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Background. Variant influenza A(H3N2) viruses (H3N2v) have transmitted recently from pigs to humans in the
United States. Vaccines strategies are needed.

Methods. Healthy adults received 2 doses of subvirion H3N2v vaccine (15 µg of hemagglutinin/dose) 21 days
apart in this open-label trial. Serum hemagglutination inhibition (HAI) and neutralizing (Neut) antibody (Ab) titers
were measured before and 8 and 21 days after each dose. Memory B-cell (MBC) responses were assessed.

Results. Vaccine was well tolerated. A total of 40% of subjects had an HAI Ab titer of ≥40 before vaccination.
Eight-seven percent (95% confidence interval [CI], 79%–93%) and 73% (95% CI, 63%–81%) of subjects 18–64 years
old (98 subjects) and ≥65 years old (90 subjects), respectively, had an HAI titer of ≥40 21 days after dose 1 (P = .01);
51% (95% CI, 41%–61%) and 52% (95% CI, 41%–62%) of younger and older subjects, respectively, developed ≥4-
fold rises in titer (P = not significant). Neut Ab response patterns were similar. Geometric mean titers were higher in
younger subjects. Dose 2 provided no significant enhancement in responses. Cross-reactive MBCs were detected be-
fore vaccination and expanded after vaccination. Preexisting H3N2v-specific MBCs positively correlated with early
increases in vaccine-induced Ab.

Conclusions. In most healthy adults, one 15-µg dose of vaccine elicited levels of HAI Abs associated with pro-
tection. Studies in children and elderly individuals are indicated to define the immunization needs of these groups.

Clinical Trials Registration. NCT01746082.
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Since August 2011, 13 US states have reported 342 con-
firmed human influenza virus infections caused by
an influenza A(H3N2) variant that originated in

swine (H3N2v) [1–7]. Limited human-to-human trans-
mission has occurred, but sustained transmission has
not [3, 8].Most infections occurred in children with lit-
tle to no preexisting immunity against the virus [8].
Eighteen people have been hospitalized, and 1 with co-
morbidities died [8].

The prevalence of putative protective titers of anti-
body (Ab) against H3N2v in most age groups is report-
ed to be low [9–11]; hence, H3N2v poses a pandemic
threat similar to that posed by the 2009 pandemic influ-
enza A(H1N1) virus (A[H1N1]pdm09). Therefore, an
inactivated H3N2v vaccine (H3N2v IIV1) was prepared
for human testing. During the A(H1N1)pdm09 vaccine
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evaluations, 1 dose of H3N2v IIV1 containing 15 μg of hemag-
glutinin (HA) administered intramuscularly was sufficient to
elicit significant Ab responses in adults [12]. Whether 2 doses
of H3N2v IIV1 vaccine are needed is unknown. Thus, the goals
of this study were to evaluate this approach.

MATERIAL AND METHODS

Study Design
This phase 2 open-label clinical trial to assess the safety and immu-
nogenicity of H3N2v IIV1 was conducted in healthy males and
nonpregnant females aged ≥18 years with the goal to enroll up to
120 subjects aged 18–64 years (the younger group) and 120 aged
≥65 years (the older group). The study was conducted at 4 Nation-
al Institutes of Health–funded Vaccine and Treatment Evaluation
Units (VTEUs; 1 each at Baylor College of Medicine, Group
Health Research Institute, Emory University School of Medicine,
and the University of Iowa) between January 2013 and September
2013. The protocol was approved by the relevant ethics commit-
tees, and written informed consent was provided by participants.

Vaccine
Vaccine was provided by the Biomedical Advanced Research
and Development Authority, which is headed by Assistant Sec-
retary for Preparedness and Response, Department of Health
and Human Services. Vaccine seed stock was produced in
eggs, using a strain derived from influenza A/Minnesota/11/
2010 produced by classical reassortant technology and provided
by the Centers for Disease Control and Prevention (CDC;
Atlanta, Georgia) to the vaccine manufacturer, Sanofi Pasteur.
The resulting reassortant is designated A/Minnesota/11/2010
NYMC X-203. The manufacturing process for this vaccine
was similar to that used to produce their licensed IIV, Fluzone,
with slight modifications in the formulation step. Vaccine was
formulated to contain 15 μg of HA/0.5-mL dose. HA content
was confirmed using a single radial immunodiffusion assay.

