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’ INTRODUCTION

An effective method for identifying proteins within complex
samples involves multidimensional LC�MS/MS, where pro-
teins are proteolyzed, and peptides are separated by reverse-
phase liquid chromatography (RP-LC) and sequenced by mass
spectrometry gas phase fragmentation (MS/MS). Automated
computer programs are used to analyze the tens of thousands of
spectra that can be generated by a single experiment, bymatching
MS/MS spectra to peptide sequences in protein databases. A
significant problem is how to assemble the information contained
in large numbers of peptide sequences into a final set of identified
proteins.

The task of protein identification is straightforward when
peptide sequences are found only within single protein database
entries (which we will refer to throughout as “proteins”).
However, when a peptide sequence is found in multiple entries,
ambiguities arise about which proteins are truly present. This
problem is greatest with proteomes where paralogous genes and
extensive alternative splicing produce many related proteins
within a database.1 For example, the estimated 20 488 distinct
genes in the human genome2 yield 89 486 proteins in the
International Protein Index (v3.75, Aug. 2010) database,3 which
include splice variants, proteolytically processed proteins, and
protein fragments. Our analysis shows that of the 3.8 million fully
tryptic peptides from this protein database (allowing g8 amino
acids and up to 2 missed cleavages), over 2 million are shared
between two or more proteins. The prevalence of shared
peptides creates a need for computational algorithms that infer

the most likely protein assignments, a process called protein
inference.4

Often protein profiles do not report all possible proteins, but
only the minimal list which best accounts for the observed
peptides (Table 1). The manner in which minimal list proteins
are selected differs between protein inference programs. DTA-
Select identifies proteins using a greedy algorithm,5 and in
ambiguous cases, shows all possible proteins, allowing users to
manually decide between them. ProteinProphet ranks proteins
according to probabilities computed from the number of pep-
tides, confidence in the peptide sequence, and the degree to
which peptides are shared between multiple proteins.6 Proteins
that are “indistinguishable” (i.e., represented by a set of identical
peptides) are assigned equal probabilities. DBParser also uses a
greedy algorithm to rank proteins according to those with the
most peptides.7 Phenyx selects a minimal list of proteins, ranked
by the number of peptides identified and the protein sequence
coverages,8 but differs from other programs by reporting only
one protein entry and accession number (a representative
“anchor” protein), even when two or more proteins are indis-
tinguishable. All of these programs use a “protein-centric”
approach ofmatching peptides directly to protein database entries
and reporting peptides within the context of proteins (Figure 1a).

In 2004, we proposed an alternative strategy for protein
inference, named IsoformResolver, which generates a list of
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nonredundant peptide sequences, and then matches each pep-
tide to all protein entries which contain that sequence.9 Thus, the
approach is “peptide-centric” because the observed peptides are
directly referenced against a peptide database (Figure 1b). This
strategy has the advantage of more readily assessing the ambi-
guity in matching peptides to proteins that share peptide
sequences in common. Peptides are output within the context of
all possible proteins from which they can derive.

In this study, we describe the IsoformResolver algorithm in
detail for the first time, and demonstrate the advantages of using
peptide-centric protein grouping methods to address problems
in protein inference for large data sets. We demonstrate that
protein inference increases the variability of proteins between
similar data sets (“volatility”), and show that protein inference
methods yield significant volatility when reporting proteins
separately, which is solved by peptide-centric protein grouping.
A compare profile feature of IsoformResolver allows results from
many protein profiling experiments to be analyzed, by first
performing inference across all experiments pooled together

and then reporting spectral counts from individual experiments
in an easily viewed format. Finally, we compare IsoformResolver
against other protein inference programs and show that the most
important factor influencing agreement between different pro-
grams is how they treat indistinguishable proteins. Advantages of
IsoformResolver are: (i) its protein grouping methods, which
allow concise display of proteins including all possible candi-
dates, (ii) its ability to display related proteins adjacently in a
protein profile and compare proteomics data sets analyzed at
different times and using different software, (iii) its facile
integration of label-free quantification by spectral counting into
protein sets, and (iv) its ability to compare results from multiple
large-scale data sets.

’METHODS

Data collection and peptide identification
LC�MS/MS data sets used in these studies were collected on

human melanoma and erythroleukemia cell lines and summarized

Table 1. Terminology

All possible proteins The complete collection of proteins from which MS/MS observed peptides could be derived.

Minimal list proteins The smallest number of proteins from which MS/MS observed peptides could be derived.

In silico-derived (ISD)

protein groups

The set of all proteins in the protein database clustered by having one or more peptides from an in silico digest

of that protein database in common.

MS/MS-derived (MSD)

protein groups

The set of all possible proteins clustered by having one or more observed peptides in common.

Primary protein Within an MSD protein group, a protein which has been inferred to be in the minimal list.

Secondary protein Within an MSD protein group, a protein which may be present, but which has been inferred to not be in the minimal list.

Shared peptide A peptide which matches two or more protein entries in a protein database.

Bridge peptide A peptide which matches two or more distinguishable primary proteins.

