
royalsocietypublishing.org/journal/rsfs
Research
Cite this article: Holmes M, Taylor AB. 2021
The influence of jaw-muscle fibre-type

phenotypes on estimating maximum muscle

and bite forces in primates. Interface Focus 11:
20210009.

https://doi.org/10.1098/rsfs.2021.0009

Accepted: 9 July 2021

One contribution of 12 to a theme issue

‘Biological anthroengineering’.

Subject Areas:
biomechanics

Keywords:
myosin heavy chain, maximum isometric

tension, hybrid fibres, masseter, temporalis,

muscle force

Author for correspondence:
Megan Holmes

e-mail: megan.holmes@duke.edu
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5526948.
The influence of jaw-muscle fibre-type
phenotypes on estimating maximum
muscle and bite forces in primates

Megan Holmes1 and Andrea B. Taylor2

1Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
2Department of Basic Science, Touro University, Vallejo, CA, USA

MH, 0000-0002-4409-2838; ABT, 0000-0001-6647-5488

Numerous anthropological studies have been aimed at estimating jaw-
adductor muscle forces, which, in turn, are used to estimate bite force.
While primate jaw adductors show considerable intra- and intermuscular
heterogeneity in fibre types, studies generally model jaw-muscle forces by
treating the jaw adductors as either homogeneously slow or homogeneously
fast muscles. Here, we provide a novel extension of such studies by integrat-
ing fibre architecture, fibre types and fibre-specific tensions to estimate
maximum muscle forces in the masseter and temporalis of five anthropoid
primates: Sapajus apella (N = 3), Cercocebus atys (N = 4), Macaca fascicularis
(N = 3), Gorilla gorilla (N = 1) and Pan troglodytes (N = 2). We calculated
maximum muscle forces by proportionally adjusting muscle physiological
cross-sectional areas by their fibre types and associated specific tensions.
Our results show that the jaw adductors of our sample ubiquitously express
MHC α-cardiac, which has low specific tension, and hybrid fibres. We find
that treating the jaw adductors as either homogeneously slow or fast muscles
potentially overestimates average maximum muscle forces by as much as
approximately 44%. Including fibre types and their specific tensions is
thus likely to improve jaw-muscle and bite force estimates in primates.
1. Introduction
Considerable effort in anthropology has been directed at modelling feeding mech-
anics in extant primates with the goal of gaining insights into feeding-system
adaptations in extant and extinct taxa. Research linking feeding-system design
and function has relied heavily on biomechanical models based fundamentally on
engineering principles. For example, from decades of in vivo experimental studies
of how the mandible is strained during chewing, incision and isometric biting
(e.g. [1–3]), a large bodyof literature has emerged applying beam theory to hypoth-
esize how themandibular corpus should be expected tomodel, remodel and adapt
towithstand various loads during feeding, and to infer feeding behaviour and diet
frommandibularmorphology [4–9].Additionally, the primatemasticatory complex
is often treated as a lever system (e.g. [10–12]), which, in conjunctionwith estimates
of jaw-muscle force, have been used to model and estimate bite force capabilities
(e.g. [13–18]). More recently, finite-element analysis (FEA) has become widely
employed in biological anthropology to characterize the stress and strain patterns
of the craniofacial complex under a variety of loading conditions (e.g. [19–22])
and to testhypothesesofcraniofacial functionandfeedingadaptations (e.g. [23–26]).

All of these approaches are based on mechanical engineering principles and
involve the application of a variety of input parameters. For instance, in FEA
models of stress and strain patterns associated with feeding, bone tissue and
bone material properties must be assigned, as well as applied muscle force vec-
tors and muscle forces [24,25,27–29]. Similarly, bite force calculations require the
input of muscle forces, often estimated from the anatomical (ACSA) or physio-
logical cross-sectional area (PCSA) (e.g. [15,30–34]; for a review of methods for
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Table 1. Range of specific tension values reported in the literature. Both the muscles and muscle level sampled are reported.a

mammal(s) muscle(s)
muscle level
sampled

specific tension
reported (N cm−2) author

cat gastrocnemius, soleus whole muscle 22.5 Spector et al. [59]

cat gastrocnemius, soleus single fibre 10.3–43.8 Lucas et al. [61]

cat flexor digitorum longus single motor unit 5.9–34.3 Dum et al. [62]

cat tibialis anterior single motor unit 16.8–27.5 Bodine et al. [63]

cat, dog diaphragm, longissimus dorsi, masseter,

semimembranosus, soleus, temporalis,

tibialis anterior

single fibre 10.2–38 Toniolo et al.b [64]

chimpanzee gastrocnemius, vastus lateralis single fibre 9.6–15 O’Neill et al. [65]

cow diaphragm, longissimus dorsi, masseter single fibre 5–11.3 Toniolo et al. [66]

dog longissimus dorsi, semimembranosus,

extraocular, laryngeal, temporalis

single fibre 10–13 Toniolo et al.b [67]

human vastus lateralis single fibre 6.2–22.2 Gilliver et al. [68]

