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Abstract

Mathematical modelling approaches have granted a significant contribution to life sciences

and beyond to understand experimental results. However, incomplete and inadequate

assessments in parameter estimation practices hamper the parameter reliability, and conse-

quently the insights that ultimately could arise from a mathematical model. To keep the dili-

gent works in modelling biological systems from being mistrusted, potential sources of error

must be acknowledged. Employing a popular mathematical model in viral infection research,

existing means and practices in parameter estimation are exemplified. Numerical results

show that poor experimental data is a main source that can lead to erroneous parameter

estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices

of initial conditions as well as data asynchrony distort the parameter estimates but are often

overlooked in modelling studies. This work stresses the existence of several sources of

error buried in reports of modelling biological systems, voicing the need for assessing the

sources of error, consolidating efforts in solving the immediate difficulties, and possibly

reconsidering the use of mathematical modelling to quantify experimental data.

Introduction

Mathematical modelling approaches have been playing a central role to describe many differ-

ent real life applications [1]. In biological and medical research, benefits from mathematical

modelling are not only generating and validating hypotheses from experimental data but also

simulating these models has led to testable experimental predictions [2]. Presently, quantitative

modelling is among the renowned methods used to study several aspects of viral infection dis-

eases from virus-host interactions to complex immune responses systems and therapies [3–6],

cancer [7], and gene networks [8].
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Mechanistic models aim to mimic biological mechanisms that embody some essential and

exciting aspects of a particular disease. These can serve either as pedagogical tools to understand

and predict disease progression, or act as the objects of further experiments. However, mathe-

matical models at heart are incomplete, and the same process can be modelled differently, if not

competitively. Inherently, a model should not be accepted or proven as a correct one, but

should only be seen as the least invalid model among the alternatives. This selection process can

be done, for example, by fitting the models to experimental data and comparing the models’

goodness-of-fit criterion e.g., [9–11]. Alternatively, modelling can be used as “thought experi-

ments” without considering parameter fitting to experimental data. For instance, on the basis of

various simple mathematical models, the hypothesis that the immune activation determines the

decline of memory CD4+ T cells in HIV infection can be rejected [12].

Assuming there exists a model that represents properly the problem at hand, model fitting to

experimental data is still subject to a number of factors that can distort parameter estimates. For

instance, mathematical models are often non-linear in structure and their parameters can be

strongly correlated, posing troublesome issues to parameter estimation procedures, e.g., param-

eter identifiability [13] or parameter sensitivity [14]. These problems aggravate as experimental

data are often sparse, scarce, and vary by orders of magnitude [9, 13, 15–19]. Consequently,

accurate estimation of biological parameters is inherently problematic, if not impossible [14].

Nevertheless, above issues are not de facto worrisome barriers if the primary purpose is to

evaluate working hypotheses [14, 20]. In this case, finding a working set or a plausible range of

parameter values can be deemed sufficient. However, doubts arise when mathematical models

are used explicitly to extract biological meaning of model parameters, which is more evident

and likely to happen in those applications where the prediction aspect is inferior. For example,

modelling studies on acute diseases with predictable dynamics, such as influenza virus infection

[3, 4, 21–24], have been pursuing the quantification of parameters rather than prediction.

Additionally, the conventional practice of making use of the formerly estimated parameters in

mathematical modelling could propagate the potential inaccurate parameters to the subsequent

works, weaken the validity of parameter estimates and consequently reduce the model merit.

Several approaches have been offered to provide assessments and understanding on the sound-

ness of the estimated parameters, e.g., [13, 14, 19]. However, in fact, the booming works on

mathematical models in biological and medical research over the last years have been accompa-

nied with a disproportionately low amount of assessments on parameter validity (Fig 1). This

quantitative recapitulation of biological parameters without a doubt has raised concerns in the

scientific community, provoking questions on the appropriateness of the approach.

