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The ability to adapt to changes occurring in the envi-
ronment is a fundamental feature of human behavior,
which relies on both sensory and reward feedbacks. On
the one hand, the role of sensory feedback has been
largely considered by studying how motor commands
adapt to visual perturbations (e.g., a visuomotor rotation),
a process called error-based learning (Shadmehr et al.,

2010; Wolpert et al., 2011; Kim et al., 2018; Roemmich
and Bastian, 2018). This type of motor learning involves
the computation of sensory prediction errors (SPEs),
namely, the difference between predicted and actual sen-
sory outcome (Tseng et al., 2007; Schlerf and Ivry, 2012;
Shadmehr, 2017, 2018). On the other hand, the role of
reward feedback has been mostly investigated in tasks
that require learning what action to select or not, by
updating reward predictions based on previous experi-
ence, a process named reinforcement learning (Lee
et al., 2012; Derosiere et al., 2017a,b; Gershman and
Daw, 2017; O’Doherty et al., 2017). A central aspect
here is the computation of reward prediction errors
(RPEs), namely, the difference between predicted and
actual rewards (Schultz, 2015).

For a long time, motor learning and reinforcement learning
have been studied apart and have been linked to functionally
independent brain networks (Doya, 2000), mostly centered
on either the cerebellum (Tseng et al., 2007; Schlerf and Ivry,
2012; Taylor and Ivry, 2014; Herzfeld et al., 2018) or on
dopaminergic-basal ganglia circuits (Lee et al., 2012;
O’Doherty et al., 2017), respectively. However, this view has
changed in the past few years, with recent works indicating
that rewards can strongly impact motor learning (Abe et al.,
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Significance Statement

Motor and reinforcement learning have been classically linked to functionally independent brain networks
centered on the cerebellum and the basal ganglia, respectively. In a recent study published in eNeuro,
Therrien et al. (2018) showed that increasing motor noise in healthy subjects disrupts reinforcement
learning. However, this impairment remained well below that detected in cerebellar patients even when
motor noise in healthy subjects was adjusted to match that observed in the patients. This suggests that
impaired reinforcement learning following cerebellar damage cannot be solely accounted for by altered
motor noise in these patients. Based on recent anatomic and functional evidence, we argue that the
cerebellum may directly contribute to reinforcement learning, consistent with its tight connections with the
basal ganglia.
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2011; Izawa and Shadmehr, 2011; Dayan et al., 2014; Galea
et al., 2015; Nikooyan et al., 2015; Quattrocchi et al., 2017;
Song and Smiley-Oyen, 2017). Hence, efforts are now made
to understand how motor and reinforcement learning may
interact at the neural level (Wilkinson et al., 2015; Mawase
et al., 2017; Uehara et al., 2017). Consistently, Therrien et al.
(2016) recently reported data pointing toward an implication
of the cerebellum in reinforcement-based motor learning. As
such, cerebellar patients exhibited a reduced ability to learn
from reinforcement in a visuomotor adaptation task, com-
pared to healthy subjects (Therrien et al., 2016). However,
because the patients also exhibited increased motor noise
(i.e., defined as an uncontrollable source of motor variability),
this deficit could have occurred indirectly, due to an im-
paired ability to precisely relate an action to the received
reward. The work reported by the same authors in eNeuro
aimed at tackling this issue by increasing motor noise artifi-
cially in healthy individuals (Therrien et al., 2018).

Therrien et al. (2018) used the same visuomotor adap-
tation task as in their previous 2016 paper. Specifically,
the healthy subjects were required to make reaching
movements toward a visual target with no visual informa-
tion on the position of their hand and received binary
reward feedback. To get a reward, subjects had to learn
to alter their reach angle to counteract a visuomotor
rotation between the location of the visual target and their
hand position: the reward feedback was based on this
modified reach angle. Critically, the authors added motor
noise by deviating the subjects’ reach in a way that was
proportional to baseline motor variability. The experimen-
tal design involved both a low and a high noise condition,
with the latter set to approximate the level of motor noise
observed in cerebellar patients (Therrien et al., 2016).
Hence, such approach allowed comparing reinforcement
learning abilities between patients and healthy controls
with comparable motor noise. The authors report an im-
paired reinforcement learning in healthy individuals in the
high-noise compared to the control condition (i.e., when
no noise was added). Yet, one critical result is that this
impairment remained well below that observed in cere-
bellar patients. This finding indicates that motor noise
does not entirely account for the reinforcement learning
deficits observed following cerebellar damage.

