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Maximizing citizen scientists’ 
contribution to automated species 
recognition
Wouter Koch  1,2*, Laurens Hogeweg  3,4,6, Erlend B. Nilsen  5,6 & Anders G. Finstad  1,6

Technological advances and data availability have enabled artificial intelligence-driven tools that can 
increasingly successfully assist in identifying species from images. Especially within citizen science, 
an emerging source of information filling the knowledge gaps needed to solve the biodiversity crisis, 
such tools can allow participants to recognize and report more poorly known species. This can be 
an important tool in addressing the substantial taxonomic bias in biodiversity data, where broadly 
recognized, charismatic species are highly over-represented. Meanwhile, the recognition models are 
trained using the same biased data, so it is important to consider what additional images are needed 
to improve recognition models. In this study, we investigated how the amount of training data 
influenced the performance of species recognition models for various taxa. We utilized a large citizen 
science dataset collected in Norway, where images are added independently from identification. We 
demonstrate that while adding images of currently under-represented taxa will generally improve 
recognition models more, there are important deviations from this general pattern. Thus, a more 
focused prioritization of data collection beyond the basic paradigm that “more is better” is likely to 
significantly improve species recognition models and advance the representativeness of biodiversity 
data.

Addressing the current crisis related to biodiversity loss necessarily involves addressing several fundamental 
knowledge gaps1,2. Currently there are vast spatial, temporal and especially taxonomic gaps and biases in global 
primary biodiversity data sets, limiting our understanding of the earth’s biosphere3–6. Several observation meth-
ods based on image recognition, ranging from remotely operated vessels to camera traps and citizen science 
programs7–9, hold great promise in solving some of the taxonomic biases currently experienced10. Citizen science 
(observations made by non-professional volunteers11) has emerged as a very large source of biodiversity data. 
It has the potential to fill gaps in our current knowledge about the occurrence of species in time and space12–14. 
Several citizen science programs, e.g. iNaturalist, eBird, iSpot15 contribute data on vast scales and in amounts 
that cannot feasibly be acquired in any other way. Such programs come with the added benefit of educating and 
engaging the general public16–18. Some of the main concerns related to citizen science data are reliability of the 
taxon identifications reported19,20, and the over-representation of more charismatic taxa such as birds and flow-
ering plants21–23. Improving the quality of citizen science data is a vital step in addressing the knowledge gaps in 
our understanding of the earth’s biosphere.

Image recognition models can help citizen scientists recognize more species and provide a quality control 
mechanism that helps to reduce the risk of species misidentification10. Their performance is however inherently 
linked to the quality of the data used to train them. By increasingly helping citizen scientists identify species 
from images24–26, such tools help address the aforementioned issues in citizen science data, adding to the qual-
ity, quantity and taxonomic scope of observations. Image recognition models can warn the citizen scientist and 
validators of potential misclassifications. Output of citizen scientists is increased as automating parts of the 
reporting process makes reporting less time consuming. Image recognition models also allow citizen scientists 
to report more of what they encounter by enabling them to report taxa they could not have identified indepen-
dently. The taxonomic scope of the citizen scientist is expanded when tools enable them to identify and report 
within taxa they would otherwise not be familiar with27. Observations accompanied by images can be used for 
training an image recognition model for use in the field. Generally one aims to keep training data as similar as 
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possible to the intended classification task of the model28. By using images from citizen scientists when train-
ing a model intended for use within citizen science, one is more likely to capture the variability in the kind of 
images provided by citizen scientists. Images from other sources may be more standardized, depict close-ups of 
relevant features, and/or depict preserved and prepared specimens. Deep neural networks are designed to draw 
inferences from novel data by generalized patterns observed in training data28, requiring substantial amounts of 
data. The Computer Vision model by iNaturalist, for example, only includes taxa for which at least 100 images 
are available29. This criterion excludes 89% of the taxa with at least one image in the dataset used in this study, 
illustrating how heavily the training of models depends on the amounts of data citizen science provides. In this 
manner, citizen science and automated image recognition are increasingly interdependent. Image recognition 
models help citizen scientists collect data to expand our knowledge base, whilst training of the next generation 
of recognition models depends on the collection of more images.