To keep modelling biological systems from being mistrusted, an important step is to recog-

nize potential sources of error and to assess them in publications. This practice will not only

increase the parameter credibility but also save the future works from repeating the same mis-

takes. In this paper, numerical simulations of a popular mathematical model in viral infection

research are used to exemplify various sources of error that exist even when a correct and

structurally identifiable model is being used to fit designated data. Thus, this paper provides

different angles of the limitations in quantifying biological parameters in mathematical model-

ling. The results are entrusted to foster rich conversations in the scientific community towards

efforts in posing good practice guidelines; and hopefully, to bring changes in the school of

thoughts of mathematical modelling.

Materials and Methods

Studying sources of error from real experimental data can be debatable [26] as it limits the abil-

ities to examine a key issue being studied in isolation from confounding factors. Therefore, a
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typical mathematical model structure was used to generate synthetic experimental data in vari-

ous scenarios that resemble data in practice. Each scenario was designed to address a particular

source of error while other potentially influential factors were kept under control. Parameter

estimation procedures were then applied to recover the model parameters, isolating the impact

of each factor on the parameter estimates. The errors of the parameter estimates were evalu-

ated in terms of differences between the estimated values and the original simulation

parameters.

To this end, the target-cell limited model presented in [27] was adopted owing to its role as

the core component of more than a hundred publications in virus research, e.g., influenza [11,

21, 22, 27–30], HIV [31–34], and Ebola [35] among others [5]. The model includes three com-

partments: uninfected cells (U), infected cells (I), and viral load (V). It consists of four parame-

ters with partially observable dynamics, i.e., only the viral load dynamics is measured. The

model reads as follows

dU=dt ¼ � bUV; ð1Þ

dI=dt ¼ bUV � dI; ð2Þ

dV=dt ¼ pI � cV; ð3Þ

where the parameters to be estimated from experimental data are β, δ, p, and c, which repre-

sent the rates of effective infection, infected cell death, viral replication, and viral clearance,

respectively. Structural identifiability analyses of the model have shown that the four model

parameters can be identified if initial conditions are known [9]. In this model, virus infection

is limited only by the availability of the uninfected cells. The uninfected cells are infected by

the viruses and become infectious, consequently, these infectious cells are able to release virus

particles.

Influenza A virus (IAV) infection dynamics data were considered as reference because of its

acute progression nature. It has also been described and modelled extensively [4]. Simulation

Fig 1. Trends of applied mathematical modelling in biological and medical research over the last decades. ODEs: papers that used ordinary

different equations. The data were queried directly from PubMed Central (PMC) database (see S5 Text). The curtailment in the recent years is due to

the embargo period of publishing to PMC database [25].

doi:10.1371/journal.pone.0167568.g001
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scenarios were differentiated in number and spacing of sampling time points, number of repli-

cates per time point, and whether a certain experimental setting is known. The reference

parameters were chosen to have synthetic data that closely resemble typical experimental

observations. In particular, iav infection kinetics comprises a quick viral replication and a peak

around the 2nd and 3rd dpi [3, 4, 21]. The viral load stays in a plateau shortly before it declines

to an undetectable level below lod at day 7–12 onwards [3, 4, 21]. The half-life of infected cells

(δ = 1.6) was assumed shorter than that of healthy epithelial cells [36]. The viral clearance rate

(c = 3.7) was approximated to that presented in [37]. The remaining two parameters were cho-

sen such that the viral load exponentially increases and peaks at 3rd dpi then declines to the

undetectable level at 9th dpi, i.e., β = 10−5, p = 5. Unless stated otherwise, the initial number of

uninfected cells, infected cells and virus inoculum are assumed known with U0 = 106, I0 = 0,

and V0 = 10, respectively. To reflect the lod, generated data points that are smaller than 50

pfu/ml were removed. The measurement error is assumed to be normally distributed on log

base ten, i.e., *N(0, 0.25) unless otherwise stated. Fig 2 visualizes the two examples of the gen-

erated data that mimic a realistic and an idealistic situation. Outlines of the detailed variations

of the generated data are shown in Table 1.