human soleus, vastus lateralis single fibre 8–21 Larsson & Moss [69]

human latissimus dorsi single fibre 11.6–16.4 Paoli et al. [70]

human vastus lateralis single fibre 4.37–6.47 Bottinelli et al. [71]

mouse gastrocnemius, soleus, tibialis anterior,

vastus lateralis

single fibre 22.4–37.7 Andruchov et al. [72]

mouse, rat, rabbit, sheep, cow extensor digitorum longus, soleus single fibre 6–24.8 Seow & Ford [73]

mouse, rabbit, rat, human extensor digitorum longus, gastrocnemius single fibre 4–7.5 Pellegrino et al. [74]

rabbit extraocular single fibre 14–46 Lynch et al.b [75]

rat extensor digitorum longus, soleus, plantaris single fibre 21.1–43.9 Bottinelli et al. [76]
aThe ranges reported for each study reflect variation across muscles, fibre types within a muscle and/or experiments under different conditions.
bThese values were not reported directly in the text. They were determined to the nearest approximation from graphic data presented by the author.
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estimating PCSA see [35]). The validity of these models is in
part dependent on the accuracy of the input parameters.

A focus of many studies of craniofacial structure and func-
tion has been modelling bite forces. This is because bite force is
an important performance variable related to feeding (e.g.
[36,37]) as well as non-feeding behaviours such as aggressive
biting [38]. Bite force capacity is one of a number of factors
that influence an animal’s feeding strategies (e.g. seed preda-
tion, frugivory, folivory) and dietary range (e.g. accessing
items across a range of material and geometric properties),
and plays a crucial role in an animal’s ability to efficiently
ingest and break down food [39–41].

Bite force is modulated by a number of factors, including
leverage (i.e. moment arms of the chewing muscles and bite
points) and the force-generating capacity of the chewing
muscles. Two important properties that influence muscle
force are a muscle’s PCSA and the physiological properties
of muscle fibre types (fibre phenotype). Over the past
25 years, there has been a sizeable increase in static architec-
tural estimates of ACSAs and PCSAs of the chewing muscles
of strepsirrhine [30,33,42–46] and anthropoid [30–32,34,47–
53] primates. This work has facilitated combining architec-
tural estimates of jaw-adductor muscle force with muscle
leverage to estimate bite force in extant [15,33,54,55] and,
though a more formidable task, extinct human and
non-human primates (e.g. [16,46,54,56]).
To convert muscle force estimates to bite force requires
estimating the maximum isometric muscle force of the jaw
adductors, i.e. the masseter, temporalis and medial pterygoid
muscles. This is achieved by multiplying muscle ACSAs or
PCSAs by a specific tension, i.e. force/area [57]. To date,
however, studies estimating muscle force in primates, and
converting muscle force to bite force, have assigned a specific
tension value to muscle force estimates derived using whole
muscles, and even muscle groups (e.g. [58–60]). This is
despite considerable intra- and intermuscular heterogeneity
of muscle fibre types and their contractile properties, includ-
ing specific tensions (see table 1 and references therein; see
Close [77] for an early review).

Here, we present a novel extension of these studies by
combining jaw-adductor muscle force estimates from
PCSAs with muscle fibre types quantified from the same
muscles. We assign specific tension values (Po) based on
the percentage cross-sectional area (%CSA) of fibres expres-
sing a particular fibre type by taking advantage of recent
empirically derived Po values for the major myosin heavy
chain (MHC) proteins that contribute to the fibre types
found in mammalian jaw muscles. We compare our fibre-
type adjusted muscle force estimates with those obtained
assuming either homogeneously slow or homogeneously
fast fibre phenotypes. We show that jaw-muscle force esti-
mates based on the presumption of homogeneous fibre
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Figure 1. Fibre phenotype continuum illustrating the six main myosin heavy
chain isoforms observed in mammalian jaw muscles, each operating at differ-
ent capacities along the continuum. Hybrid fibres are denoted with brackets
below the arrow but may occur in any combination. Maximum unloaded
shortening velocity and tension cost increases from left to right while fatigue
resistance decreases left to right.
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types assigned a single specific tension potentially overesti-
mate average maximum muscle forces by as much as 44%
and 36% for the masseter and temporalis muscles, respect-
ively. These data add to the longstanding work of
anthroengineering by providing a method for potentially
fine-tuning jaw-muscle and bite force estimates in primates.

1.1. Estimating muscle force
Muscle function is largely dependent on two intrinsic proper-
ties of muscle: muscle fibre architecture [78] and the
composition and distribution of fibre types within a muscle
[76,79,80]. Muscle fibre architecture represents the internal
organization of a muscle and the orientation of fibres relative
to the muscle’s force-generating capacity [78]. PCSA is pro-
portional to a muscle’s maximum force-generating capacity
[57], while the expression and distribution of the various
MHC isoforms within a muscle influence the contractile
properties of muscle fibres, including speed of shortening,
isometric tension and tension cost [81]. Combining a muscle’s
PCSA with its specific tension allows for an estimate of a
muscle’s maximum tetanic tension.