Figure 1. IsoformResolver uses a peptide-centric strategy for protein inference. (a) In a conventional protein-centric approach, observed peptides are
searched within a protein sequence database. Protein-centric protein groups replicate peptides when those peptides are found in more than one protein.
(b) In the peptide-centric approach, a database consisting of nonredundant peptide sequences is generated from a protein sequence database, where each
peptide is matched to all proteins containing the peptide sequence. Observed peptides are matched one-to-one against the list of nonredundant peptide
sequences in the database. This allows easy clustering of protein groups that share peptides in common.
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in Suppl. Table S1 (Supporting Information). Samples were
proteolyzed with trypsin as described,9�11 and fractionated by
reversed-phase HPLC coupled to an LTQ/Orbitrap mass spec-
trometer (parent scan 475�1600 m/z). DTA files representing
MS/MS spectra were generated using BioWorks XCalibur v.3.0
software and concatenated into MGF files using in-house soft-
ware. DTA files were searched by Sequest12 specifying carbami-
domethylated cysteine and up to two missed trypsin cleavages.
Parent ion tolerance was set to 1.2 Da or 50 ppm (specified in
Suppl. Table S1) and fragment ion tolerance to 0.8 Da. MGF files
were searched using Mascot v.2.2 (Matrix Science,13) using the
same parameters, and Mascot results were parsed using the
Mascot parser (http://www.matrixscience.com/msparser.html).
Decoy versions of databases were constructed by reversing each
protein sequence from normal databases, which were then
searched separately or as a target-decoy database.14,15 Peptides
accepted when scores were above thresholds corresponding to
1% false discovery rate (FDR=FP/(FPþTP)). Peptides were
also filtered for physicochemical properties, including peptide
size, likely missed cleavages,16 and mass accuracy (observed
minus predicted between �5 ppm and þ10 ppm). Peptides
were also supported by similarity scoring between observed MS/
MS and spectra simulated frompeptide fragmentationmodels17,18

implemented by Manual Analysis Emulator (MAE).19

IsoformResolver Protein Inference Software
IsoformResolver is a Perl program that uses as input one or

more files containing validated peptide spectrum matches and
generates a protein profile displaying all identified and inferred
proteins (Figure 2). For protein information, IsoformResolver
accepts any FASTA or EMBL DAT formatted protein databases.
Prior to IsoformResolver execution, these protein databases are
reformatted into a peptide-centric database, consisting of map
files that associate peptides with proteins from which they can be
proteolytically derived. This is done once per protein database
and requires specifying a protease, number of allowable missed
cleavages, and a minimum peptide length. During IsoformRe-
solver execution, validated peptide spectrum matches are input,

using the file format shown in Suppl. Figure S1 (Supporting
Information). Peptides not found in the peptide-centric data-
base, such as semiproteolytic and nonenzymatic peptides, are
searched for within the protein-centric database, and matched
to the proteins from which they derive and to the MSD and
ISD protein groups to which the proteins belong. Peptides,
even semi- and nonproteolytic, are included in all sections of
IsoformResolver output and included in spectral counting.
Peptide-centric database files have been constructed and tested
for use with many proteases including ArgC, LysC, Trypsin,
AspN, and can be constructed for any protease with cleavage
specificity. In addition, we have constructed and tested peptide-
centric database files with combined ArgC þ LysC þ trypsin
cleavages. ISD reformatted datafiles can be constructed from any
protein database. The impact of the peptide-centric database will
be higher as the number of shared peptides increases. Thus, while
ISD protein groups show some benefit using UniProt Sprot,
which has a relatively low number of shared peptides, the impact
is higher using Sprot/Trembl/Splice variants, a database with an
even greater percentage of shared peptides than IPI.

IsoformResolver utilizes two types of protein groups—
in silico-derived (ISD) protein groups and MS/MS-derived
(MSD) protein groups. ISD groups are constructed using all
peptides derived from in silico proteolysis of a protein database.
Using the peptide to protein mapping from the peptide-centric
database, proteins are then clustered together whenever they
have a peptide in common. Resultant ISD groups are assigned
group identifiers and the mapping of proteins to these identifiers
are stored in a text file for rapid access during IsoformResolver
execution. MSD protein groups are constructed in an identical
way, but using different sets of input peptides, consisting of
sequences identified from the MS/MS and validated by thresh-
olds or other means. The list of all possible proteins for the
observed peptides is obtained by matching peptides to the
precalculated peptide-to-protein mapping from the reformatted
protein database. These proteins are clustered whenever they
have an observed peptide in common, and the resultant protein
groups are then assigned an MSD group identifier. MSD groups
thus contain only peptides and proteins which were observed in
the MS/MS experiment, while ISD groups contain peptides and
proteins from the entire protein database, even when they were
not observed.

Protein inference is performed on each MSD protein group
separately, considering each peptide equally plausible by default,
although IsoformResolver can also accept peptide weights using
scores or probabilities. Proteins are designated as primary
through an iterative process, in which a greedy algorithm is used
to select the protein which accounts for the largest number of
peptides within a MSD group (or the highest combined score or
probability), the protein which accounts for the largest number
of remaining peptides that do not match the first protein, and so
on until no peptides remain. All other proteins (which lack
distinguishing peptide evidence) are designated as secondary.
Indistinguishable proteins are primary proteins which are identi-
fied by shared peptides that cannot distinguish between the
proteins and are counted as a single protein in the minimal list,
although all protein identifiers are reported.