To illustrate the error of the recovered parameter estimates, their profile likelihood [13],

bias, and variance were computed. In this paper, parameters profiles are used to show if a

parameter was identified without error. Each scenario was simulated with a large number of

times to compute the bias and the variance [38] of the estimator. Posterior samples [39],

weighted bootstrapping samples [40], and the confidence interval based on the approximate

observed Fisher information [41] are used to express uncertainty measures where relevant.

Simulations were performed using R 3.0.2 [42] and its provided packages when available, oth-

erwise the computations were done with self-written R code.

Fig 2. Examples of generated data of iav. Left: A realistic data set with five replicates per time point and measures at irregular time points.

Right: An idealistic data set with thirty replicates per time point and measures every three hours. The measurement errors are assumed

following N(0, 0.25), N(0, 0.01) on log base ten scale for Case 1 and Case 2, respectively.

doi:10.1371/journal.pone.0167568.g002
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Results

Choices of initial conditions skew parameter estimates

Generally, the model’s initial conditions can be included in parameter estimation procedures

as unknown parameters. However, this can be intractable as more nuisance parameters are

involved in the estimation routine. An appealing approach is to fix initial conditions and esti-

mate only the model parameters, e.g., [3, 21, 27]. In the target cell model, it is reasonable to

assume that the number of infected cells at the beginning of infection is zero. However, the ini-

tial number of target cells and inoculum are experiment-dependent and can only be roughly

approximated, e.g., initial inoculum had been chosen as half of lod [45].

To isolate the effect of initial conditions on parameter estimates, an idealistic scenario was

generated (Fig 2-Case 1, Table 1.a) and the model was fitted with the de algorithm as described

in S1 Text. When the correct initial conditions of the model were used, the de algorithm

returned the exact values of the parameters (S1 Fig). Afterwards, we varied the initial value of

each component in the model and re-estimated the parameters and the corresponding profile

likelihood. Because the data and the estimation algorithm did not changed, any error emerging

in the parameter estimates can be attributed solely to the changes in the initial conditions. The

tested values of the initial conditions were chosen to reflect biological range and its uncertainty

in practice, i.e., the initial viral load were under the lod while the number of the initial target

cells were about 107 (Fig 2). Simulation results show that any deviations, even those that seem

negligible, result in erroneous parameter estimates (Fig 3). Arbitrary choices of the initial viral

load lead to very different estimates of essential viral infection kinetics parameters, e.g., both

the replication rate p and the viral clearance c were estimated six times higher than the true

value when fixing the initial viral load at half lod. Furthermore, subjective choices of model ini-

tial conditions result in flatness in the profile likelihood and shift the minimum in the parame-

ters space. Note that the cost function values, i.e., rmse in this case, of different parameter sets

are still almost identical.

Table 1. Summary of different simulation settings.

Illustrating error in Time scheme* Replicates** Noise*** Initial condition Algorihtms

a. Initial conditions t3 30 N(0,0.01) Vary DE [43]

b. Measurement error t3 30 Vary Fixed DE [43]

c. Effect of time scheme Vary 10 N(0,0.25) Fixed L-BFGS-B [44]

d. Effect of number of replicates t24 Vary N(0,0.25) Fixed L-BFGS-B [44]

e. Algorithms tn1 5 N(0,0.25) Fixed Vary

f. Robust estimation t24 10 N(0,0.25) Fixed Vary

g. Polynomial estimate of V0 Vary Vary N(0,0.25) Not used GAM [38]

Parameters Reference Lower bound+ Upper bound+

β 10−5 10−7 10−3

δ 1.6 10−2 102

p 5 100 102

c 3.7 10−1 102

Initial condition U0 = 106 V0 = 10 I0 = 0

*t3 to t24 indicate regular sampling time in every 3 to 24 hours; tn1 indicates sampling time similar to that of [11], i.e., at day 1, 2, 3, 5, 7, 9, tn2 is t24 without

measurement at the peak day (3rd) and the endpoint (8th);