Clinical Procedures
Medically stable adults were eligible to participate. Inclusion and
exclusion criteria are available in the Supplemental Materials.

Subjects were stratified into 2 groups on the basis of age
(younger and older) and then given 2 intramuscular doses of
H3N2v IIV1 21 days apart. Oral temperature and injection
site and systemic symptoms and signs were recorded daily for
7 days after each vaccination. Adverse events (AEs) were as-
sessed through 42 days after dose 1; serious adverse events
(SAEs) and new-onset chronic medical conditions were as-
sessed through 7 months after dose 1. Sera for Ab assays were
collected before and 8 and 21 days after each dose. Blood sam-
ples for memory B-cell (MBC) studies were collected on days 0
and 42 from a subset of younger adults enrolled at Emory Uni-
versity School of Medicine.

Laboratory Methods
Serum hemagglutination inhibition (HAI) and neutralizing
(Neut) Ab assays were performed at Cincinnati Children’s
Hospital Medical Center, using previously described methods
[13–15]. Antigen used for the HAI assay (A/Minnesota/11/
2010 X-203, BPL-Inactivated) and the virus used for the Neut
assay (A/Minnesota/11/2010[H3N2v]) were obtained from the
Influenza Reagent Resource (IRR; available at: http://www.
influenzareagentresource.org) of the CDC.

Assay for Enumeration of Influenza Virus–Specific MBCs
Influenza virus–specific MBC responses were ascertained at
days 0 and/or 42, using 2 complementary methods.

MBC Analysis Using Enzyme-Linked Immunospot (ELISpot)
Assay
H3N2 A/Minnesota/11/2010 vaccine antigen was provided by
Sanofi Pasteur. Recombinant HA (rHA) from H3N2 A/Perth/
16/2009 (NR-19442) was provided by Biodefense and Emerging
Infections Research Repository (available at: http://www.
beiresources.org); rHA from H3N2 A/Victoria/361/2011 (IRR
number, FR-1059) was provided by the IRR. At Emory Univer-
sity School of Medicine, cryopreserved peripheral blood mono-
nuclear cells (PBMCs) collected on day 0 from a subset of
participants were thawed in a 37°C water bath and washed.
Cells were counted and checked for viability by Trypan blue
dye exclusion. MBC assays were performed as previously de-
scribed [16, 17]. In brief, PBMCs were plated in 24-well dishes
at 5 × 105 cells/well in R-10 medium supplemented with an op-
timized mix of polyclonal mitogens: pokeweed mitogen extract
(made in-house), phosphorothiolated CpG ODN-2006 (Inte-
grated DNA Technologies), and Staphylococcus aureus Cowan
(Sigma). Eight wells were cultured per individual for 6 days.
Stimulated cells were harvested, washed, and assayed using
the ELISpot assay. Developed plates were scanned and analyzed
using an automated ELISpot counter (Cellular Technologies).
Data are presented as the percentage of influenza virus–specific
immunoglobulin G (IgG)–secreting cells among total IgG-
secreting cells.

Enzyme-Linked Immunosorbent Assay (ELISA) of MBCs After
Epstein–Barr Virus (EBV) Transformation of PBMCs
PBMCs isolated from blood collected on days 0 and 42 from a
subset of participants at Emory University School of Medicine
were aliquoted into cryovials, cryopreserved, stored in liquid
nitrogen, and shipped to Vanderbilt University for testing.
Cells were thawed in a 37°C water bath and washed prior to
transformation with Epstein–Barr virus (EBV) in the presence
of Chk2 inhibitor (Sigma catalog no. C3742), cyclosporin A
(Sigma), and CpG10103. The CpG10103 was synthesized as
an oligonucleotide, TCGTCGTTTTTCGGTCGTTTT, contain-
ing phosphorothioate bonds (Invitrogen). EBV-transformed
cells were plated in 384-well microtiter plates, grown for 10
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days, and screened by ELISA for binding to each of the H3 rHAs
(described below). The minimal frequency of HA-reactive B
cells was estimated on the basis of the number of wells with
HA-reactive supernatants, compared with the total number of
lymphoblastoid cell line (LCL) colonies in the transformation
plates (calculation: HA-reactive B-cell frequency = [number of
wells with HA-reactive supernatants] ÷ [number of LCL colo-
nies in the plate] × 100).