While some species are readily recognized with limited experience, others require extensive experience with 
many specimens to obtain the necessary knowledge. The distinct colorations of butterflies may allow any inter-
ested observer with some experience to reliably identify the majority of species in certain areas, while a taxon 
like Diptera remains notoriously difficult even after years of study. Machine learning is no different from human 
learning in this respect; different amounts of training data are required depending on the distinctness of species’ 
characteristics. Therefore, there can be substantial differences between taxa in the number of images required 
per species for the best achievable model performance. This can depend on factors like species’ distinctiveness, 
the variation in appearance, the various angles and contexts in which photos are taken, and the extent to which 
a species’ behavior is suited for high quality documentation27,30,31. As a result, the value of adding a new image 
to the training set is not equal across taxa, but varies both because the size of the existing training set is different, 
and the fact that some species are more distinct than others. Thus it is important to consider the informational 
value of adding images to the training data.

In this study, we use the Species Observation Service, a large Norwegian citizen science project, as an example 
to investigate the nature of the bias in citizen science image data, and how this relates to the value of data for 
image recognition models. One way to evaluate this is by using the concept of Value of Information (VoI); “the 
increase in expected value that arises from making the best choice with the benefit of a piece of information compared 
to the best choice without the benefit of that same information”32. Considering training data for image recognition 
models in the VoI framework allows us to identify the most effective prioritization for improving recognition 
models. This method allows for a more sophisticated approach to data collection than simply adding more data 
for all taxa, or even for taxa that are currently the most under-represented. First, we evaluate whether the biases 
generally found in all observation data, regardless of source, are the same within citizen science observations with 
images, or if there are different biases that need to be taken into account. Then we train multiple image recogni-
tion models for different taxa, with a gradually increasing number of images per species, allowing us to quantify 
and compare the effects of adding more training data between taxa. Using these changes in performance, we 
estimate the VoI of adding training data for each taxon, relative to the amount of images that are currently avail-
able. Finally, comparing this VoI to the amount of over- or under-representation of these taxa, we demonstrate 
that mobilizing images with a higher VoI provides an alternative, data-driven and efficient approach compared 
to simply prioritizing images of the currently most under-represented taxa.

Results
Taxonomic bias in citizen science observations with or without images.  It has been well docu-
mented in a global context that particularly charismatic taxonomic classes have many times more reported 
observations per species than those that are considered less charismatic5. We find the same pattern when con-
sidering classes within the totality of GBIF mediated observations for Norway from all sources (Fig. 1a). When 
limiting this analysis to only observations with images that originate from the citizen science platform Species 
Observation Service33, a different pattern emerges (Fig. 1b). Perhaps most eye-catchingly, Insecta are the most 
under-represented taxon in the totality of Norwegian observations, but the 3rd most over-represented when 
limiting the analysis to citizen science images. We performed a similar analysis for the 12 taxonomic orders used 
in the machine learning part of this study. This provides the biases in relative representation per species in the 
data available for training our recognition models.

Image recognition performance and the value of information.  When training image recognition 
models, the amount of training data provided to the model determines how well the model is able to recognize 
species in the test images. For all orders, as models are provided with more images per species, their performance 
(as measured by the F 1 scores) increases. Comparing the performances for each order at the lowest and highest 
number of training images per species, as well as the gradual performance increase over intermediate numbers 
of training images, it is clear that the 12 orders have distinct performance curves (Fig. 2). From this it follows that 
the increase in performance at any given point on these curves—the value of information (VoI) of adding obser-
vations with images at that point—also differs between orders. Combined with substantially different amounts 
of currently available observations between orders, the estimated VoI of adding an observation with at least one 
image to those currently available for that order also varies widely (Fig. 3).

Combining value of information and taxonomic bias.  After obtaining the per-species over- and 
under-representations, as well as the current expected VoI of additional observations with images, we can com-
pare the two values for each order in the experiment. Plotting the taxonomic bias of the orders used in this 
experiment together with their estimates for their respective estimated VoI, it is clear that current under- or 
over-representation of the order is not the determining factor for the expected value of additional observa-



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7648  | https://doi.org/10.1038/s41598-022-11257-x

www.nature.com/scientificreports/

tions. While the VoI of under-represented orders is generally higher, differences between orders in their learning 
curves cause some orders to have a higher or lower VoI than just their overall over- or under-representation 
would indicate (Fig. 4).

(a) (b)
Figure 1.   The per-species representation of observations in Norway per class, using all GBIF data (a) or only 
GBIF mediated citizen science data with images (b). The 0-line is where the values would be if the average 
number of observations per species in that class was equal to the average number of observations per species 
over all classes combined. Plotted here on an inverse hyperbolic sine-transformed scale, sorted by the per-
species representation in subplot (a).