**per time point;

***on log 10 scale;
+for Differential Evolution (DE) algorithm and L-BFGS-B [44].

doi:10.1371/journal.pone.0167568.t001
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Smoothing methods provide efficient ways to illustrate data dynamics. More importantly,

they are free from the straitjacket of distributional assumptions and model structure [46]. As

such, smoothing techniques could be potentially useful in providing estimates for missing data

points and assisting the model parameter estimation. In this context, we tested the General

Additive Model (GAM) [38, 47] to extrapolate the initial viral load value in numerous scenar-

ios with a thousand simulations each. Each scenario was a combination of a sampling time

scheme and a number of replicates per time point (Table 1.f). Simulation results show that

GAM returns estimates for V0 ranging from 4 to 25 (S3 Fig). Although the range of estimated

values is close to the reference value (V0 = 10), this approach may not sufficiently contribute to

solving the problem of initial conditions and the subsequent error in parameter procedures.

Measurement error impairs the parameter estimates

The previous scenario assumed virtually no measurement error whilst experimental data in

practice can often be seen to vary in one to three orders of magnitude, e.g., see [11, 21, 48].

This is a fundamental barrier in learning from experimental data which will likely not be over-

come in the near future. In this context, varying the imposed measurement error of synthetic

data and profiling the parameters can provide useful hints on the possible influence of mea-

surement error on parameter estimates. Using the correct initial conditions, an idealistic data

set with a large number of replicates and dense sampling time was developed to isolate the

effect of measurement error on the accuracy of parameter estimates (Table 1.b). Parameter

estimation was done with the de algorithm as it had recovered the exact parameters when

there were minimal measurement errors (S1 Fig). As expected, the results show that the esti-

mates drift away from the reference value as the measurement errors increase (S2 Fig). More

importantly, increasing the measurement error brings in more flatness to parameter profiles,

implying difficulties in estimating parameter values with accuracy.

Data asynchrony generates overlooked measurement error

Experimental data are usually taken for granted as it is observed timely. However, due to dif-

ferent reasons, e.g., host factors, experimental settings, measurement techniques, the observed

data are likely to become asynchronous. In such situations, measurements recorded at one

time point are at best an aggregate measure of the neighbour period.

Fig 3. Parameters profiles in different initial conditions. The vertical dashed lines indicate the reference values, the triangles are the point

estimated for the corresponding initial condition. The data include thirty replicates per time point with minimal measurement error, samples are

collected in every three hours during 12 days of the experiment.

doi:10.1371/journal.pone.0167568.g003
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The problem stated above can be coined the same as Berkson error type in statistics, where

reported measurements are deviations of unknown true values [49]. Let t denote the real time

point when an observed value actually happens; the time point will be instead recorded as

t� ¼ t þ v; v � Nð0; s2
t Þ, where v is an unknown time shift. This shifting could be attributed to

the differences in subject-specific responding time to a stimulus and its strength, e.g., infection

and the virulence of a virus strain. Furthermore, it is practically not feasible to infect all experi-

mental subjects at the same time or to harvest all required replicates at once. For instance, sub-

ject one (Fig 4-A) for unknown reasons has ten hours delay in response to infection, but it is

harvested at day first in the experimental time scale. This shifting underestimates the viral load

on the first day by one order of magnitude.

By and large, the asynchrony leads to data with significant variations even in the absence of

measurement error (Fig 4-B). To our knowledge, the scope of this problem has not been

addressed or discussed in mathematical modelling works.

Simulations and extrapolation approaches had been shown to be an intuitive way to cope

with Berkson error type in bioassay non-linear models [50], and seems to be a promising

approach in dealing with data asynchrony in this context. We adapted the approach in an

attempt to account for the data asynchrony problem as presented in S4 Text. However, apply-

ing simulation steps resulted in a non-linear pattern of parameter estimates (S4 Text). Conse-

quently, it is not possible to make a proper extrapolation to estimates where the parameters are

theoretically free from data asynchrony. This result opens a new challenge in mathematical

modelling especially for biological processes with fast dynamics.