rHA Production
DNA copies of the genes encoding the extracellular portion of
HAs from A/Minnesota/11/2010 H3N2v and 2 seasonal H3N2
strains (A/Victoria/361/2011 and A/Wisconsin/57/2005) were
synthesized with a trimerization domain and a 6× histidine epi-
tope tag and subcloned into the pCDNA3.1+ mammalian cell
expression vector (Invitrogen). Protein was expressed by transient
transfection of 293F cells (Invitrogen) according to the manufac-
turer’s instructions, with the exception that polyethyleneimine
was used as the transfection reagent instead of 293Fectin. Cells
were grown for 7 days and then harvested by centrifugation at
2500g. Supernatant was passed through a 0.45-µm membrane.
Clarified supernatant was applied to a HiTrap Talon crude HP
column (GE Healthcare). Purified rHAs were concentrated and
buffer exchanged twice with Dulbecco’s phosphate-buffered
saline, using an Amicon Ultra centrifugal concentrator with a
30-kD cutoff membrane (Millipore).

Statistical Analyses
The study sample size was selected to obtain preliminary esti-
mates in a time-critical manner; the study was not powered to
test a specific hypothesis. Analyses of primary safety end points
of vaccine-related SAEs and solicited reactogenicity were pri-
marily descriptive. Immunogenicity end points included the
proportions of subjects achieving seroconversion (ie, subjects
with either a prevaccination titer of <10 and a postvaccination
titer of ≥40 or a prevaccination titer of ≥10 and a minimum
4-fold increase in the postvaccination titer [18]), the proportion
of subjects with a titer of ≥40, and the geometric mean titer
(GMT) 8 and 21 days after each vaccination. Immune responses
were compared between age groups, using the Fisher exact test
for proportional end points or the t test for log-transformed ti-
ters. Statistical significance was considered at an α level of 0.05,
without adjustment for multiple comparisons; all tests were 2
sided. SAS, version 9.3, was used for analysis.

Multivariate models were fit to explore the relationship be-
tween immune responses and baseline titer (log transformed,
continuous), sex, prior receipt of seasonal influenza vaccine
(none in 2011/2012 or 2012/2013; 1 in 2011/2012 only; 1 in
2012/2013 only; or 1 in both 2011/2012 and 2012/2013), and
VTEU site. Separate linear regression models were fit within
each age stratum for log-transformed HAI or Neut Ab titers
21 days after dose 1.

To estimate the increase in MBC frequency over time, a gen-
eralized least squares model was fit, accounting for correlation
due to repeated observations on the same subject for multiple
visits and multiple antigens.

Analyses are presented for the per-protocol subset, which in-
cludes data for subjects who received ≥1 dose of study vaccine
and had valid HAI results before vaccination and at ≥1 postvac-
cination visit, with the following exclusions: data for subjects
found to be ineligible at baseline; data obtained after dose 2 if
dose 2 was not received at the appropriate time; and data for
visits following the receipt of nonstudy vaccine or corticoste-
roids. Safety data were included for all subjects who received
study vaccination.

RESULTS

Study Population
Two hundred eleven subjects were enrolled in January 2013: 104
were in the younger group, and 107 were in the older group.
Two hundred and ten subjects received dose 1, and 193 received
dose 2 (Figure 1). Demographic characteristics of enrolled sub-
jects are shown in Table 1. A total of 209 subjects completed the
study; 2 subjects terminated early.