Figure 2.   The performance (F1 score) vs the training set size. Lines are the fitted Von Bertalanffy Growth 
Function-curves per order. See the Supplementary Information for an interpretation of such curves.
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Figure 3.   The VoI (F1 increase) for each order as the result of adding a single observation with at least one 
image for a single species, versus the average number of observations with images available per species. Dotted 
lines mark the average number of observations with images per species currently available for the respective 
order, from which the current expected VoI (marked with ✕) is derived.

Figure 4.   The relative per-species representation in Norwegian citizen science observations with images, and 
their value of information. The areas of the circles are relative to their respective VoI, defined as the current 
expected performance increase (in F 1 score) for one added observation with images for that order. If the VoI of 
adding data was mainly determined by the current relative over- or under-representation of a taxon, one would 
expect circles to gradually increase for more under-represented orders in the lower part of the graph. Numerical 
values provided in the Supplementary Information.
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Discussion
We set out to investigate the taxonomic bias in citizen science data, in particular when accompanied by images, 
using a large Norwegian citizen science project as an example case. Such images can be used to train deep neural 
networks for image recognition, helping citizen scientists by verifying species identifications and addressing some 
of the inherent taxonomic bias as they then can report within taxa they are not able to identify independently. 
By examining how the performance of recognition models increases as they are provided with more images in 
an experimental setup, we can estimate how much we expect models to improve when adding more images to 
those currently available for each taxon. Comparing this value of information (VoI) to the taxonomic bias within 
citizen science image data, we propose data prioritization strategies based on what additional data would improve 
recognition models the most. Such strategies would be more efficient than merely focusing more on taxa for 
which there are currently fewer images available.

Taxonomic bias.  The taxonomic biases within citizen science observations considered in the current study 
follow a similar pattern to what has been found across biodiversity data in general5. However, when only consid-
ering citizen science observations with images, these trends are less pronounced; plants and fungi have relatively 
higher percentages of observations with images than for example birds (Fig. 1b). This indicates that while birds 
are still the most reported group also within citizen science observations with images, bird observations are gen-
erally less commonly documented with images. The reverse is true for the Insecta, which are so abundant in the 
citizen science image data as to be the 3rd most overrepresented class in that context. This is in stark contrast to 
what has been found for the totality of GBIF mediated observations globally5 and in the Norwegian context we 
examined here, where the Insecta are the single most under-represented class.

Analyzing the taxonomic biases for the orders used in the machine learning part of this study sheds some 
light on the underlying mechanisms. While all orders within Aves are over-represented regardless of the nature 
of the observations considered, the Insecta are more diverse in their bias, as illustrated by Lepidoptera being the 
most over-represented order but Diptera the most under-represented.

We hypothesize that this disparity between taxonomic bias in all data versus that in citizen science data with 
images is most likely a combination of the behavior of the species and the kind of citizen scientists reporting 
the observations. There are distinctly different types of citizen scientists, with their own contribution patterns34. 
For casual reporters lacking specialized equipment, charismatic butterflies and flowering plants are more readily 
photographed opportunistically than birds. Meanwhile, a group of quite persistent ornithologists report the bulk 
of the bird observations in the dataset. This is typically a group reporting in a structured manner, more often 
based on local inventories and checklists, where reporting with images is less common than with opportunistic 
observations.

Image recognition and value of information.  There are clearly differences between orders in the rates 
at which image recognition improves as more images are made available per species (Fig. 2). These differences 
between orders manifest in both initial performances, the rate at which performances change, and the maximum 
performance achieved. This indicates that, as is the case for humans, it requires more experience to learn to 
identify species within certain taxa than others, while the reliability with which species are correctly identified 
once the necessary knowledge has been acquired also differs. The differences between orders in this regard is 
not necessarily directly linked to the taxon’s characteristics alone, however. Image quality and composition can 
vary between taxa depending on factors such as specimens’ behavior or lack thereof, physical size, and the kind 
of citizen scientist generally photographing the species. A stationary flower is easier to photograph with a lot of 
detail than a centipede running for cover. A mite that can only be photographed with a macro lens will be pho-
tographed by a citizen scientist who has invested in such equipment. This type of citizen scientist is also more 
likely to invest time in taking a high quality picture than a casual citizen scientist snapping a squirrel with their 
mobile phone.