Numerous studies have combined architectural estimates
of muscle force with specific tension values to estimate maxi-
mum tetanic tension for limb (e.g. [57,82,83]) and jaw
musculature (e.g. [16,51]). A wide range of specific tension
values, from as low as 4 N cm−2 [74] to as high as 46
N cm−2 [75] (table 1), have been reported for skeletal muscles
and attributed to fibre type. Studies have generally assigned a
single specific tension value to whole muscles, or to muscle
groups. However, there is ample evidence from single-fibre
studies that tension values are lower in slow (type 1) as com-
pared with fast (type 2) fibres, in many cases significantly so
(e.g. [62–67,70,71,74–76]).

Fibre-specific tensions have the potential to significantly
influence muscle and, by extension, bite force estimates.
One reason is that mammalian chewing muscles express a
greater variety of MHC isoforms than limb muscles [84];
these isoforms add considerably to the range of contractile
properties expressed in the chewing muscles. Another
reason is that mammalian chewing muscles show a large
degree of heterogeneity in fibre-type distribution, both
within and between muscles (e.g. [85,86]). Lastly, mammalian
chewing muscles express large quantities of hybrid fibres, i.e.
fibres that express more than one MHC isoform along their
length (see reviews by [87,88]). Notably, anthropoid primate
chewing muscles display an abundance of hybrid fibres
[89,90]. Fibres expressing multiple MHC isoforms are
reported to have contractile properties intermediate between
‘nearest neighbour’ pure MHC isoforms [91] (figure 1). For
the chewing muscles, in particular, these factors collectively
suggest that applying a single specific tension value to
whole muscles is likely to over- or underestimate maximum
muscle tension and, thus, bite forces.

1.2. Jaw-muscle fibre phenotypes
A muscle’s fibre phenotype is the quantitative expression of
MHC isoforms within that muscle. The contractile properties
of these isoforms can be expressed along a continuum, from
slower contracting, fatigue resistant (type 1: MHC-1, MHC
α-cardiac) to fast contracting, fatigable (type 2: MHC-2A,
MHC-M, MHC-2X; figure 1). MHC-1 and MHC-2 (MHC-
2A and MHC-2X) isoforms, common to the limb muscles,
are expressed in mammalian jaw-closing muscles, including
those of primates [86,92–94]. Additional major MHC iso-
forms are expressed in the chewing muscles, but not the
limb muscles. These include MHC α-cardiac [95] and MHC-
M (fast-type 2 or masticatory myosin) [85]. MHC α-cardiac
has been reported in a variety of mammals (e.g. [96,97]),
including human [87,98] and more recently non-human
[90,99] primates. This fibre type has a higher contraction vel-
ocity than MHC-1 but it is similar to MHC-1 in having high
endurance and a low energy cost of activation [100,101].
Animals that execute tens of thousands of chews a day at
low force amplitudes, such as marsupial grazers [96], have
chewing muscles that homogeneously express MHC α-cardiac.
This fibre phenotype is believed to confer a benefit to animals
that chew with exceptionally high frequency but do not rumi-
nate, because the higher rate of cross-bridge cycling compared
with MHC-1 fibres [101] facilitates the rapid and efficient
breakdown of food into fine particles for fermentation.
MHC-M is a phylogenetically ancient myosin specific to the
masticatory muscles [102] and has been functionally linked
to rapid, powerful muscle and bite forces for prey capture [85].

Most single-fibre studies that have measured isometric
tension in mammalian skeletal muscles have reported on
MHC-1 and MHC-2 fibres in limb muscles (e.g. [64–67,103]).
By contrast, isometric tension measured from single fibres
that express MHC α-cardiac and MHC-M are far more lim-
ited, having been reported for the jaw muscles of cow [65]
and dog and cat [64,67]. MHC α-cardiac tension in cow mass-
eter has been reported at approximately 5 N cm−2 [66], lower
than specific tension estimates for MHC-1 fibres. Fibres
expressing MHC-M developed significantly higher isometric
tension (38 N cm−2) when compared with MHC-1, MHC
α-cardiac and MHC-2 fibres [64]. Isometric tension reported
for hybrid fibres indicates that their contractile forces are
intermediate relative to the combination of pure myosin iso-
forms expressed within that fibre [66,71]. Their intermediate
tension is consistent with their other physiological character-
istics, such as their contractile velocity and fatigue resistance
[65,80,91,104–106].
2. Material and methods
2.1. Sample
We estimated PCSAs and determined the four major MHC iso-
forms present in the superficial masseter and temporalis
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Figure 2. Photograph of a female M. fascicularis head depicting the tempor-
alis and masseter muscles exposed in situ. Black lines depict the sectioning of
the temporalis into anterior (A), middle (M) and posterior (P) regions. Red
lines depict sections of the masseter along the length of the muscle into
muscle segments. Modified from Terhune et al. [53].
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muscles of five anthropoid primates: Sapajus apella (N = 3), Cerco-
cebus atys (N = 4), Macaca fascicularis (N = 3), Gorilla gorilla (N = 1)
and Pan troglodytes (N = 2). All tissues were from captive individ-
uals with no evidence of craniodental or temporomandibular
joint pathology or muscle atrophy. All had been fresh frozen
for varying amounts of time, then thawed and fixed in 10% buf-
fered formalin and stored in 10% buffered formalin until use.
Specimens were obtained from regional primate centres or zool-
ogical institutions and no animals were sacrificed for the
purposes of this study (see electronic supplementary material).