In addition to the mapping files described above, the peptide-
centric database consists of an annotation file which contains
information on the relatedness of proteins within each ISD
group. Functional relatedness are evaluated: (i) by gene annota-
tion, based on genes (from Entrez Gene, HGNC, Ensembl,

Figure 2. IsoformResolver workflow. IsoformResolver inputs a list of
experimentally observed peptides identified by a search program, as well
as a precalculated peptide-centric database which includes nonredun-
dant peptides, matching proteins, and ISD protein groups. From these
input files, IsoformResolver constructs MSD protein groups, identifies
primary and secondary proteins, and apportions spectral counts.
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VEGA, or H-InvDB), gene clusters (UniGene) or gene location
(chromosomal start location and sense/antisense direction),
(ii) by protein family, based on InterPro, Pfam, PROSITE,
GENE3D, SUPERFAMILY, PANTHER, ProDOM, PRINTS,
and TIGRFAMs databases, and (iii) by GO and other annota-
tions found in the DAT format (e.g., RZPD, UTRdb, SMART,
CCDS, CleanEx). Each ISD group has a unique identifier, and is
annotated to indicate the percentage of proteins in the group
with the same gene, protein family, GO, or other annotation.

Other Protein Inference Programs
Comparisons of IsoformResolver to five other protein infer-

ence programs used the following versions of software. Analyses
with ProteinProphet6 used Transproteomic Pipeline (TPP)
v.3.3.0 (9/25/2007), and v4.3 JETSTREAM rev 0, Build
200908071234 (MinGW) (http://tools.proteomecenter.org/
TPP.php), and were performed using the Mascot option, with
peptide probability cutoff 0.95 and protein probability cutoff
0.50. Analyses with Scaffold v.01_07_00 (described in 20 and
generously provided by Proteome Software) used the combined
Mascot and Sequest option, with peptide and protein probability
cutoffs of 0.95 and 0.50, respectively. Analysis with Panoramics
v.1 (05/2007, described in ref 21), used theWindows executable
provided by the USDA Agricultural Research Service, per-
formed on Mascot search results using protein probability
threshold 0.80. IDPicker v.2.0 (described in refs 22 and 23,
http://fenchurch.mc.vanderbilt.edu/lab/software.php) used pep-
tide and protein probability cutoffs equal to 0.99. The same
Sequest and Mascot results files were used in all analyses, except
for IDPicker where data sets were searched using a combined
target/decoy database. Analyses with Phenyx Public Server and
PhenyxOnline v.2.5 (described in ref 24 and generously made
accessible by GeneBio) used the default threshold cutoff
(Z-score = 5, p = 0.0001, and AC score = 6).

To compare output between programs, peptides from each
program were converted into a common input format, a compare
protein profile was created from all peptides generated by the six
programs, and the output was annotated with proteins identified
by each program. Using IsoformResolver MSD and ISD protein
groups, related proteins from each of the profiles were clustered
together, simplifying the evaluation in cases where proteins were
missed by a profiler or protein variants were identified and
allowing for an easy enumeration of primary and secondary
proteins.

’RESULTS

IsoformResolver: Protein Groups and Report Structure
IsoformResolver precalculates a mapping of all proteins to a

list of nonredundant peptides within a given database (Figure 2),
which identifies all proteins that share peptide sequences. It then
generates a protein profile displaying all identified and inferred
proteins from one or more files of observed peptides. The
peptide-centric algorithm allows two types of protein groups to
be generated. In silico-derived (ISD) protein groups are con-
structed from a protein database, by compiling all peptides
derived from in silico proteolysis (Figure 3a). MS/MS-derived
(MSD) protein groups are constructed in an identical way but
using input peptides identified experimentally fromMS/MS data
sets (Figure 3b). Proteins are then assigned to the same group
whenever they have a peptide in common. For example, in
Figure 3a, proteins_A, _B, _C and _D share peptides and are

therefore within the same ISD group. However, proteins_A and
_B and proteins_C and _D belong to two MSD groups because
not all peptides shared between these proteins are observed.
Because only some of all possible peptides can be detected by
MS/MS, MSD protein groups are strict subsets of ISD protein
groups.