The VoI estimates for each of the orders provides equally diverse results. For any given number of images per 
species, orders differ in the expected performance increase at that point, as do the relative rates at which these 
performances change as data is added. As a consequence, there is a range of varying estimates for the VoI for 
each order, depending on both the number of images currently available per species, and the way the VoI per 
additional observation with images declines as more images are already available to the model.

Combining taxonomic biases and the value of information.  We now have an estimate of how over- 
or under-represented the orders with which the recognition models have been trained are relative to one another, 
as well as a per-order estimate of the VoI per added observation with images. This means that we can address 
the question whether models are best improved by adding more image data equally across orders, if one should 
ideally prioritize under-represented orders, or if there is a prioritization to be made based on order-specific dif-
ferences. As shown in Fig. 4, there are distinct differences in the VoI per order, and these do not merely correlate 
with their respective over- or under-representation. The plant orders of Asparagales and Lamiales clearly have a 
higher VoI despite their slight over-representation when compared to the other orders in this experiment. The 
fungi order Polyporales also gains more than twice the VoI per additional observation with images in compari-
son to the fourth-most valuable order, the Lecanorales. We conclude that, from a VoI perspective, these are the 
orders for which a recognition model would benefit the most per observation with images added, despite the fact 
that other orders are numerically more under-represented.
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Conclusions
Based on the value of information (VoI) for image recognition models, a citizen scientist or citizen science 
project manager aiming to maximize their impact in this regard might want to focus on orders with the highest 
expected VoI per observation with images added, rather than simply on the order with the lowest number of 
images per species. Observations with images of other orders, while in some cases less well-represented in the 
available image data, appear to provide less VoI per additional observation. As citizen scientists are in large part 
motivated by a desire to advance scientific knowledge35, communicating such considerations can be an important 
part of community engagement.

In generalizing these findings, the following has to be noted:

•	 The taxa identified here as having the highest expected VoI per observation with images added are examples 
from the limited subset of orders used within this experiment. As illustrated by the observed variation in per-
species representation and VoI between orders that belong to the same class, it is evident that generalization 
of a class like Insecta fails to give insight into intra-class variation. It is likely that a similar principle applies 
to orders, where for example a taxonomic group like Norwegian warblers likely has a different VoI curve 
than the more readily distinguished titmice. Such differences will remain hidden from view when analyzing 
passerine birds as a single taxonomic group.

•	 Our findings are derived from Norwegian species reported on a single Norwegian citizen science portal. The 
diversity of species within the same orders can differ in other regions, affecting the VoI curves. Different por-
tals will also differ in the way they accommodate reporting observations with images, and in general attract 
different types of users23. All of these factors are likely to have an effect on the proportion of observations 
accompanied by photographic evidence and the quality thereof. Such factors also affect the nature of newly 
added data, including its expected VoI.

•	 Models were trained on species for which at least 220 observations with images were available. This is not a 
random subset of all the species within an order, and likely to be biased towards charismatic species and those 
that are more readily identifiable from an image. This can lead to an overestimation in terms of learning rate 
and thus the VoI curve, especially within orders in which relatively few species have the data availability we 
selected for here. Then again, future observations to be added to the data will be prone to the same biases, in 
which case the VoI of such an addition will be lower than it would be for a truly random species.

•	 Current and future (deep) learning methods alternative to Convolutional Neural Networks (CNN) may be 
able to utilize more information in an image and generalize more rapidly, using less data. This could have 
implications for the importance of VoI relative to the overall bias. We expect that the demonstrated differ-
ences in VoI between species are not unique to CNN however, and in part inherent to the visual information 
available in each picture. Either way, awareness of the potential differences in VoI between taxa is warranted, 
and an interesting consideration to evaluate in future studies.

Regardless of the specific taxa and derived values, our findings demonstrate that a more informed decision is 
possible when choosing to focus on certain taxa for data collection aimed at improved recognition models. 
Prioritization of taxa for which to mobilize additional data can be informed by considering its expected VoI, 
rather than simply prioritizing those that are currently the most under-represented numerically. Note that this 
is no plea for deprioritizing data collection for such taxa in the context of citizen science as a whole. There are 
many areas of management and research that can benefit from additional data on taxa we predict will benefit 
less from additional images for recognition models, and ample reasons to mobilize data for other applications 
than image recognition.