Safety and Reactogenicity
Vaccine was safe and well tolerated. A description of safety and
reactogenicity is provided for 210 vaccinated subjects in the
Supplementary Materials.

Serum Ab Responses
HAI GMTs and proportions of subjects with a serum HAI titer
of ≥40 against H3N2v before dose 1 were similar in both age
strata (Table 2, Figure 2, and Supplementary Figure 2). Ab re-
sponses after vaccination were generally higher among younger
subjects, compared with older subjects, with the largest differ-
ences seen on day 8 after dose 1. GMTs were higher at every
time point after receipt of dose 1 among younger subjects, com-
pared with older subjects (P < .01 for each time point). A higher
proportion of younger subjects achieved a serum HAI titer of
≥40 on day 8 (P = .001) and day 21 (P = .01) after dose 1, but
the differences were not significant following dose 2. Reverse
cumulative distribution curves demonstrated that most adults
(93%) had Ab to H3N2v before immunization and that a sec-
ond dose of vaccine conferred little additional benefit (Figure 2).
The geometric mean fold increase from day 8 to day 21 for older
subjects (HAI, 1.93 [95% confidence interval {CI}, 1.7–2.3];
Neut, 3.1 [95% CI, 2.6–3.8]) was higher than that observed
for younger subjects (HAI, 1.6 [95% CI, 1.4–1.8; P = .04];
Neut, 2.1 [95% CI, 1.7,–2.5; P = .001]).

Before vaccination, younger subjects had a Neut Ab GMT
twice as high as older subjects and maintained higher levels
for all postvaccination measurements (P < .01 for all time
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points; Table 3). A significantly higher proportion of younger
subjects had Neut Ab titers of ≥40 for all time points except
day 21 following dose 2. The proportion of subjects with a
≥4-fold rise in Neut Ab titer was higher in younger subjects
on day 8 after the first dose (P = .03), but there were no signifi-
cant differences between age groups for later time points. There
was a significant correlation between HAI and Neut Ab levels
(r = 0.85 and P < .001), although postvaccination Neut Ab titers
were significantly higher than HAI titers (P < .001, by the paired
t test, for all visits).

Separate linear regression models for log-transformed titers
were fit within each age stratum. For models of both HAI and
Neut Abs in both age strata, baseline titer had a significant pos-
itive association with the day 21 titer after dose 1 (P < .001 for all
models), but there were no associations with sex, prior receipt of
seasonal vaccine, or VTEU site. Thus, data for both age strata
were combined, and additional linear regression models were
fit for log HAI or log Neut Abs on day 21 after dose 1 with the
covariates age (18–64 years and ≥65 years) and baseline titer.
The interaction of age and baseline titer was not significant.

Table 1. Demographic Characteristics of the Study Participants

Characteristic
All Subjects
(n = 211)

Younger
Subjects
(n = 104)

Older
Subjects
(n = 107)

Sex

Male 91 (43) 45 (43) 46 (43)

Female 120 (57) 59 (57) 61 (57)

Ethnicity

Non-Hispanic 202 (96) 96 (92) 106 (99)

Hispanic 9 (4) 8 (8) 1 (1)

Race

Asian 13 (6) 13 (13) 0

Black/African
American

18 (9) 13 (13) 5 (5)

White 176 (83) 74 (71) 102 (95)

Multiracial 2 (1) 2 (2) 0

Other/unknown 2 (1) 2 (2) 0

Age, y 57.4 ± 19.6 40.9 ± 14.6 73.3 ± 5.8

Data are no. (%) of subjects, or mean ± SD. Younger subjects were aged 18–64
years, and older subjects were aged ≥65 years.

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram of subject disposition.
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Models suggested that, on average, older subjects had HAI titers
1.4 times lower than those of younger subjects and that each log
increase in baseline HAI titer resulted in an approximately one-
half log increase in HAI titer on day 21. Results for the model of
Neut Ab titers were similar.