Sparse and scarce data aggravate the parameter estimates

Data sampling in experimental settings is laborious and costly, consequently, experimental

data are usually sparse and scarce. In iav, for example, the viral load had been measured in

Fig 4. Examples of asynchrony problem. The dotted curve is the true kinetics, dots are data points. (A) Ten subjects with measurement error and

asynchrony; red points are the observed data; black points are the actual time the measurement should have represented; arrows indicate directions of

time shift; (B) Generated asynchrony data in the absence of measurement error.

doi:10.1371/journal.pone.0167568.g004
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time intervals as short as eight hours [48] up to four days apart [51]. In each time point, there

could be only a single replicate [52, 53] or up to sixteen replicates in rare cases [51]. In this con-

text, investigating the impact of different data sampling schemes on parameter estimates pro-

vides further angles on how prone to error the parameter values can be in practice.

To explore the impact of the sampling time scheme in more practical settings, scenarios in

which the data are collected at various time intervals were generated, assuming ten replicates

per time point with realistic measurement errors (Table 1.c). For each scenario, the estimation

using the de algorithm was repeated on a thousand generated datasets to calculate bias and var-

iance. Unsurprisingly, the parameter estimates variance increases as the sampling time gets

sparser (Fig 5A–5D). Bias-variance of both parameters p and c escalates from 16h time scheme

to 20h time scheme. It can be observed in Fig 5 that more precision is obtained by increasing

the sampling time frequency, but little is gained in parameter accuracy. The practical experi-

ment sampling time tn1 (6 time points and 5 replications) and tn2 (sampling every day but

missing the peak day and last time point) manifest the highest variance (Fig 5).

Analysis of the number of replicates per time point was also examined in a similar fashion.

The every day sampling scheme (t24) was chosen to see if the estimates could be improved by

changing the number of replicates per time point (Table 1.d). As expected, the variance of most

parameters increases when the number of measurements per time point is reduced, as well as

the bias (Fig 5E–5H). There is not much gain in parameter accuracy as the number of replicates

per time point roughly doubles from 13 to 30, and even less so the parameters β and δ.

Experimental design exhibits a strong influence on the magnitude of the bias, i.e., varying

either the sampling time or the number of replicates per time point yield steep changes in bias

magnitude. It seems that experimental design rewards more accuracy in parameter estimates

by sampling more frequently rather than sampling more extensively (Fig 5).

Fig 5. Sampling time scheme and parameter bias-variance. Top: t3 to t24 indicate regular sampling time in every 3 to 24 hours respectively; tn1

indicates sampling time similar to that of [11]; tn2 is t24 without measurement at the peak day (3rd) and the endpoint (8th). Ten replicates were

generated per time point. Each scenario (point) is the result of 1000 simulations. Bottom: The every day sampling scheme (t24) is used.

doi:10.1371/journal.pone.0167568.g005
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It is worth noting that the examples thus far have shown that some model parameters were

always estimated with larger error than the others given the same context (Figs 3, 5 and S2

Fig). This underlines the discrepancy of parameter accuracy level in a model, i.e., differences

of parameter roles in a model lead to different levels of parameter accuracy.

Parameter estimation algorithms agree on erroneous estimates

Thus far the de algorithm has shown that it can recover the exact parameters in an idealistic

case. However, using a wrong assumption for the model or poor experimental data can both

drive the algorithm to the wrong estimates. With the progress in parameter estimation tech-

niques these days, it would be intriguing to know whether there is an algorithm that can

recover more accurate estimates given a realistic experimental data set. It has been shown that

there is not a definitive algorithm that is recommended for all situations [54]. To this end, we

challenged the state-of-the-art algorithms to estimate the four model parameters in a practical

context (Fig 2-Case 1). We assume that the initial conditions are known to make the parame-

ters structurally identifiable [9] (Table 1.e). The tested algorithms include a box-constraint

local estimation algorithm, i.e., L-BFGS-B) [44], a global stochastic algorithm i.e., Differential

Evolution (DE) [43], and a Bayesian sampling approach, i.e., Adaptive Metropolis-Hasting

(MH) [55]. Maximum likelihood estimation (MLE) and least square (LS) estimation were con-

sidered where relevant to reflect their usage in practices. To avoid imposing subjective bias in

favour of one algorithm, the algorithms were supplied with their recommended settings (S1

and S2 Texts).

