser-
vation of drift significantly increasing with decreasing
island size in the current study. Moreover, in the same spirit,
others have proposed that with smaller island sizes, there
are inherent smaller population sizes, thus making it harder
for homogenizing dispersal to effectively increase popula-
tion size and counterbalance drift [34, 35]. As such, this
could help better explain observed patterns and highlight
dispersal and drift are inversely linked [35]. That could be
determined in future work, which manipulates dispersal
rates, population sizes, and island sizes in experimental tree-
holes.

Here we provide, for the first time, determination of the
underlying mechanisms and processes that can underpin
STRs (regardless of STR construction approach), and hence
temporal turnover, within island-based bacterial

communities. We found that island size was important in
influencing turnover within the bacterial communities stu-
died. Moreover, homogenizing dispersal was the dominant
ecological process driving community turnover within the
study system. That observation, coupled with a negligible
influence of dispersal limitation, was also the result of the
lack of island isolation from the immigration source in this
study system. Future studies could determine which pro-
cesses underpin temporal turnover when variation in island
isolation is experimentally controlled and manipulated.
While the SAR has been pivotal in the development of
ecological models and theories, we are optimistic that the
findings from the current study will provide new impetus in
realizing the potential of its understudied and less under-
stood temporal analogue, the STR.
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