A similar modeling strategy was used to examine the associ-
ations of the covariates with seroconversion in HAI or Neut Ab.
In separate logistic regression models for HAI or Neut Ab re-
sponses in younger subjects, baseline titer had a significant neg-
ative association with a≥4-fold rise on day 21 after dose 1 (HAI,
P = .008; Neut, P = .0003), but this association was not signifi-
cant for older subjects. No associations with sex, prior receipt
of seasonal vaccine, or VTEU site were observed for either
assay. In logistic regression models combining data from both
age strata, the interaction of age and baseline titer was not sig-
nificant. Results of the logistic regression models suggest that
there was no difference in proportions with ≥4-fold rises be-
tween age groups and that, as the baseline HAI titer increased,
the odds of a response decreased. Results for the model of Neut
Ab response were similar.

Overall, for both HAI and Neut Ab assays, higher baseline
titers were associated with higher titers on day 21 after dose 1
but a lower probability of seroconversion. After adjustment for
baseline titers, the younger age group had significantly higher
titers on day 21, but there was no difference in the probability
of a ≥4-fold response between age groups. Sex, prior receipt of

seasonal vaccine, and VTEU site were not associated with im-
mune responses in this study.

B-Cell Studies
The 2 MBC assays reported here provided estimates of the
H3N2v-specific B-cell populations that were complementary
and consistent. The ELISpot method was performed on 20 par-
ticipants at baseline only. The B cell transformation method was
performed at baseline (12 participants) and day 42 (25
participants).

Prevaccination MBCs were quantified using the influenza
virus antigen–specific ELISpot method in 20 participants
from the younger group. Data for 5 additional participants
were missing owing to limitations in the availability of cells.
MBCs that produced IgG that recognized the vaccine antigen
(A/Minnesota/11/2010) or recent seasonal H3 rHA proteins
(A/Perth/16/2009 and A/Victoria/361/2011) were identified
(Figure 3A). Nineteen of 20 subjects had MBCs that produced
IgG that recognized the H3N2v vaccine antigen at baseline. The
frequencies of IgG-secreting MBCs that recognized H3N2v
ranged from approximately 0.05% to 1% of total IgG-secreting
MBC and did not correlate with baseline Ab levels against the
vaccine strain (HAI, r = 0.06 and P = .80; Neut Ab, r = −0.03
and P = .90). However, the percentage of IgG-secreting MBCs
that produced Ab against H3N2v did correlate with the fold
change in day 8 HAI Ab levels relative to baseline (r = 0.62

Table 2. Serum Hemagglutination Inhibition Antibody Responses Following Immunization With H3N2v IIV1

Subjects, Study Visit
Subjects,

No.
GMT

(95% CI)

Titer ≥40 Seroconversion

Subjects,
No.

Proportion
(95% CI)

Subjects,
No.

Proportion
(95% CI)

All subjects

Before vaccination 201 24.2 (21.1–27.8) 79 0.39 (0.33–0.46) . . . . . .
Day 8 after vaccination 1 201 58.0 (48.6–69.1) 133 0.66 (0.59–0.73) 59 0.29 (0.23–0.36)

Day 21 after vaccination 1 195 98.7 (81.9–118.9) 156 0.80 (0.74–0.85) 100 0.51 (0.44–0.58)

Day 8 after vaccination 2 187 103.3 (85.4–125.0) 154 0.82 (0.76–0.88) 100 0.53 (0.46–0.61)
Day 21 after vaccination 2 188 101.1 (84.5–121.0) 154 0.82 (0.76–0.87) 98 0.52 (0.45–0.59)

Younger subjects

Before vaccination 103 27.5 (22.3–34.1) 44 0.43 (0.33–0.53) . . . . . .
Day 8 after vaccination 1 103 82.2 (64.2–105.2) 79 0.77 (0.67–0.84) 38 0.37 (0.28–0.47)

Day 21 after vaccination 1 100 126.4 (99.4–160.8) 87 0.87 (0.79–0.93) 51 0.51 (0.41–0.61)

Day 8 after vaccination 2 97 131.5 (101.8–169.7) 83 0.86 (0.77–0.92) 54 0.56 (0.45–0.66)
Day 21 after vaccination 2 98 126.2 (99.5–160.2) 84 0.86 (0.77–0.92) 50 0.51 (0.41–0.61)