Training machine learning models requires substantial amounts of data, certainly when context, morphology 
and phenology vary, such as when classifying in situ images. Data collection in machine learning generally is a 
matter of harvesting whatever one can to provide the model with more data. Within (citizen) science, the col-
lection of images mainly serves as secondary data, providing documentation for the occurrence it accompanies. 
With the more widespread use of image recognition models as both a user tool and a mechanism for quality 
control, it is time to view images as data in and of themselves. Such a shift calls not only for conscious choices 
when it comes to the VoI in images, but increased implementation of data practices such as persistent storage, 
metadata standardization and the other FAIR data principles36 to enable more apt usage of image data for cur-
rent and novel applications.

Methods
In the current study we utilize an extensive network and data from citizen science in order to test for among 
taxa variation in biases and value of information (VoI) in image recognition training data. We use data from the 
Norwegian Species Observation Service as an example dataset due to the generic nature of this citizen science 
platform, where all multicellular taxa from any Norwegian region can be reported both with and without images. 
The platform is open to anyone willing to report under their full real name, and does not record users’ expertise 
or profession. The platform had 6,205 active contributors in 2021 out of its 17,655 registered users, and currently 
publishes almost 27 million observations through GBIF, of which 1.08 million with one or more images. Obser-
vations have been bulk-verified by experts appointed by biological societies receiving funding for this task, with 
particular focus on red listed species, invasive alien species, and observations out of range or season. Observa-
tions containing pictures receive additional scrutiny, as other users can alert reporters and validators to possible 
mistaken identifications. An advantage of this particular platform is that no image recognition model has been 
integrated. This ensures that the models trained in this experiment are not trained on the output resulting from 
the use of any model, but with identifications and taxonomic biases springing from the knowledge and interest 
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of human observers. Moreover, the platform’s compliance with the authoritative Norwegian taxonomy allows 
for analyses on taxonomic coverage.

In an exploration procedure we determined the taxonomic level of orders to be suitable examples of taxa 
with a sufficiently wide taxonomic diversity, and enough data in the dataset to be evaluated for models in 
this experiment. Data collection was done by acquiring taxon statistics and observation data from the Global 
Biodiversity Information Facility (GBIF), the largest aggregator of biodiversity observations in the world37 for 
the selected orders, as well as the classes used by Troudet et al.5. The authoritative taxonomy for Norway was 
downloaded from the Norwegian Biodiversity Information Centre38. In the experimental procedure, models 
were trained for 12 distinct orders (listed in Fig. 4), artificially restricting these models to different amounts of 
data. In the data analysis stage, model performances relative to the amount of training data were fitted for each 
order, allowing the estimation of a VoI. Using the number of observations per species on GBIF, and the number 
of species known to be present in Norway from the Norwegian Species Nomenclature Database, we calculated 
relative taxonomic biases.

Exploration.  Initial pilot runs were done on 8 taxa (see Supplementary Information), using different 
subset sizes of observations for each species, and training using both an Inception-ResNet-v239 as well as an 
EfficientNetB340 architecture for each of these subsets. These initial results indicated that the Inception-ResNet-
v2 performance (F1 ) varied less between replicate runs and was generally higher, so subsequent experiments 
were done using this architecture. The number of observations which still improved the accuracy of the model 
was found to be between 150 and 200 in the most extreme cases, so the availability of at least 220 observations 
with images per species was chosen as an inclusion criteria for the further experiment. This enabled us to set 
aside at least 20 observations per species as a test dataset for independent model analysis.

From a Darwin Core Archive file of Norwegian citizen science observations from the Species Observation 
Service with at least one image33, a tally of the number of such observations per species was generated. We then 
calculated how many species, with a minimum of 220 such observations, would, at a minimum, be available 
per taxon if a grouping was made based on each taxon rank level with the constraint of resulting in at least 12 
distinct taxa. For each taxonomic level, we calculated how many species having at least 220 such observations 
were available per taxon when dividing species based on that taxon level. When deciding on the appropriate 
taxon level to use, we limited the options to taxon levels resulting in at least 12 different taxa.

A division by order was found to provide the highest minimum number of species (17) per order within these 
constraints, covering 12 of the 96 eligible orders. The next best alternative was the family level, which would 
contain 15 species per family, covering 12 of the 267 eligible families.