2.2. Measurements
2.2.1. Physiological cross-sectional area
The fibre architecture methods used in this study have been
described in detail elsewhere (e.g. [30,50,51,53,55,107]). Briefly,
the masseter and temporalis muscles were dissected en masse
from the cranium. The deep and superficial portions of the mass-
eter were separated and the superficial masseter and temporalis
weighed to the nearest 0.01 or 0.1 g, depending on muscle size.
The superficial masseter muscles were sectioned from superficial
to deep along their lengths into multiple segments while the tem-
poralis muscles were sectioned into anterior, middle and
posterior segments (figure 2), using stress lines visible on the epi-
mysium as guides (e.g. [108]). For each muscle segment, fibre
length (Lf) from adjacent fibres was measured from multiple
sampling sites from the superficial and intermediate compart-
ments of the masseter (but excluding the deep masseter) and
from the superficial and deep temporalis. Only intact fibres run-
ning from tendon attachment to tendon attachment were
included (i.e. no cut fibres were measured). Pinnation angle (θ)
was estimated for each fibre following Anapol & Barry [107].
We included only specimens whose jaws were fixed in compar-
able postures (i.e. at occlusion). Thus, for the purposes of this
study (following Taylor & Vinyard [50]), we did not normalize
fibre length by a standard sarcomere length.1

Using our estimates of muscle mass, Lf and pinnation angle,
we calculated PCSA using the following equation [110]:

PCSA (cm2) ¼ muscle mass (g)� cos u
Lf (cm)� 1:0564 ðg cm�3Þ ,

where 1.0564 g cm−3 is an estimate of the specific density of skel-
etal muscle [111].

2.2.2. Immunohistochemistry
We excised small blocks of muscle tissue from the anterior super-
ficial masseter (ASM), superficial anterior temporalis (SAT) and
deep anterior temporalis (DAT). The muscle blocks (approx. 8–
10 mm long × approx. 8–10 mm wide × approx. 4 mm deep)
were cut perpendicular to the muscle’s long axis and immersed
in 70% ethanol solution for 48–72 h before paraffin embedding
to aid in the reconstitution of the fibres. Immunohistochemistry
(IHC) sample preparation and staining were subsequently car-
ried out in the Immunohistology Laboratory, Department of
Pathology, Duke University School of Medicine, Durham, NC,
USA. Tissue preservation and formalin fixation can reduce the
availability of reactive sites, potentially resulting in variable
and diminished staining intensity [112,113]. We thus used an
IHC protocol specifically developed and tested by the Depart-
ment of Pathology to improve the staining of formalin-fixed
tissue [55,99,114].

Briefly, each paraffin-embedded muscle block was sectioned
at 5 µm using a cryostat. Serial sections were mounted on glass
microscope slides to undergo final IHC procedures. Each section
was pre-treated with 1% bovine serum albumin (BSA; Sigma)
and then dissolved in Tris-buffered saline, 0.1% with Tween 20
(TBST) for 20 min. Four serial sections per muscle region were
stained against MHC-1 (reacting with skeletal-slow myosin;
1 : 400 dilution; NOQ7.5.4D; Sigma), MHC α-cardiac (reacting
with α-cardiac-slow myosin; 1 : 400 dilution; MYH6; Sigma),
MHC-2 (reacting with skeletal-fast myosin; 1 : 400 dilution; MY-
32, no. 4276; Sigma; we did not differentiate among the various
MHC-2 isoforms) and MHC-M (reacting with masticatory
myosin; 1 : 200 dilution; 2F4; Developmental Studies Hybridoma
Bank, University of Iowa) antibodies.

Photographs were taken of the resulting stained histological
sections using a Nikon DS-Fi3 high-definition camera attached
to a Nikon 50i microscope and NIS Elements software v. 4.5
(Nikon Instruments Inc., Melville, NY). Photographs were
saved as digital images at 4× magnification and stitched together
in Microsoft PowerPoint to create a complete image of each
stained muscle section. Regions of interest (ROIs) were selected
for counting and scoring staining intensities and for measuring
cross-sectional areas (CSAs) of selected cells, ensuring that the
ROIs were representative of the range of variation in staining
across the muscle section.