Older subjects

Before vaccination 98 21.2 (17.9–25.1) 35 0.36 (0.26–0.46) . . . . . .
Day 8 after vaccination 1 98 40.1 (31.8–50.7) 54 0.55 (0.45–0.65) 21 0.21 (0.14–0.31)

Day 21 after vaccination 1 95 76.0 (57.4–100.7) 69 0.73 (0.63–0.81) 49 0.52 (0.41–0.62)

Day 8 after vaccination 2 90 79.7 (60.2–105.5) 71 0.79 (0.69–0.87) 46 0.51 (0.40–0.62)
Day 21 after vaccination 2 90 79.4 (60.7–103.8) 70 0.78 (0.68–0.86) 48 0.53 (0.43–0.64)

Younger subjects were aged 18–64 years, and older subjects were aged ≥65 years.

Abbreviations: CI, confidence interval; GMT, geometric mean titer.
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and P = .003; Figure 3A). By day 21, this correlation was no lon-
ger present (r = 0.31 and P = .18). The corresponding percent-
ages of IgG-secreting MBCs producing IgG against seasonal
H3N2 strains did not significantly correlate with either day 8
or day 21 HAI responses.

PBMCs collected on days 0 and 42 from the same 25 subjects
were transformed with EBV, and LCL supernatants were tested
for the presence of Ab against 3 H3 rHAs by ELISA (Figure 3B).
Day 0 data are missing for 13 subjects owing to a freezer mal-
function. MBCs were detected at day 0 with comparable fre-
quencies among circulating transformable MBCs against
H3N2v rHA (0.4%; 95% CI, .04%–.8%) and the A/Victoria/
361/2011 rHA (0.6%; 95% CI, .3%–1.1%). There was little pre-
vaccination reactivity detected for the seasonal strain A/
Wisconsin/57/2005 rHA. Following vaccination (day 42), there
was a rise in the frequency of reactive B cells (likely representing
MBCs that were present before vaccination and a new pool of
MBCs induced by vaccination). Following vaccination, the
mean frequency of H3N2v-reactive B cells increased to 1.1%

(95% CI, .7%–1.5%; P = .03). The rise in reactivity was lower
for the seasonal strain A/Wisconsin/57/2005 rHA, to a mean
frequency of 0.7% (95% CI, .3–1.1; P = .02). As a group, subjects
did not show a significant change in the frequency of MBCs to
A/Victoria/361/2011 rHA (P = .98).

MBC data obtained using both methods were available for 10
subjects at day 0 for the H3N2v Minnesota/2010 and H3N2
Victoria/2011 strains. The Spearman correlations between the
2 methods were as follows: H3N2v Minnesota/2010: r = 0.83
(P = .003); H3N2 Victoria/2011: r = 0.36 (P = .30).

DISCUSSION

Serum IgG Ab to the influenza virus HA elicited following in-
fection or vaccination has a major role in protective immunity
against influenza virus infection [19]. Protection against infection
and disease caused by seasonal influenza virus strains correlates
directly with both serum HAI and Neut Ab levels, and measure-
ments of these Abs are used to assess the immunogenicity

Figure 2. Reverse cumulative distribution curves of serum hemagglutination inhibition (HAI) and neutralizing (Neut) antibodies (Abs) following immu-
nization with H3N2v IIV1.
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Figure 3. Memory B-cell (MBC) responses before and after vaccination. A, Relationship of fold change in hemagglutination inhibition (HAI) antibody (Ab)
titer against H3N2v 8 and 21 days after vaccination and day 0 MBCs against H3N2v or 2 seasonal H3 strains measured before vaccination (enzyme-linked
immunospot MBC assay; n = 20). B, Percentage of H3N2-reactive B cells before vaccination and at day 42 (B-cell transformation method; n = 13 and n = 25 at
day 0 and day 42, respectively). Abbreviation: IgG, immunoglobulin G.
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of IIVs. These data are used to predict the likelihood that a
vaccine will provide protection against influenza. The putative
protective HAI Ab titer is generally regarded to be ≥40. Our re-
sults suggest that most adults will be protected against infection
with H3N2v following 1 dose of vaccine containing 15 μg of
H3N2v HA.