IsoformResolver creates a comma separated values output file
which consists of three sections (Figure 4, detailed output in
Suppl. Figure S2, Supporting Information). Section 1 displays
proteins and peptides within MSD groups, which are in turn
listed together within ISD groups. The output catalogues two
types of proteins: those that pass Occam’s razor test of being
among the smallest number that account for the peptide evidence
(“primary” proteins), and those that do not (“secondary”
proteins). Thus, proteins that account for the greatest number
of peptides within an MSD group, or else have distinguishing
peptide evidence, are primary; all others are secondary. This
nomenclature simplifies, but is nevertheless compatible with, the
six protein inference categories previously described.4,7 Thus,
primary proteins include those that are distinct, differentiable,
indistinguishable, and proteins identified by shared peptides only
when inferred in the minimal list. Secondary proteins include
subset, subsumable, and proteins identified by shared peptides
only when not inferred in the minimal list.4 Primary protein
identifiers are integral numbers (e.g., 1,2,...) while secondary
proteins have alphabetical identifiers (e.g., a,b,...), and common
identifiers indicate connectivities between peptides and proteins.
For example, in Figure 4, peptides_a, _b, and _c, which match
protein_A(identifier 1), will contain “1” in their identifiers.
Peptides_b, _c, which match both protein_A(identifier 1) and
protein_B(identifier 2), contain both “1” and “2” in their
identifiers. Primary proteins that are indistinguishable are
marked with an asterisk, for example, peptide_x matches pro-
tein_C and protein_D, each with the identifier “3*”.

IsoformResolver lists MSD groups in descending order of
peptide counts, reporting the observed mass and mass error for
each MS/MS, and the number of observed charge forms and
highest scores for each peptide, in accordance with reporting
guidelines.25,26 Results from multiple experiments, each contain-
ing one or more LC�MS runs, are displayed in separate columns
and easily compared using a “compare profile” feature (see
below). Section 2 consists of a paragraph summarizing the
number of spectra, peptides, proteins, and protein groups, as
well as the number of proteins supported by different numbers of
peptides. Section 3 summarizes proteins inferred to be in the
minimal list in the same order as Section 1 and is in a format that
is useful for further automation in spectral count analyses.10,27,28

MSDGroups Provide a Complete and Nonredundant Protein
Display

Protein inference can be complicated when peptides are
shared between multiple protein entries. For example, proteins
which are indistinguishable based on the peptide evidence (e.g.,
proteins_C and _D in Figure 4) complicate the protein report,
because the number of proteins in the minimal list (where only
one is counted) differs from the number of primary proteins
(where both are counted). Reporting all indistinguishable pro-
teins (protein_C and protein_D) inflates the protein count over
the minimal list. Selecting one representative protein (protein_C
or protein_D) reports the minimum count accurately, but chooses
proteins arbitrarily. Treating a set of indistinguishable proteins as
one entity with a concatenated name (e.g., protein_C_D) reports
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the correct number and retains information about the protein
identities, but leads to variations in naming between data sets.
Each method reports different protein lists, and each compro-
mises accuracy, especially when comparing results from two or
more protein profiles.

Also important are cases where peptides are shared between
proteins that are distinguishable by the presence of other
peptides. We call these cases “bridge peptides” (Our use of the
term “bridge peptides” is similar but not identical to the term
“razor peptides” (ref 29). The latter refer to peptides which are,
by Occam’s principle, assigned to the nonoverlapping protein
group with the greatest number of peptides. By contrast, bridge
peptides are assigned to protein groups which allow overlapping
proteins, to retain information that the peptide is shared.), which
are shared between primary proteins, and are more problematic
than peptides which are shared between primary and secondary
proteins. This is because when bridge peptides are encountered
by protein-centric inference programs, they are either elimi-
nated from all but one group, or else duplicated and assigned

redundantly to different protein groups. An example is shown in
the report of two primary proteins, where bridge peptides are
replicated and comprise 70% of the peptides for each protein
(Suppl. Figure S3a, Supporting Information). Because each
protein is listed separately in the output, the replicated peptides
may lead to overconfidence in the protein identifications.

Bridge peptides and indistinguishable proteins are a significant
problem in protein profiling. For example, in Data set 1A (Suppl.
Table S1, Supporting Information), 15% of the 3667 minimal list
proteins were linked to others through bridge peptides, 40%were
indistinguishable, and only 25% were distinct. Of the 26 225
nonredundant peptides, 67% matched two or more proteins, 7%
were bridge peptides, and only 33% matched a single protein
entry. Thus, underlying the ambiguity in protein identifications is
the fact that the shared and bridge peptides are a considerable
fraction of total peptides and affect a high percentage of proteins.

These problems are addressed by IsoformResolver’s report
format, which lists proteins with shared peptides together, within
the context ofMSD protein groups. Because primary proteins are

Figure 3. IsoformResolver constructs two kinds of protein groups based on in silico derived and on observed peptides. (a) Peptide-centric database
enables construction of in silico derived (ISD) protein groups, where each ISD group includes proteins that share peptides in common. ISD groups
provide a more stable identifier for proteomics results. (b) Experimentally observed peptides are matched to peptide sequences in the peptide-centric
database, and proteins are clustered into MS/MS derived (MSD) protein groups when they share observed peptides. MSD groups are subsets of ISD
groups and are listed in the output together. Note that peptide_x was not observed experimentally, creating two separate MSD groups within a common
ISD group.
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displayed adjacently when they share peptides, the need to
duplicate bridge peptides and redundantly assign them to different
proteins is eliminated (e.g., Suppl. Figure S3b, Supporting In-
formation). By displaying all possible proteins, MSD groups
allow a user to immediately view the support for inferred pro-
teins as well as alternative but equally likely candidates (Suppl.
Figure S2, Suppl. Worksheet:1.xlsx, Supporting Information).
The nomenclature used for theMSD identifiers allows the different
classifications of distinguishable, indistinguishable, subset, and
subsumed proteins to be readily assessed.