Each ROI was photographed at 10× and imported into
ImageJ v. 1.52 [115]. Using the ‘Multi-point’ tool in ImageJ, a
minimum of 300 fibres was counted per muscle region for each
specimen and scored for staining intensity as strong, intermedi-
ate, weak or unstained [86,90,99]. Serial sections for the same
muscle region enabled us to determine if a cell stained against
only one of the four antibodies (pure fibre) or two or more anti-
bodies (hybrid fibre). Based on the antibodies used in this study,
three different hybrid types were possible: (i) slow hybrids,
expressing more than one slow myosin (MHC-1 and MHC α-car-
diac) [116,117]; (ii) fast hybrids, expressing more than one fast
myosin (MHC-2 and MHC-M) [118]; and (iii) intermediate
hybrids, expressing combinations of both slow and fast myosins.

CSAs (µm2) of a subset of approximately 50 cells [114] per
muscle region were measured using the ‘Polygon’ and ‘Freehand
selection’ tools in ImageJ. Selected cells were representative of the
staining patterns for each of the four antibodies for each muscle
region.We used these cell CSAs to calculate the%CSA representing
each fibre type expressed in our sampled muscle section.

2.2.3. Muscle force estimation
To estimate maximum muscle force (MF %CSA), we used a
modified version of the conventional formula where a muscle
PCSA is multiplied by a muscle-specific tension [57]. Here, we
multiplied the %CSA of each fibre type within a muscle by the
muscle’s PCSA (cm2), yielding a fibre-type specific estimate of
PCSA (cm2). For example, the superficial masseter PCSA of C.
atys ABT8 was estimated as 6.73 cm2 (electronic supplementary
material, table S1). Of that 6.73 cm2, 57% %CSA was represented



Table 2. Isometric tension values (Po) used in this study.

MHC-1
MHC α-
cardiac MHC-2 MHC-M

isometric

tension

(N cm−2)a

22.5 5 26.3 38

aAll isometric tension values reported here are from single-fibre studies.
Po for MHC-1 (N = 8 fibres) and MCH-2 are from carnivore trunk and limb
muscle [64]. The current study did not differentiate among the MHC-2
isoforms; thus, we used an average Po of MHC-2A and MHC-2X (N = 32
fibres). MHC α-cardiac values are from cow (Bos taurus) masseter (N = 25
fibres) [66]. Po for MHC-M (N = 23 fibres) is from carnivore masseter and
temporalis muscles [64].
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by the MHC-1 +MHC α-cardiac +MHC-2 hybrid fibre type
(slow + 2), 20% %CSA was represented by MHC α-cardiac +
MHC-2 +MHC-M hybrid fibre type (fast + α-cardiac) and 23%
%CSA was represented by the MHC-1 +MHC α-cardiac hybrid
fibre type (pure–slow hybrid). Each of these fibre-type specific
CSAs was then multiplied by empirically derived specific tension
estimates for each fibre type (as reported in table 2) and these
were summed across the muscle to estimate MF %CSA (see elec-
tronic supplementary material, S1 methods and table S1). Based
on the intermediate contractile properties of hybrid fibres, we
averaged the known isometric tensions of all myosin isoforms
expressed within a hybrid fibre to determine specific tension
for that hybrid fibre type [99]:

MF %CSA ¼ [(%CSA MHC� 1� PCSA)� 22:5 N cm�2]

þ [(%CSA MHCa� cardiac� PCSA)� 5 N cm�2]

þ [(%CSA MHC� 2� PCSA)� 26:3 N cm�2]

þ [(%CSA MHC�M � PCSA)� 38 N cm�2]

þ [(%CSA hybrid� PCSA)�hybrid isometric tension N cm�2]:

Studies that employ estimates of the contractile properties of
muscle (e.g. Po, Vo) generally report and use the mean values (for
example, see O’Neill et al. [65], and electronic supplementary
material therein). We follow this approach here. While variation
in tension estimates (table 1) could impact the reported means
that we used in our muscle force estimates, we believe this is
no different from employing mean values of fibre length and
pinnation angle that are used to estimate muscle PCSAs.

To determine the impact of proportionally adjusting muscle
force estimates by their fibre types and associated specific ten-
sions, we compared our MF %CSAs with muscle forces
estimated using specific tension values for a homogeneously
slow (PCSA × 22.5 N cm−2) and homogeneously fast muscle
(PCSA × 26.3 N cm−2). We used the specific tension value for
MHC-2 (table 2) to be consistent with most studies that have
applied specific tension estimates from limb muscles. Employing
these two specific tension estimates thus allows us to bracket the
range of muscle force estimates typically used to estimate
jaw-muscle (and bite) forces.