A main line of argumentation in the paper focuses on
the reduced proprioceptive acuity of cerebellar patients.
As such, even with added motor noise, healthy subjects
can still relate the rewards they receive to their reach
angle, based on proprioception, while this ability is known
to be altered in cerebellar patients (Miall and King, 2008;
Bhanpuri et al., 2013; Weeks et al., 2017a,b). Hence, the
reduction in proprioceptive precision might have indirectly
altered reinforcement learning in the patients. Note
though that the clinical tests run by Therrien et al. (2016)
failed to reveal any reduction in proprioceptive precision
in the patients. Hence, even if a discrete reduction in
proprioceptive precision could have gone unnoticed
based on clinical tests (Rinderknecht et al., 2018), we
would like to propose that alterations in proprioceptive
precision may not completely explain reinforcement learn-
ing deficits observed in the patients. Rather, cerebellar

damage may directly alter reinforcement learning, as al-
ready suggested by others (Swain et al., 2011; McDougle
et al., 2016; Miall and Galea, 2016).

Our viewpoint is supported by recent anatomic studies
showing bidirectional connections between the cerebel-
lum and dopaminergic-basal ganglia routes (Bostan et al.,
2010; Chen et al., 2014; Bostan and Strick, 2018). Spe-
cifically, the dentate nucleus of the cerebellum sends
disynaptic projections to the striatum (Hoshi et al., 2005),
and to midbrain dopaminergic structures (Watabe-Uchida
et al., 2012). Conversely, the cerebellar cortex receives
disynaptic projections from the subthalamic nucleus
(Bostan et al., 2010). Functionally, recent works in rodents
provide evidence that reward expectation modulates the
firing rate of cerebellar cells (Ohmae and Medina, 2015;
Wagner et al., 2017; Heffley et al., 2018). In the same vein,
neuroimaging studies in humans have reported activity
related to RPEs in the cerebellum (O’Doherty, 2004; Ram-
nani et al., 2004; Seymour et al., 2004; Tanaka et al., 2004;
Tobler et al., 2006; Garrison et al., 2013), suggesting that
this structure is functionally involved in processing reward
feedback. These works are in agreement with the result of
a previous study showing that cerebellar patients exhibit
altered reinforcement learning in a decision-making task
requiring very simple movements (Thoma et al., 2008). In
line with these considerations, structural and functional
alterations of the cerebellum were found in individuals
suffering from an addiction, such as alcohol or cocaine
dependence, a condition characterized by abnormal re-
ward processing (Moulton et al., 2014; Miquel et al., 2016;
Moreno-Rius and Miquel, 2017). Furthermore, an impor-
tant feature of reinforcement-based compared to error-
based adaptation is that the former increases trial-to-trial
movement variability, reflecting an exploration process of
the environment (Izawa and Shadmehr, 2011; Taylor and
Ivry, 2014; Dhawale and Smith, 2017). Following this idea,
modeling work in the present study showed that healthy
subjects increased motor exploration following unre-
warded compared to rewarded trials. This effect was
absent in the patients reflecting an inability to modulate
behavior optimally according to reward feedback. In this
view, a recent study showed that poor performance in a
visuomotor adaptation task in cerebellar patients is not
only due to impaired error-based learning but also to a
difficulty in using feedback information to develop and
maintain an explicit aiming strategy (Butcher et al., 2017).
Hence, it seems that cerebellar dysfunction could have
impaired the ability to learn both from error and reward
feedbacks.

Nevertheless, an important point that needs to be
raised here is the age difference between the healthy
subjects tested in the commented paper (Therrien et al.,
2018) and the cerebellar patients to which they are com-
pared but that were originally tested in Therrien et al.
(2016). As such, the healthy subjects (25.0 � 4.8 years
old) were much younger than the patients (61.5 � 10.0
years old), and in fact, when the groups were matched for
age in Therrien et al. (2016), the healthy (older) controls
also exhibited impaired motor exploration, to a compara-
ble extent as the patients. This suggests that aging could
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also have contributed to the reduced reinforcement learn-
ing abilities of the patients (Chowdhury et al., 2013). Fur-
ther studies are therefore required to examine the
respective contribution of aging and cerebellar dysfunc-
tion to reinforcement learning.

In conclusion, the work by Therrien and colleagues
provides new insights into the influence of motor noise on
reinforcement learning in healthy subjects and in patients
suffering from cerebellar impairment. Moreover, the data
are also consistent with the view that the cerebellum may
be directly involved in reinforcement learning and more
precisely in reinforcement-based motor learning. Future
studies could directly test this hypothesis by relating the
reinforcement learning impairment of patients to their
score at the International Cooperative Ataxia Rating
Scale, reflecting the severity of the cerebellar impairment.
This line of research opens very interesting perspectives
to design innovative multi-approach neurorehabilitation
strategies.
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