Data collection.  We retrieved the number of species represented in the Norwegian data through the GBIF 
API, for all observations, all citizen science observations, and all citizen science observations with images for the 
12 selected orders and the classes used by Troudet et al.5. We also downloaded the Norwegian Species Nomen-
clature Database38 for all kingdoms containing taxa included in these datasets. Observations with images were 
collected from the Darwin Core Archive file used in the exploration phase, filtering on the selected orders. For 
these orders, all images were downloaded and stored locally. The average number of images per observation in 
this dataset was 1.44, with a maximum of 17 and a median of 1.

Experimental procedure.  For each selected order, a list of all species with at least 220 observations with 
images was generated from the Darwin Core Archive file33. Then, runs were generated according to the following 
protocol (Fig. 5):

1.	 From a list sorted alphabetically by the full taxonomy of the species, a subset of 17 consecutive species 
starting from a random index was selected. If the end of the list was reached with fewer than 17 species 
selected, selection continued from the start of the list. The taxonomic sorting ensures that closely related 
species (belonging to the same family or genus), bearing more similarity, are more likely to be part of the 
same experimental set. This ensures that the classification task is not simplified for taxa with many eligible 
species.

2.	 Each of the 220+ observations for each species were tagged as being either test, training or validation data. 
A random subset of all but 200 were assigned to the test set. The remaining 200 observations were, in a 9:1 
ratio, randomly designated as training or validation data, respectively. In all cases, images from the same 
observation were assigned to the same subset, to keep the information in each subset independent from the 
others. The resulting lists of images are stored as the test set and 200-observation task.

3.	 The 200 observations in the training and validation sets were then repeatedly reduced by discarding a random 
subset of 25% of both, maintaining a validation data proportion of ≤10%. The resulting set was saved as the 
next task, and this step was repeated as long as the resulting task contained a minimum of 10 observations 
per species. The test set remained unaltered throughout.

Following this protocol results in a single run of related training tasks with 200, 150, 113, 85, 64, 48, 36, 27, 21, 
16 and 12 observations for training and validation per species. The seeds for the randomization for both the 
selection of the species and for the subsetting of training- and validation datasets were stored for reproducibility. 
The generation of runs was repeated 5 times per order to generate runs containing tasks with different species 
subsets and different observation subsetting.
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Then, a Convolutional Neural Network based on Inception-ResNet-v239 (see the Supplementary Information 
for model configuration) was trained using each predesignated training/validation split. When the learning rate 
had reached its minimum and accuracy no longer improved on the validation data, training was stopped and 
the best performing model was saved. Following this protocol, each of the 12 orders were trained in 5 separate 
runs containing 11 training tasks each, thus producing a total of 660 recognition models. After training, each 
model was tested on all available test images for the relevant run.

Data analysis.  The relative representation of species within different taxa were generated using the number 
of species present in the GBIF data for Norway within each taxon and the number of accepted species within that 
taxon present in the Norwegian Species Nomenclature Database38, in line with Troudet et al.5: Rx = nx − (n sx

s ) 
where Rx is the relative representation for taxon x , nx is the number of observations for taxon x , n is the total 
number of observations for all taxa, sx is the number of species within taxon x , and s is the total number of spe-
cies within all taxa.

As a measure of model performance, we use the F 1 score, the harmonic mean of the model’s precision and 
recall, given by

where tp , fp and fn stand for true positives, false positives and false negatives, respectively. The F 1 score is a 
commonly used metric for model evaluation, as it is less susceptible to data imbalance than model accuracy28.

The value of information (VoI) can be generically defined as “the increase in expected value that arises from 
making the best choice with the benefit of a piece of information compared to the best choice without the benefit of 
that same information”32. In the current context, we define the VoI as the expected increase in model performance 
(F1 score) when adding one observation with at least one image. To estimate this, for every order included in 
the experiment, the increase in average F 1 score over increasing training task sizes were fitted using the Von 
Bertalanffy Growth Function, given by

F1 =
tp

tp+ 1
2
(fp+ fn)

Figure 5.   Data selection and subdivision. Each run is generated by selecting 17 taxonomically adjacent species 
per order, and randomly assigning all available images of each selected species to that run’s test-, train- or 
validation set. Training data are used as input during training, using the validation data to evaluate performance 
after each training round in order to adjust training parameters during training. The test set is used to measure 
model performance independently after the model is finalized28. For each subsequent model in that run, 
training and validation data are reduced by 25% (or slightly less than 25% if not divisible by 4). The test set is not 
reduced, and used for all models within a run.
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where L is the average F 1 score, L∞ is the asymptotic maximum F 1 score, k is the growth rate, t  is the number 
of observations per species, and t0 is a hypothetical number of observations at which the F 1 score is 0. The Von 
Bertalanffy curve was chosen as it contains a limited number of parameters which are intuitive to interpret, and 
fits the growth of model performance well.