3. Results
Hybrid fibres were ubiquitous throughout the sampled
species. Very few fibres expressed pure–slow or pure–fast
phenotypes (figure 3), the single exception being the SAT
in one S. apella (S. apella 31) that expressed 24% %CSA pure
α-cardiac. The two most common hybrid combinations
observed were: MHC-1 +MHC α-cardiac +MHC-2 and
MHC α-cardiac +MHC-2 +MHC-M (table 3). Following
Taylor & Holmes [99], we refer to these hybrid fibre pheno-
types as the slow + 2 and fast + α-cardiac, respectively. The
distinction between the slow + 2 and fast + α-cardiac hybrids
is based on the nearly invariant counterstaining between
MHC-1 and MHC-M. Other fibre types observed included
MHC α-cardiac +MHC-2, pure–slow hybrid (MHC-1 +
MHC α-cardiac), pure–fast hybrid (MHC-2 +MHC-M),
MHC α-cardiac +MHC-M and pure MHC-2; a small percen-
tage of fibres (less than or equal to 5%) co-stained for all four
antibodies (table 3). Representative figures of the MHC
expression patterns for each species are shown in figure 4.

Table 4 compares our estimated maximum muscle for-
ces (MF %CSA) with muscle forces estimated assuming a
homogeneously slow (MF slow = 100% MHC-1) and a homo-
geneously fast (MF fast = 100% MHC-2) fibre type. The
percentage difference between our estimates and homoge-
neously slow or fast muscles ranged from 4.4% to 44.1% for
the masseter and from 7.3% to 36.1% for the temporalis.
Whether treated as a homogeneously slow or homogeneously
fast muscle, maximum muscle forces were always greater
than those estimated for our MF %CSA (the difference
between MF slow and MF %CSAwas negligible for S. apella).

4. Discussion and conclusion
Anthropological studies that have estimated maximum
muscle and bite forces in extant human and non-human pri-
mates have generally applied either a slow-type (e.g. 22.5
N cm−2) [51] or fast-type (e.g. [16,119,120]) specific tension
value uniformly across the chewing muscles; faster tension
values have also been applied to studies that have modelled
bite forces in extinct primates and non-primate mammals
(e.g. [21,54,121]). Importantly, tension values applied to the
jaw adductors derive exclusively from work on non-primate
mammalian limb muscles (e.g. [57,59,83]).

We show that average maximum jaw-muscle force esti-
mates that account for fibre-type proportions and their
fibre-specific tensions (MF %CSA) are smaller by as much
as 30% than those assigned a single specific tension across
the entire muscle (table 4). As might be expected, these differ-
ences in jaw-muscle force estimates translate into differences
in bite force (see electronic supplementary material). At first
glance, it may seem counterintuitive that our fibre-type
specific tension estimates of muscle force are lower than
those obtained when assigning specific tensions that are
either homogeneously slow or fast. This pattern is explained
by the fact that MHC α-cardiac is abundantly expressed
across both the superficial masseter and temporalis in all
our sample species, consistent with previous studies of non-
primate mammals (e.g. [122]), as well as human [98] and
non-human primates [90,99]. The reported Po of approxi-
mately 5 N cm−2 for MHC α-cardiac [66] is lower than the
Po reported for MHC-1 (e.g. [64–67] and references therein).
Incorporating the high proportion of fibres expressing MHC
α-cardiac in our samples, with its lower Po, thus lowers the
maximum muscle force estimates compared with those
obtained when using even a slow-type specific tension.

We used mean Po values estimated from single fibres in
our muscle force estimates, following previous muscle per-
formance studies (e.g. [65]). As with all estimates of muscle
kinetic and contractile properties, as well as input parameters



Table 3. %CSA of each fibre type observed in each specimen. slow + 2 and fast + α-cardiac were the most common hybrid fibre types observed. slow + 2 =
MHC-1 + MHC α-cardiac + MHC-2; fast + α-cardiac = MHC α-cardiac + MHC-2 + MHC-M; slow-hybrid = MHC-1 + MHC α-cardiac; fast-hybrid = MHC-2 + MHC-
M; all = MHC-1 + MHC α-cardiac + MHC-2 + MHC-M.

species

slow + 2

(%)

fast + α-

cardiac (%)

MHC α-

cardiac +

MHC-2 (%)

pure–slow

hybrid (%)

pure–fast

hybrid (%)

MHC α-

cardiac +

MHC-M (%)

pure MHC

α-cardiac

(%)

pure

MHC-2

(%)

all

(%)

superficial masseter

S. apella 30 23 77 — — — — — — —

S. apella 31 23 62 16 — — — — — —

S. apella 32 16 84 — — — — — — —

C. atys (ABT4) 98 1 — — — — — 1 —

C. atys (ABT5) 92 — — — — — — 8 —

C. atys (ABT6) 32 67 — — — — — — —

C. atys (ABT8) 57 20 — 23 — — — — —

M. fascicularis

(ABTWLH3)

63 3 34 — — — — — —

M. fascicularis

(CJV222)

39 61 — — — — — — —

M. fascicularis

(CJV221)

16 84 — — — — — — —

G. gorilla

(NCZ488)

94 6 — — — — — — —

P. troglodytes

(CJV190)

19 76 — — — — — — 5

P. troglodytes

(CJV189)