Simulation results show that the algorithms return relatively similar, whilst inaccurate

point estimates of the parameters, e.g., the two parameters p and c are distanced by one order

of magnitude from the correct ones (Fig 6). Interval estimates of the three algorithms cover

similar ranges that spread up to two orders of magnitude. Good interval estimates can be

obtained only for the parameter δ. Note that the bootstrapping samples exhibit multi-modal

curves, implying there there is at least one outlier in the used data [56]. Given the same advan-

tages, the intensive estimation processes do not reward better estimates, i.e., the L-BFGS-B

converged in a few minutes, the mh took twenty minutes to converge to a stable distribution

(S2 Text) and the bootstrapping with the de algorithm took a day on a high-performance com-

puter with parallel mode enabled (S1 Text).

Fig 6. Parameter estimates using different algorithms. The data are collected similar to [11] at day 1, 2, 3, 5, 7, 9, five replicates per time point. MH:

Metropolis–Hasting estimates are presented as blue histograms of posterior samples; L-BFGS-B: local optimization and confidence intervals

estimated with approximate Fisher information are presented with red square points and bars; DE: point estimates of the global optimization algorithm

Differential Evolution and weighted bootstrapping samples are presented with black triangles and curves. The vertical red dashed line is the reference

value.

doi:10.1371/journal.pone.0167568.g006
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The estimations above were conducted in very favourable conditions that are unlikely to

occur in practice, i.e., correct model of the observed data, known initial condition values, real

parameter values are in the ranges of searching parameter spaces. Even with those advantages,

the parameter values are risky to be interpreted, e.g., the viral replication rate (p) can be recog-

nized as much as one hundred copies per day with strong supports from the interval estimates

of different algorithms. Certainly, expecting more accurate estimates in practice are rather

overoptimistic, especially when most often none of the above advantages exist in practice. Not-

ing that the same settings for the de algorithm has been shown to be able to recover the exact

parameters in an idealistic data set (S1 Fig) and the mh algorithm had converged to a stable

distribution (S2 Text). In addition, a test for different combinations of de’s algorithm parame-

ters was conducted showing that tuning these DE algorithm’s parameters did not improve the

rmse (S4 Fig). Thus, it can be inferred that the main force that has driven algorithms to the

wrong estimates was the poor experimental setting.

This example also suggests an influential role of outliers in estimating mathematical model

parameters. Sources of outliers data could be merely originated from measurement errors or,

in fact, come from a different generating mechanism. Robust correction is a popular approach

to scale down the influences of those data points by assigning them lesser weights in the opti-

mization process and is believed to reduce their impact on parameter estimates [57]. To test

this approach in a model based on ode, thousands of synthetic data sets with outliers were gen-

erated. Then the estimation procedures with and without correction for outliers were applied

to each of the data sets (S3 Text, Table 1.g). The results show that correction for outliers in this

model did not improve the accuracy of the parameter estimates (S3 Text) while the computa-

tional cost increased as several rounds of optimization may be needed to achieve stable weights

in robust estimation.

Discussion

Mathematical modelling research comprises several disciplines with mutual concepts,

approaches, and techniques. Significant concerns about the validity of parameter values had

emerged when a majority of modelling works failed to mention the risks of errors in the

parameter values while trying to extract biological meaning from it. Throughout this paper, by

presenting numerical examples and addressing their implications, we explored how error-

prone the parameter estimates are in everyday practices.

It is a catch-22 situation when the way we express a parameter in the model governs its own

accuracy. The results show that given the same context, there are model parameters which can

be estimated with less error while the others cannot. This reflects the reality that the corre-

sponding component of a parameter in the model is less important in the dynamics. To pro-

vide assessments in this aspect, one can head for a global sensitivity analysis approach [58, 59].