ISD Protein Groups Mitigate Volatility Caused by Protein
Inference

Problems also arise when protein identifications are easily
altered by minor changes in observed peptides, which we refer
to as “volatility”. Volatility reflects a nonrobust quality of
protein inference. Suppl. Figure S4 (Supporting Information)
shows an example of assigning peptides to proteins using a
greedy algorithm, where two proteins are inferred as primary
(IPI00181997.7 and IPI00479677.3), and five proteins are

secondary (IPI00376351.2, IPI00383202.1, IPI00744506.1,
IPI00785128.2, IPI00797783.1). However, in two equally plau-
sible alternative solutions, IPI00181997.7 and IPI00376351.2 or
IPI00376351.2 and IPI00479677.3 could be assigned as the
primary proteins. Here, small changes in observed peptides will
affect which proteins are deemed primary. For example, if
peptide GSL... had not been observed, then IPI00181997.7
would have been inferred as the only primary protein accounting
for all peptides, and IPI00479677.3 and IPI00376351.2 would
have been called secondary. No method of protein inference
obviates this problem, including those which are probability-based,
or those which ignore proteins supported by a single peptide.
Protein Repeatability between Replicate Data Sets. To

quantify the effects of protein inference on volatility, we exam-
ined the repeatability of proteins identified in different data sets,
collected at similar depth or varying depth of sampling. First, we
quantified the degree to which proteins were repeated between
three technical replicate data sets (Suppl. Table S1, Data set 2,
Supporting Information), where peptides identified in any data
set varied due to random sampling by LC�MS/MS. On average
each data set yielded 2922 ( 83 nonredundant peptides
(Table 2), 71% of which were found in at least two data sets
and 48% which were identical across all three data sets. We then
examined all, primary, concatenated, and representative proteins,
evaluating their overlap between replicates. As expected, the
overlap between replicates was generally higher for proteins than
peptides, because each protein was represented by 2.8 peptides,
on average. However, we found that the degree of overlap varied
with each reporting method (Table 2), due to their differences in
how they dealt with indistinguishable proteins.
The overlap was highest when all possible proteins were

compared (82% between two or more replicates, 64% between
three replicates, Table 2a), because none were removed by
inference. In contrast, primary proteins, which listed indistin-
guishable proteins as separate entities and removed secondary
proteins, showed decreased overlap between two replicates
(74%) or three replicates (55%), and tended to select for splice
variants and proteins that shared many peptides. Concatenated
protein identifiers reduced overlap even further (70% between
two replicates; 48% between three replicates). Here, indistin-
guishable proteins were named by concatenated identifiers,
which often overlooked proteins present in common between
data sets (e.g., an identifier ProteinA_ProteinB would fail to
match ProteinB_ProteinC in a different data set, although
ProteinB was common to both). Representative proteins in-
creased their overlap between replicates, because proteins with
the lowest accession number were chosen from among indis-
tinguishable proteins, while information about other possible
proteins was discarded.
Thus, methods which enumerated the most likely proteins

(primary and concatenated) paradoxically led to the lowest
protein repeatability. Similar trends were observed with proteins
identified by two or more peptides (Table 2), indicating that the
effect was not caused by peptide sampling variations or low
confidence protein identifications. We hypothesized that the
effects were instead due to problems introduced by protein
inference.
To test this, we constructed a protein profile using a data set

which pooled the three replicate data sets together (using a two
peptide minimum), then annotated the results by those proteins
inferred when each data set was analyzed separately. Theminimal
list for the pooled data set contained 760 proteins, of which 75

Figure 4. IsoformResolver output. IsoformResolver output is a comma-
separated values spreadsheet file consisting of three main sections.
Section 1 lists all possible proteins present in a data set, organized by
MSD and ISD groups. Proteins inferred as primary are assigned integral
numeric identifiers (e.g., 1, 2...), while secondary proteins are assigned
alphabetic identifiers (e.g., a, b...). Peptides are mapped to proteins,
using concatenated identifiers (e.g., 4_a) when peptides are shared
between more than one protein. Bridge peptides are readily identified as
those which map to two or more primary proteins (e.g., 1_2). Indis-
tinguishable proteins are identified by asterisks (e.g., 3*). MSD groups
are listed adjacently when they occur within the same ISD group, and are
otherwise sorted in descending order by numbers of peptides. Multiple
lists of observed peptides can be displayed in a compare profile mode
(e.g., Expt_1, Expt_2), allowing easy comparison of proteins and
spectral counts between different LC-MS/MS data sets. Section 2
summarizes information on the number of peptides and proteins in
the minimal list. Section 3 displays concise information for all proteins in
the minimal list and, on bridge peptide regions (on separate lines,
marked with concatenated identifiers, e.g., 1_2). Spectral counts for
proteins and bridge peptide regions are listed for each experiment. A
detailed description of the output can be found in Suppl. Figure S2
(Supporting Information) and an entire output file can be found in
Suppl. Worksheet:1.xlsx (Supporting Information).
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proteins were supported by peptides present in only one or two
of the replicates (Table 2, Figure 5a). Thus 685 (90%) of all of
proteins were found in common between replicates, far higher
than the degree of overlap observed when proteins were inferred
from the three data sets independently, regardless of reporting
method. Nevertheless, only 377 (55%) of the 685 proteins were
inferred in all three replicates (89 distinct proteins, 288 in the
same MSD groups), while 308 (45%) proteins differed between
replicates. Therefore, the low repeatability across replicate sets
was mainly due to variability in the proteins inferred from
peptides present in all three sets. In 198 of the 308 cases, the
same proteins would have been identified in each data set, but
were removed because they were identified by fewer than two
peptides (e.g., illustrated in Figure 5b). In the remaining 110
(16%) cases, differences between data sets were due to different
protein identifications, and thus caused by parsimony.
Cases where proteins varied due to parsimony reflected