23 75 2 — — — — — —

anterior temporalis

S. apella 30 18 82 — — — — — — —

S. apella 31 27 — — 5 — 44 24 — —

S. apella 32 31 66 1 1 — — — — —

C. atys (ABT 4) 56 — — — 44 — — — —

C. atys (ABT 5) 87 — — — 13 — — — —

C. atys (ABT 6) 61 39 — — — — — — —

C. atys (ABT 8) 56 44 — — — — — — —

M. fascicularis

(ABTWLH3)

47 — — 53 — — — — —

M. fascicularis

(CJV222)

32 68 — — — — — — 1

M. fascicularis

(CJV221)

51 45 — — — — — — 3

G. gorilla

(NCZ 488)

73 27 — — — — — — —

P. troglodytes

(CJV190)

16 81 — — — — 3 — —

P. troglodytes

(CJV189)

20 60 20 — — — — — —
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of muscle PCSA (e.g. [47]), the mean values used in this study
exhibit a range (e.g. [64,66]). We were unable to bracket the
range of specific tension for each of the four MHC isoforms
used in the current study as these were not explicitly reported
by Toniolo et al. [64,66]. These authors do report significant
differences in mean Po between MHC-1 and MHC-M, and
between MHC 2A and MHC-M [64]. The Po for MHC α-car-
diac is roughly 25% of that of MHC-1 [64,66], suggesting this



(a) (b)

(c) (d)

Figure 3. 20× images of the same muscle fascicle in the anterior superficial masseter of M. fascicularis. (a) NOQ7.5.4D (MHC-1); (b) MYH6 (MHC α-cardiac);
(c) MY32 (MHC-2); (d ) (MHC-M). Note the abundance of hybrid fibres. Arrows point to the same cell co-staining with intermediate or dark intensity for
MHC-1, MHC α-cardiac and MHC-2 (the slow + 2 hybrid). Asterisks indicate the same cell co-staining with light or intermediate intensity for MHC α-cardiac,
MHC-2 and MHC-M (the fast + α-cardiac hybrid). Note the counter-staining between (a) cells that express MHC-1 and (d ) those that express MHC-M.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20210009

7

value likely differs significantly from MHC-1, MHC-2A,
MHC-2X and MHC-M. We are thus reasonably confident
that the variation around the mean Po values within each
MHC isoform is substantially lower than the variation
between MHC isoforms. When Po is estimated from single
fibres from the same muscle using the same experimental
protocol, as is the case in the work reported by Toniolo
et al. [64,67], the mean can be expected to represent the best
estimate. Future work to explore variation in contractile prop-
erties and how it effects muscle force estimates could be
better addressed by resampling techniques where the
ranges of specific tension could be explicitly incorporated in
the model.

Fibre-type adjusted jaw-muscle PCSAs (like PCSAs unad-
justed for fibre type) represent static estimates of the relative
force contribution of each chewing muscle to total jaw-adduc-
tor muscle force. Our focus in this study is to further refine
static muscle force estimates by incorporating an additional
and important parameter—the Po of the various fibre types
that make up a given muscle and their proportions—and to
evaluate the impact of accounting for various fibre types on
these muscle force estimates. These parameters do not
account for the fact that the jaw adductors fire both synchro-
nously and asynchronously during chewing [123,124].
However, when combined with estimates of jaw-muscle
mechanical advantage, they can be used to estimate maxi-
mum isometric bite force anywhere along the tooth row
using static models (e.g. [10–12]) and have been fruitfully
applied to biomechanical and evolutionary questions of feed-
ing behaviour and diet in a wide range of extant primates
(e.g. [16,17,33]) and non-primate mammals (e.g. [36]) and in
palaeobiological contexts (e.g. [125]).

Similar to other studies of mammalian jaw-muscle fibre
types (e.g. [86,88,90,98,99]), hybrid fibres were ubiquitous
in our primate sample and fibres that expressed MHC α-car-
diac generally co-expressed MHC-1 (e.g. [122]) as well as
MHC-2 (figure 3; see also [90,99]). As such, hybrid fibres
were proportionally averaged across all the MHC isoforms
expressed. It is also important to point out that, to date, mam-
malian single-fibre specific tension values reported for MHC-
1 and MHC-2 are known only from limb and trunk muscles;
to our knowledge, these have not been reported from the
chewing muscles of any mammal. We employed a Po for
MHC-1 of 22.5 N cm−2 [64], which is higher than those
reported for humans (e.g. [65] and references therein) and
at least some other mammals (e.g. [64,66,67,74]). Had we
employed a specific tension for MHC-1 closer to those
reported for humans (many report Po approx. 10–18 N cm−2;
[65] and references therein), our MF %CSAs would have
been lower still.