However, in biological systems, one can expect joint effects of parameters on the system’s out-

put [14]. This leads to situations in which an inaccurate set of parameters generates the same

dynamics as the correct one. In this case, the estimated parameter values need to be taken with

caution as they are a possible solution in a pool of model solutions. Altogether, in the worst

case, the model structure alone already hinders the parameter accuracy, making the interpreta-

tion of the parameter values questionable. Reporting assessments of model parameters sensi-

tivity, parameters correlation and identifiability, e.g., [14, 35], can avoid the model results to be

over-interpreted.

Leaving out the validity of a model to represent a certain phenomenon, parameter estima-

tion of a correct model with known parameters and fabricated data exhibited several short-

comings. Each algorithm has per se a number of parameters as well as configurations that are
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required to be specified by the user. The way we choose these settings may directly affect the

estimation results. For instance, algorithms might be trapped in a local optimum and this can

be tested by tuning the algorithm. Although assessing this aspect is beyond the scope of the

work proposed here, simulation results support that the recommended setting is among the

best ones for the DE algorithm (S4 Fig). That is why all the algorithms configurations were set

based on the literature recommendations as described in S1, S2 and S3 Texts. In addition, test-

ing different algorithms for a study case can help to find out if one algorithm was trapped in a

local minimum. However, even in ideal conditions, our results show that different algorithms

returned erroneous estimates. Note that the model parameters in the tested situation were set

to be theoretically identifiable. This result poses a big question mark on the validity of mathe-

matical model parameters in practice, where the models are more complex but the known

model conditions and experimental data are limited.

In accordance with [54], we observed that there is not a conclusive method for parameter

estimation. Advanced Bayesian sampling techniques have been developed recently [60], how-

ever, these are neither practical to implement in complex mathematical models nor beneficial

for parameter accuracy but can serve to explore the posterior distributions. In this family, the

Adaptive mh algorithm [55] seems more practical and less dependent on model complexity

but it lacks dedicated resources for mathematical modelling (S2 Text). The bootstrap estimates

exhibited its shortcoming when the data contained outliers and required more work in model-

ling context. An example of tackling the outliers based on robust correction approaches also

did not show any improvement in parameter accuracy compared to the least square estimation

(S3 Text). By and large, one should not expect the power of innovative fitting algorithms to

handle sparse and scarce data and to return trustworthy estimates.

Parameters have been deemed reliable when parameter profiles exhibit convex shape [13,

35]. However, our results show that reaching the minimum of the parameter profile curve

does not imply that the estimate is accurate (Fig 3). The results show that the revealed parame-

ters are noticeably different from the simulated values regardless that the optimization algo-

rithm has successfully found the minima on the parameter profile curves. Thus, one should

take this convergence criterion with caution when attempting to extract biological informa-

tion, even if one’s favourite algorithm works.

In experimental settings, several sources of errors exist that are difficult to overcome. In the

target cell model, for example, it is not an easy task for experimentalists to define the exact ini-

tial conditions even with the advance of laboratory devices. In contrast, mechanistic models

work with a relatively high precision level. This is a straitjacket for all modellers. Working with

assumed ode model initial conditions might be the first choice and could be a valid one if the

aim is not biological parameter quantification. This approach reduces the number of parame-

ters to estimate in the shortage of data and may hold up in model prediction contexts. How-

ever, our results show that the estimates went wrong with seemingly reasonable choices of

initial conditions in an idealistic experimental data set (Fig 3). Reporting biological parameters

from a mathematical model should incorporate the uncertainty assessment regarding the ini-

tial conditions used, for example, a sensitivity analysis with respect to initial conditions.