volatility due to small changes in additional distinguishable
peptides that were present in some, but not all replicates. For
example, in Figure 5c, the presence of peptide EH... in Replicate 3
but not Replicates 1 and 2, led to inference of only one primary
protein in Replicate 3, whereas three indistinguishable proteins
were inferred in Replicate 1 and two indistinguishable proteins
were inferred in Replicate 2. Overall, the inferred proteins showed
greater differences between replicates than the peptides. These
results showed that protein variations are an intrinsic feature of
shotgun proteomics, not only due to variations in peptide sam-
pling, but also because variable protein identifications are exacer-
bated by inference.
We next examined the replicate data sets using ISD protein

groups. When each of the three replicate data sets were analyzed
separately, 1109 or 626 ISD groups were respectively identified
after requiring g1 or g2 peptides/protein (Tables 2). The

overlap in ISD groups between 2 and 3 replicate data sets were 81
and 62�65%, respectively, comparable to the overlap between all
possible proteins, and significantly higher than the overlap
between inferred proteins, regardless of reporting method. Thus,
ISD groups allow greater overlap to compare proteins between
data sets, and therefore offers a more stable view of the protein
profile.

Protein Repeatability between Data Sets Collected at
Different Sampling Depth. Next we examined effects of
protein inference on volatility by comparing data sets collected
at different depths of sampling, comparing data sets of cell lysate
proteins analyzed in duplicate 1D-LC-MS/MS runs (29,907
MS/MS) vs proteins separated by SDS-PAGE followed by in-
gel digestion (252,205 MS/MS) (Suppl. Table S1, Data set 3,
Supporting Information). Prior studies had shown that proteins
identified in data sets at lower sampling depth overlap nearly
completely with those in data sets collected at higher depth.9

Thus as expected, the overlap was high, where 91% of peptides
and 98% of proteins identified in the lower sampling depth data
set were also identified in the higher depth data set (Table 3a).
However, the overlap between primary proteins was only 75%.
To confirm that this variability was due to inference and not to

differences in peptides between the peptides contained in each
data set, we simulated a lower depth data set by truncating MS/
MS spectra with lowest intensity from the higher depth Data set
3. The MS/MS removed were adjusted to yield a remaining
number of peptides similar to that of the lower depth experi-
mental data set (Table 3). Because peptides in the truncated data
set were a complete subset of those in the high depth data set, any
protein variations would reveal effects due only to inference. The
results showed that even when the peptides in the low depth data
set overlapped those in the high depth data set completely,

Table 2. Protein Inference Reduces Protein Repeatability between Replicates

protein reporting method

nonredundant peptides all possible proteins primary proteins concatenated proteins representative proteins ISD protein groups

Proteins identified by g1 peptidea

Replicate 1 2931 3204 2207 1015 1015 896

Replicate 2 2997 3331 2284 1059 1059 933

Replicate 3 2839 3231 2229 1026 1026 902

Total 3989 3972 2936 1418 1298 1109

Present in 2 or more replicates 71% 82% 74% 70% 78% 81%

Present in all 3 replicates 48% 64% 55% 48% 60% 65%

Proteins identified by g2 peptidesb

Replicate 1 2512 2177 1184 596 596 516

Replicate 2 2533 2244 1197 595 595 513

Replicate 3 2384 2127 1120 571 571 494

Total 3390 2675 1519 796 741 626

Present in 2 or more replicates 71% 82% 75% 71% 78% 81%

Present in all 3 replicates 48% 63% 55% 50% 59% 62%

Proteins identified by g2 peptides from pooled replicate data setsc

Total 3479 2791 1507 760 760 656
a Proteins identified by one or more peptides showed low overlap between three replicate data sets, due to the effects of protein inference. Comparing
proteins at the level of ISD protein groups counteracts this effect, and more accurately captures differences between the replicates. bRequiring a
minimum of two charge invariant peptides per protein does not mitigate the protein variation. c Pooling the replicate data sets together results in fewer
proteins in the minimal list. Data for this panel can be found in Suppl. Worksheet:2.xlsx, Supporting Information.
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protein inference decreased the overlap between primary pro-
teins by 21%.
By contrast, ISD groups showed 98% overlap between data

sets collected at lower and higher sampling depth and retained
100% overlap between the simulated and higher depth data sets.
Thus, the mapping of proteins and peptides to invariant ISD
groups added stability to the protein report, bypassing problems
in reproducibility, and thereby counteracting volatility caused by
protein inference.