The estimated increase in performance at any given point is then given by the slope of this function, i.e. the 
result of the differentiation of the Von Bertalanffy Growth Curve, given41 by

where

Using this derivative function, we can estimate the expected performance increase stemming from one addi-
tional observation with images for each of the species within the order. Filling in the average number of citizen 
science observations with images per Norwegian species in that order for t, and dividing the result by the total 
number of Norwegian species within the order, provides the VoI of one additional observation with images for 
that order, expressed as an average expected F 1 increase.

Data availability
The datasets generated and/or analyzed during the current study are available in the GBIF repository, https://​
doi.​org/​10.​15468/​dl.​tc4w55.

Code availability
All code used in this study for the experiment and the generation of this manuscript and its graphs is available 
on https://​github.​com/​Woute​rKoch/​citiz​en_​scien​ce_​VoI.

Received: 3 March 2022; Accepted: 11 April 2022

References
	 1.	 Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).
	 2.	 Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
	 3.	 Rocha-Ortega, M., Rodriguez, P. & Córdoba-Aguilar, A. Geographical, temporal and taxonomic biases in insect GBIF data on 

biodiversity and extinction. Ecol. Entomol. 46, 718–728 (2021).
	 4.	 Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic 

distributions. Eco. Inform. 19, 10–15 (2014).
	 5.	 Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. 

Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​017-​09084-6 (2017).
	 6.	 GBIF.org. Global data trends. https://​www.​gbif.​org/​analy​tics/​global.Accessed on 23 Feb 2022
	 7.	 Bertacchi, A., Giannini, V., Franco, C. D. & Silvestri, N. Using unmanned aerial vehicles for vegetation mapping and identification 

of botanical species in wetlands. Landsc. Ecol. Eng. 15, 231–240 (2019).
	 8.	 Tollefson, J. Computers on the reef. Nature 537, 123–124 (2016).
	 9.	 August, T. et al. Emerging technologies for biological recording. Biol. J. Lin. Soc. 115, 731–749 (2015).
	10.	 Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. In Methods in Ecology and Evolution 10 (ed. Ye, 

H.) 1632–1644 (2019).
	11.	 Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).
	12.	 Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 

(2017).
	13.	 Theobald, E. et al. Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. 

Biol. Conserv. 181, 236–244 (2015).
	14.	 Pocock, M. J. et al. In Advances in Ecological Research 169–223 (Elsevier, 2018). https://​doi.​org/​10.​1016/​bs.​aecr.​2018.​06.​003.
	15.	 Chandler, M. et al. In The GEO Handbook on Biodiversity Observation Networks (eds. Walters, M. & Scholes, R. J.) 211–237 (Springer 

International Publishing, 2017). isbn: 978-3-319-27288-7. https://​doi.​org/​10.​1007/​978-3-​319-​27288-7_9.
	16.	 Trouille, L., Lintott, C. J. & Fortson, L. F. Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with 

human-machine systems. Proc. Natl. Acad. Sci. 116, 1902–1909 (2019).
	17.	 Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science?. Public Underst. 

Sci. 25, 2–16 (2015).
	18.	 Schuttler, S. G., Sorensen, A. E., Jordan, R. C., Cooper, C. & Shwartz, A. Bridging the nature gap: Can citizen science reverse the 

extinction of experience?. Front. Ecol. Environ. 16, 405–411 (2018).
	19.	 Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).
	20.	 Burgess, H. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Conserv. 208, 113–120 

(2017).
	21.	 Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience.https://​doi.​org/​

10.​1093/​biosci/​biaa1​31 (2020).
	22.	 Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge?. Front. Ecol. Evol.https://​doi.​org/​10.​3389/​fevo.​

2018.​00239 (2019).
	23.	 Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording 

behaviour. Sci. Rep.https://​doi.​org/​10.​1038/​srep3​3051 (2016).
	24.	 Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2017).
	25.	 Wäldchen, J., Rzanny, M., Seeland, M. & Mäder, P. Automated plant species identification—Trends and future directions. PLoS 

Comput. Biol. 14, e1005993 (2018).