The variation reported across specific tension estimates is
likely to be due to a number of factors. While there is no clear
correlation between specific tension and body mass
[65,73,74], some of these differences can be attributed to



(b)

(a)

(c)

(e)

(d)

( f )

50 µm

50 µm

50 µm

50 µm

50 µm

50 µm

Figure 4. Representative serial sections for left column: (a) S. apella SAT; (b) C. atys ASM; (c) M. fascicularis DAT; right column: (d ) G. gorilla ASM; (e) G. gorilla SAT;
and ( f ) P. troglodytes ASM, stained for NOQ7.5.4D (MHC-1; upper left square), MYH6 (MHC α-cardiac; upper right square), MY-32 (MHC-2; lower left square) and
2F4 (MHC-M; lower right square). Note the ubiquitous expression of fibres co-expressing two or more MHC isoforms, the abundance of α-cardiac fibres and the
consistent counterstaining between NOQ7.5.4 and 2F4. For G. gorilla, note the intermuscular differences in distribution and staining intensities between the ASM (d )
and SAT (e; see also Taylor & Holmes [99]). All figures were taken at 10×. Scale bar, 50 µm.
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variation across muscles and species (table 1). Different
methods used to measure maximum isometric muscle force
(Po) are also likely to account for some of this variation. For
example, experimental measurements of maximum isometric
muscle force (Po) are temperature dependent [126] as well as
dependent on tissue preparation, e.g. whether estimated from
skinned single muscle fibres (e.g. [127]) versus from stimu-
lated intact whole muscle (e.g. [59]). Measuring isometric
tension from single fibres of primate chewing muscles has
proven challenging (P. Reiser 2019, personal communication).
Given this, valuable next steps would include measuring iso-
metric tension of single fibres expressing MHC-1 and MHC-2
from a variety of mammalian chewing muscles to determine
if their contractile properties are similar to those expressed in
limb muscles. Likewise, estimating Po from mammalian
chewing muscles that express MHC α-cardiac and hybrid
combinations would further contribute to refining estimates
of maximum muscle forces.

Our results for a select subset of anthropoid primates
suggest that fibre types have the potential to strongly
impact muscle (and bite) force estimates. Accounting for the
intra- and intermuscular heterogeneity of primate jaw-
muscle fibre phenotypes is thus likely to improve muscle
and bite forces estimates in extant taxa. While fibre types
cannot be directly estimated in palaeontological specimens,
skeletal estimates of bite force have been modelled in extinct
hominins by applying correction factors based in part on
architectural estimates of jaw-muscle PCSAs derived from



Table 4. Average maximum muscle force estimates (N cm−2) for the superficial masseter and temporalis muscles assuming a homogeneously slow fibre
expression (MF slow), incorporating %CSA of all fibre types expressed (MF %CSA), and assuming a homogeneously fast fibre expression (MF fast).a–c.

species

superficial masseter temporalis

MF

slow

MF

%CSA

MF

fast

%Dif MF

%CSA versus

MF slow

%Dif MF

%CSA versus

MF fast

MF

slow

MF

%CSA

MF

fast

%Dif MF

%CSA versus

MF slow

%Dif MF

%CSA versus

MF fast

S. apella 220.9 211.5 258.2 4.4 22.1 391.6 356.2 457.8 9.9 28.5

s.d. (39.7) (30.8) (46.4) (146.0) (166.9) (170.6)

C. atys 149.0 126.9 174.2 17.4 37.3 359.9 335.5 420.7 7.3 25.4

s.d. (31.6) (36.9) (36.9) (106.7) (95.3) (124.7)

M. fascicularis 90.98 83.12 106.34 9.5 27.9 271.9 238.0 317.8 14.2 33.5

s.d. (28.6) (34.4) (33.4) (64.0) (87.4) (74.8)

G. gorilla 777.7 630.7 909.1 23.3 44.1 1272.4 1092.8 1487.3 16.4 36.1

s.d. — — — — — —

P. troglodytes 813.3 792.2 950.6 2.7 20.0 1132.8 1065.6 1324.1 6.3 24.3

s.d. — — — — — —

aMF slow: muscle force estimates based on 100% MHC-1 with Po = 22.5 N cm−2; MF fast: muscle force estimates based on 100% MHC-2 with Po = 26.3 N cm−2; %Dif:

% difference; s.d., standard deviation.
bValues are averaged by muscle for each species.
c% difference calculated by subtracting MF slow or MF fast from MF %CSA, taking the absolute value (ABS) of that difference, dividing by MF %CSA and multiplying by

100, e.g. ABS [(MF %CSA− MF slow)/(MF %CSA)] * 100.
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extant primates (e.g. Eng et al. [16]). Adjusting these PCSAs
by fibre type in extant taxa may thus improve bite force
estimates in palaeobiological contexts, particularly if the
bite force estimates in extant taxa can be validated by in
vivo bite force studies.
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Endnote
1Skeletal muscle fibre length is influenced by joint posture and nor-
malizing fibre length by a standard sarcomere length has been
empirically shown to eliminate this error [89,109]. Gape-dependent
variation in fibre lengths of the chewing muscles is effectively elimi-
nated when normalizing measured fibre lengths by a sarcomere
length of 2.41 μm, such that normalized fibre lengths are not signifi-
cantly different ( p < 0.05) from fibre lengths measured at occlusion
[109]. In the absence of gape-dependent variation in our sample,
we thus report PCSAs based on non-normalized fibre lengths.
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