Compare Profile Feature Optimizes Information Retrieval
from Multiple Experiments

We found that protein inference varied when data sets were
joined in different ways. Often, proteomics experiments involve
comparisons between LC�MS/MS runs (e.g., control vs treated,

differing protocols, chromatographically separated proteins).
The many data sets produced can be analyzed either carrying
out protein inference on each data set separately and then
combining the results to create an aggregate set (“aggregate”
analysis), or by pooling peptides from all data sets together
before protein inference (“pooled” analysis) (Figure 6a).

In order to compare the two approaches, data sets were
collected on cell lysate proteins that were first separated into 33
fractions by strong anion exchange (SAX) chromatography,
followed by proteolysis and LC�MS/MS (Suppl. Table S1,
Data set 1B, Supporting Information). In a first test, proteins
were assembled from data sets of each fraction analyzed
separately by IsoformResolver, which were then joined into an
aggregate profile of 7699 primary (distinct þ distinguishable þ
total indistinguishable) proteins and 4582 minimal list

Figure 5. Protein repeatability is affected by protein reporting methods and volatility. (a) Three pooled replicate data sets analyzed separately showed
varying levels of agreement between identified proteins. Of 760 proteins identified when replicate data sets were analyzed together, 685 (all but 75) were
inferred from peptides present in all 3 replicates, signifying high peptide overlap between data sets. Of these, only 377 (55%) proteins were present in all
three replicates, revealing low protein overlap. (b) Examples of protein variations between replicates introduced by protein inference. Replicate 1 in Data
set 2 shows only one peptide and is therefore not matched to a protein, while Replicates 2 and 3 infer IPI00014264.5 from two peptides. (c) Three of
seven peptides are found in all three replicates, but peptides in Replicate 1 cannot distinguish between IPI00021187.4, IPI00787897.1 and
IPI00788942.1, and peptides in Replicate 2 cannot distinguish IPI00021187.4 and IPI00787897.1. In contrast, peptide EH... identifies
IPI00021187.4 as the sole primary protein in Replicate 3. The full output can be viewed in Suppl. Worksheet:2.xlsx (Supporting Information).
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(distinct þ distinguishable þ minimal indistinguishable) pro-
teins, where the counting excluded redundant cases. In a second
test, peptides from each SAX fraction were combined into one
pooled data set and then assembled into proteins using Iso-
formResolver, yielding 5854 primary and 3270 minimal list
proteins. Thus, the number of minimal list proteins inferred in
the pooled profile was 40% lower than those inferred in the
aggregate profile. The protein overlap was nearly complete, as
only one primary protein observed in the pooled analysis was
excluded from the aggregate analysis. Therefore, with multiple
LC�MS/MS runs, pooling the peptide information before
assembly yielded a more conservative protein count.

How protein inference underlies this effect is illustrated in an
example where 6 observed peptides mapped to 6 possible
proteins (Suppl. Figure S5, Supporting Information). In the

pooled analysis, two primary proteins (IPI00444788.1 and
IPI00025340.3) accounted for all peptides (Suppl. Figure S5a,
Supporting Information). However, in the aggregate analysis, the
number of peptides in each fraction varied, and together inferred
six primary proteins, five of which were distributed in three
indistinguishable sets (Suppl. Figure S5b, Supporting In-
formation). For example, peptides in fraction #22 identified four
indistinguishable proteins (IPI00444788.1, IPI00445123.1,
IPI00456744.1 and IPI00743804.1), while peptides appearing
in fraction #23 identified two indistinguishable proteins
(IPI00444788.1 and IPI00456744.1). Thus, even when the same
peptides were represented, carrying out protein inference on
separate data sets inflated the protein counts compared to
pooling the data sets prior to inference. Such differences were
caused by lower numbers of peptides in each fraction in the

Table 3. Protein Inference Methods Underestimate Overlap between Proteins Obtained from Data Sets with Lower vs Higher
Depth of Sampling

protein reporting method

MS/MS spectra nonredundant peptides all proteins primary proteins representative proteins ISD protein groups

Comparison of lower depth (unfractionated) vs higher depth (fractionated) data setsa

Lower depth data set 29 907 660 3631 2260 941 836

Higher depth data set 252 205 11 112 8502 5064 2402 2098

Overlap (as % of lower depth data set) N.A. 91% 98% 75% 91% 98%

Comparison of simulated lower depth vs higher depth data setsb

Simulated lower depth data set 24 338 3663 3895 2448 1052 935

Higher depth data set 252 205 11 112 8502 5064 2402 2098

Overlap (as % of lower depth data set) N.A. 100% 100% 79% 94% 100%
aUnfractionated lysates are sampled at a lower depth, while fractionated lysates allowed for higher sampling depth. b Lower depth of sampling is
simulated by removing >90% of the lowest intensity MS/MS from the higher depth data set. Even when the peptide overlap between lower and higher
depth data sets is 100%, different proteins were inferred.