Smoothing techniques are attractive in mathematical modelling as they can provide a

generic portrayal of the dynamics without knowing the underlying mechanism. For instance,

the fractional polynomial model was used to estimate the initial viral load [35]. The generalized

smoothing approach and local polynomial regression have also been proposed for estimating

parameters [61, 62]. However, there is a caveat observed in this paper when modelling with

extrapolated data that is most likely to exist in others. Our example of using smoothing tech-

niques to estimate the initial viral load showed that the sparser data tend to have the lesser bias

in extrapolating the initial viral load (S3 Fig). All sampling time schemes that collect data
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regularly in less than 24 hours exhibit a consistent positive error and vice versa. This can be

attributed to the fact that all the measurements below lod are removed when generating the

data to reflect the undetectable level in practice. The loss of information from those data points

under the lod in combination with measurement errors makes it more likely that the observed

data at the early, as well as the later time points, of the dynamics could be observed higher than

it is. Accordingly, making extrapolation to the time point zero, or to the latest time points can

result in an overestimation. This result suggests that fitting the model to a smoothed line could

potentially skew the parameter estimates.

We introduced an abstraction of the data asynchrony and studied its impact on experimen-

tal data which, ultimately, affects the parameter estimates. To the best of our knowledge, this

issue has been widely ignored in mathematical modelling. Segregating the measurement error

and the errors induced by asynchrony seems impossible. A logical approach is to simulate the

amount of time shift and examine its effect on model parameters. In S4 Text we presented an

attempt to deal with data asynchrony by simulation and extrapolation to facilitate the conver-

sations in the field. However, further efforts are needed to resolve or, at least, to account for

the impact of the asynchrony in mathematical modelling results.

Simulation results show that insufficient data lower the quality of the parameter estimates.

In contrast, it is not necessary to collect data extensively, but rather rationally to reduce the

error. An experimental design approach suggesting that accurate parameter estimation is

achievable with complementary experiments specifically designed for the task [63, 64]. A some-

what simpler version of this idea is that reducing error in parameter estimates can be achieved

by fully measuring the model components [23]. Altogether, this supports the fundamental idea

as shown in our examples: the primary source to improve the quality of parameter estimates is

additional data, in particular, collected in a way designated for a modelling purpose.

The scientific community can actively benefit from an advanced understanding of the

sources of error. The purpose of spotting these sources is to avoid or at least to recognize them.

Efforts in dealing with errors in parameter estimation shall be documented in publications

with mathematical models to strengthen and support further development in the field. There

are rooms for further refinement of estimation methodologies to minimize the risk of report-

ing erroneous estimates and different types of measurement errors in experimental studies.

Above all, however, there is a need to unify the efforts in modelling practices, such as develop

good practice guidelines for reporting mathematical model assessment results, communicate

the difficulties, and construct a common software library. Ultimately, a reassessment of the

current approach in modelling experimental data might be needed to shape the future research

on a more solid path, maintaining trust in the scientific community of the diligent works in

modelling biological systems.
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S1 Fig. Parameters profiles in an idealistic scenario. The vertical dashed lines indicate the

reference values, the solid circles are the estimated values from Differential Evolution algo-

rithm. The data include thirty replicates per time point with minimal measurement error, i.e.,

*N(0, 0.01) on log base ten, samples are collected in every three hours during 12 days of the

experiment (Fig 2-Case 2).
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S2 Fig. Parameter likelihood profiles in different imposed measurement error. The solid

triangles indicate the reference values, the circles are the estimated values corresponding to

each condition. Parameters are presented in log base 10 scale. The imposed errors are approxi-

mately one to two orders of magnitude of viral load measurements. The profiles lines are stan-

dardized by their imposed measurement error for visual purposes.

(EPS)

S3 Fig. Bias-variance of V0 estimates in different scenarios. Each scenario (point) is the

result of 1000 simulations. The legends t3 to t24 indicate a regular sampling time every 3 to 24

hours; tn1 indicates sampling time similar to that of [11]; tn2 is t24 without measurement at

the peak day (3rd) and the endpoint (8th).

(EPS)

S4 Fig. RMS values versus F and CR parameters combination of de algorithm. Colours indi-

cate the corresponding values of CR. The plus sign indicates the value that is used in this

paper.

(EPS)
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