L = L∞(1− e−k(t−t0))

dL

dt
= bke−kt

b = L∞ekt0

https://doi.org/10.15468/dl.tc4w55
https://doi.org/10.15468/dl.tc4w55
https://github.com/WouterKoch/citizen_science_VoI
https://doi.org/10.1038/s41598-017-09084-6
https://www.gbif.org/analytics/global
https://doi.org/10.1016/bs.aecr.2018.06.003
https://doi.org/10.1007/978-3-319-27288-7_9
https://doi.org/10.1093/biosci/biaa131
https://doi.org/10.1093/biosci/biaa131
https://doi.org/10.3389/fevo.2018.00239
https://doi.org/10.3389/fevo.2018.00239
https://doi.org/10.1038/srep33051


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7648  | https://doi.org/10.1038/s41598-022-11257-x

www.nature.com/scientificreports/

	26.	 Ceccaroni, L. et al. Opportunities and risks for citizen science in the age of artificial intelligence. Citiz. Sci. Theory Pract.https://​
doi.​org/​10.​5334/​cstp.​241 (2019).

	27.	 Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. 9, 2216–2225 (2018).
	28.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. http://​www.​deepl​earni​ngbook.​org (MIT Press, 2016).
	29.	 Seltzer, C., Ueda, K.-i. & Shepard, A. A New Vision Model! https://​www.​inatu​ralist.​org/​blog/​31806-a-​new-​vision-​model. Accessed 

on 23 Feb 2022
	30.	 Terry, J. C. D., Roy, H. E. & August, T. A. Thinking like a naturalist: Enhancing computer vision of citizen science images by har-

nessing contextual data. Methods Ecol. Evol. 11, 303–315 (2020).
	31.	 Horn, G. V. et al. The iNaturalist Species Classification and Detection Dataset 2018. arXiv:​ 1707.​06642 [cs.CV].
	32.	 Keisler, J. M., Collier, Z. A., Chu, E., Sinatra, N. & Linkov, I. Value of information analysis: The state of application. Environ. Syst. 

Decis. 34, 3–23 (2013).
	33.	 GBIF.org. GBIF Occurrence Download 2021. https://​doi.​org/​10.​15468/​DL.​TC4W55. Accessed on 23 Feb 2022
	34.	 Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. 

Hum. Behav. 74, 246–256 (2017).
	35.	 Richter, A. et al. Motivation and support services in citizen science insect monitoring: A cross-country study. Biol. Conserv. 263, 

109325 (2021).
	36.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data.https://​doi.​org/​

10.​1038/​sdata.​2016.​18 (2016).
	37.	 GBIF.org. GBIF homepage https://​www.​gbif.​org.Accessed on 23 Feb 2022
	38.	 Norwegian Biodiversity Information Centre. Species Nomenclature Database. http://​ekspo​rt.​artsd​ataba​nken.​no/​Artsn​avneb​ase 

(2021). Accessed on 23 Feb 2022
	39.	 Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on 

Learning 2016. arXiv:​1602.​07261 [cs.CV].
	40.	 Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 2020. arXiv:​1905.​11946 [cs.LG].
	41.	 Campbell, N. A. & Phillips, B. F. The Von Bertalanffy growth curve and its application to capture—Recapture data in fisheries 

biology. ICES J. Mar. Sci. 34, 295–299 (1972).

Author contributions
W.K. wrote the main manuscript text and prepared all figures. All authors contributed with substantial feedback 
throughout the writing process and reviewed the final manuscript.

Funding
This study was funded by Norges Forskningsråd  (Grant no. 272947).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​11257-x.

Correspondence and requests for materials should be addressed to W.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.5334/cstp.241
https://doi.org/10.5334/cstp.241
http://www.deeplearningbook.org
https://www.inaturalist.org/blog/31806-a-new-vision-model
http://arxiv.org/abs/quant-ph/1707.06642
https://doi.org/10.15468/DL.TC4W55
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://www.gbif.org
http://eksport.artsdatabanken.no/Artsnavnebase
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1905.11946
https://doi.org/10.1038/s41598-022-11257-x
https://doi.org/10.1038/s41598-022-11257-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Maximizing citizen scientists’ contribution to automated species recognition
	Results
	Taxonomic bias in citizen science observations with or without images. 
	Image recognition performance and the value of information. 
	Combining value of information and taxonomic bias. 

	Discussion
	Taxonomic bias. 
	Image recognition and value of information. 
	Combining taxonomic biases and the value of information. 

	Conclusions
	Methods
	Exploration. 
	Data collection. 
	Experimental procedure. 
	Data analysis. 

	References