Vaccine factors affecting the immunogenicity of influenza
vaccines include dose, number of doses given, and type of prod-
uct used. Host factors include age, sex, prior priming, preexist-
ing Ab levels, comorbidities, and disease treatments that could
influence immune responses. The results of our study are con-
sistent with the concept that prior priming by infection or vac-
cination with antigenically related vaccine strains is associated
with brisk and robust immune responses following immuniza-
tion of adults with a new variant of that subtype, using the stan-
dard dosage for currently licensed IIVs.

Most subjects in the subgroup had preexisting MBCs against
the H3 HAs that have circulated in recent years and have been
in seasonal IIVs. Furthermore, preexisting cross-reactive
MBCs that recognized H3N2v HA were demonstrated for
most subjects, and the level of these preexisting MBCs had a
significant correlation with early anamnestic Ab responses
against H3N2v in this small substudy. By day 21, this cor-
relation was lost, perhaps because of a subsequent (slower)
rise of primary Ab responses against new epitopes in H3N2v

rHA. We also demonstrated that the frequencies of MBCs
recognizing H3N2v rHA and rHA from 1 of 2 seasonal viruses
tested increased after vaccination. Thus, vaccinated individuals
appeared as a group quite capable of developing new MBCs to
H3N2v, irrespective of prior exposure to seasonal vaccines or in-
fection. Following vaccination, most subjects responded to
H3N2v vaccine antigen, and the MBC pool expanded to include
not only B cells recognizing seasonal H3N2 HA, but also newly
generated H3N2v-specific cells that encoded Abs that do not rec-
ognize the HAs of previous seasonal H3N2 viruses. The frequency
of preexisting MBCs observed here for seasonal antigens and the
frequency of MBCs to H3N2v after vaccination are typical of the
human response to IIVs. It was interesting that the frequency of
MBCs to H3N2v vaccine antigen after vaccination did not corre-
late with the magnitude of serum Ab responses. Abs are secreted
by plasma cells, especially by long-lived plasma cells in the bone
marrow, whereas MBCs do not secrete Abs but participate in sec-
ondary responses following reexposure. In fact, recent clinical tri-
als with avian IIVs revealed little serum Ab response following
primary vaccination but a strong response after subsequent boost-
ing at a late time point, suggesting primary vaccination induced
MBCs independent of a detectable serum Ab response [20].

The HA of H3N2v is more closely related to that of seasonal
H3N2 viruses that circulated in the 1990s. Studies using animal
antisera that cross-react with human H3N2 epidemic influenza

Table 3. Serum Neutralizing Antibody Responses Following Immunization With H3N2v IIV1

Study Visit
Subjects,

No.
GMT

(95% CI)

Titer ≥40 Seroconversion

Subjects,
No.

Proportion
(95% CI)

Subjects,
No.

Proportion
(95% CI)

All subjects

Before vaccination 201 22.9 (19.0–27.7) 65 0.32 (0.26–0.39) . . . . . .
Day 8 after vaccination 1 201 102.3 (80.7–129.7) 138 0.69 (0.62–0.75) 70 0.35 (0.28–0.42)

Day 21 after vaccination 1 195 255.0 (202.9–320.6) 169 0.87 (0.81–0.91) 123 0.63 (0.56–0.70)

Day 8 after vaccination 2 187 260.1 (206.9–326.8) 164 0.88 (0.82–0.92) 124 0.66 (0.59–0.73)
Day 21 after vaccination 2 188 256.7 (204.9–321.6) 168 0.89 (0.84–0.93) 122 0.65 (0.58–0.72)

Younger subjects

Before vaccination 103 31.9 (23.7–42.9) 42 0.41 (0.31–0.51) . . . . . .
Day 8 after vaccination 1 103 182.4 (132.8–250.5) 84 0.82 (0.73–0.89) 43 0.42 (0.32–0.52)

Day 21 after vaccination 1 100 362.8 (267.7–491.7) 91 0.91 (0.84–0.96) 59 0.59 (0.49–0.69)

Day 8 after vaccination 2 97 375.6 (277.9–507.6) 90 0.93 (0.86–0.97) 64 0.66 (0.56–0.75)
Day 21 after vaccination 2 98 364.6 (270.6–491.4) 91 0.93 (0.86–0.97) 62 0.63 (0.53–0.73)

Older subjects

Before vaccination 98 16.2 (13.0–20.2) 23 0.23 (0.15–0.33) . . . . . .
Day 8 after vaccination 1 98 55.7 (40.6–76.5) 54 0.55 (0.45–0.65) 27 0.28 (0.19–0.37)

Day 21 after vaccination 1 95 176.0 (126.2–245.4) 78 0.82 (0.73–0.89) 64 0.67 (0.57–0.77)

Day 8 after vaccination 2 90 175.0 (125.4–244.2) 74 0.82 (0.73–0.89) 60 0.67 (0.56–0.76)
Day 21 after vaccination 2 90 175.2 (126.1–243.3) 77 0.86 (0.77–0.92) 60 0.67 (0.56–0.76)

Younger subjects were aged 18–64 years, and older subjects were aged ≥65 years.

Abbreviations: CI, confidence interval; GMT, geometric mean titer.
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virus strains used in recent seasonal influenza vaccines exhibit-
ed no cross-reactivity with the H3N2v strain. Furthermore, lim-
ited serologic studies indicate that young children have little to
no preexisting Abs to H3N2v and that immunization of young
children with seasonal trivalent IIV (IIV3) elicits minimal to no
cross-reactive Abs. In one earlier study, younger adults had ev-
idence of cross-reactive Ab (approximately one third of adults
18–49 years of age had a titer of ≥40 before seasonal IIV3 im-
munization), but few developed Ab responses to H3N2v after
immunization with seasonal IIV3 (50% with a postvaccination
titer of ≥40 against H3N2v) [9]. Older adults were shown to
have a lower frequency of Ab to the variant before immuniza-
tion with seasonal IIV3 than younger adults (17%), and 40%
had putative protective titers after vaccination with seasonal
IIV3 [9]. Low levels of cross-reactive Ab against H3N2v has
been observed in several other studies, particularly among chil-
dren and older adults [10, 21], and IIV3 failed to increase sero-
protection rates substantially in one of these [10]. IIVs made
using current and recently circulating seasonal H3N2 strains
from humans are therefore unlikely to confer significant protec-
tion against H3N2v infections. In the current study, both younger
and older adults developed significant serum Ab responses fol-
lowing a single 15-μg dose of H3N2v vaccine. Responses
among the younger subjects were greater than those among the
older subjects. Higher preexisting Ab levels were positively corre-
lated with higher postimmunization Ab levels, and the frequen-
cies of significant titer rises were lower among those with higher
preexisting Ab titers, as observed previously [22]. The geometric
mean fold increase from day 8 to day 21 among older subjects
was greater than that among younger subjects, consistent with
a delayed Ab response, which has been observed by others [23].

While 1 dose of vaccine containing 15 μg of H3N2v HA was
immunogenic in adults, children and persons with underlying
medical conditions that could impair their immune responses
may need different immunization regimens. For the A(H1N1)
pdm09 vaccine, 2 doses containing the age-appropriate HA dose
were needed for children <9 years of age [24], and while vaccines
containing 15 μg of HA were immunogenic in persons ≥9 years
old, high-dose vaccines containing 60 μg of HA elicited superior
Ab responses among adults infected with human immunodeficien-
cy virus [25].High-dose seasonal IIV is available for use in persons
who are ≥65 years old and stimulates Ab responses that are supe-
rior to those stimulated by standard-dose IIV [26].High-dose vac-
cines have been shown to be more efficacious than standard-dose
vaccines in elderly individuals [27]. Additional studies will be need-
ed to define immunization needs for these and other vulnerable
populations.

STUDY GROUP MEMBERS
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