Figure 6. Protein inference is affected by joiningmultiple data sets in different ways. (a) In an aggregate analysis, peptides fromLC�MS/MS data sets of
different fractions from a chromatographically resolved sample are first analyzed by inference, then the proteins are combined. In a pooled analysis,
peptides from different fractions are combined prior to protein inference. Pooling peptides and then performing inference yields the simplest solution
with the smallest number of proteins, as shown at the right (Data set 1B), but loses important information when analyzing fractions separately. (b) In a
compare profile, IsoformResolver combines the strengths of pooled and aggregate analyses, by pooling the data sets to identify the minimal list proteins,
and then displaying spectral counts for each individual data set.
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Figure 7. Apportionment of bridge peptides for spectral counting. (a) An example shows 11 peptides observed in data sets of 33 fractions, mapped to
three glucosamine-6-phosphate isomerase/deaminase proteins (GNPDA1, GNPDA2). Four peptides bridge both sets of primary proteins
(IPI00009305.1 and the indistinguishable set of IPI00550894.4 and IPI00744859.1). (b) The spectral count summary shows that bridge peptides
account for nearly half of the spectral counts. Spectral counts for the bridge regions are apportioned to each primary protein, proportional to the spectral
counts for their distinguishing peptides. (c) Using a compare profile to report spectral counts across multiple data sets facilitates evaluation of primary
proteins and apportionment of bridge peptides. Case [i] Bridge peptides track each of two primary proteins across fractions. Case [ii] Bridge peptides
track with and are more accurately apportioned to IPI00002519.1, with minor overlap with IPI00002520.1. Case [iii] Bridge peptides provide evidence
for a protein that likely differs from Bat1 and Ddx39. Case [iv] Bridge peptides track IPI0003964.3 and IPI00012094.1, but are more accurately
apportioned to IPI0003964.3, given low spectral count evidence for IPI00012094.1.Case [v]No bridge peptides were observed in the data set, although
IPI00258833.1 and IPI0295209.5 are related proteins. The fact that these proteins are related would have beenmissed had they not been listed within the
same ISD protein group.
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aggregate analysis, leading to increased numbers of indistinguish-
able proteins. In the pooled analysis, more proteins were con-
verted to distinguishable or secondary proteins, reducing the
indistinguishable proteins and minimizing the number of pri-
mary proteins.

Despite this advantage, pooling data sets discarded important
information about the representation of different proteins across
samples. For example, when chromatographically separating
proteins, it is often useful to know how different proteins vary
in elution, and here, it would be advantageous to analyze each
data set separately. Therefore, IsoformResolver provides the option
of displaying a “compare profile” in Section 3 (Figure 6b), in which
primary proteins are inferred and spectral counts apportioned
using the pooled data sets, while spectral counts are displayed per
individual data set.

An example of a compare profile is shown in Suppl. Figure S5c
(Supporting Information), where the pooled analysis inferred
two primary proteins, and displaying each fraction separately in
the output clearly showed that the two proteins resolved
chromatographically. Peptides in fractions #15�17 best matched
protein_764, while peptides in fractions #22�24 best matched
protein_763 or secondary protein_b. In fact, in fractions
#22�24, support for protein_b over protein_763 was suggested
by the absence of peptide LEE... against the presence of peptides
LSE..., SLS..., SPP... and KLP.... This illustrates the advantage of
combining the peptide evidence with information about chro-
matographic resolution, allowing the user to evaluate cases that
might otherwise have been overlooked. By calculating the most
conservative estimate of minimal list proteins and displaying
related proteins in logical groupings, IsoformResolver allows
spectral count variations between individual data sets to be
readily evaluated. Thus, the compare profile feature of Isoform-
Resolver combines the strengths of pooled and aggregate ana-
lyses, by providing a conservative calculation of proteins from a
pooled analysis and an informative display of results in each
experiment.

IsoformResolver Simplifies the Spectral Count Analysis of
Bridge Peptides

An important approach for label-free quantification of pro-
teins is spectral counting, which sums the total number of MS/
MS corresponding to any peptide in a given protein.27 However,
assigning spectral counts to proteins is complicated when bridge
peptides are shared between two or more proteins in the minimal
list.30,31 This can skew information on relative abundances of
proteins. For example, in Figure 7a, 2 peptides (EAG..., NHP...)
uniquely infer two indistinguishable proteins (GNPDA2) with 9
spectral counts, and 5 peptides (AAG..., DHP..., FFD..., LII..., and
LVD...) uniquely infer one protein (GNPDA1) with 37 spectral
counts. Four bridge peptides (AIE..., EVM..., TFN..., VPT...)
represent an additional 45 spectral counts, and how these are
apportioned can greatly influence the estimated relative abun-
dance of GNPDA1 and GNPDA2. IsoformResolver appor-
tions spectral counts from bridge peptides proportionally to
the spectral counts of nonshared peptides for distinguishable
proteins. In this example, 20% of spectral counts from bridge
peptides were apportioned to GNPDA2 and 80% were appor-
tioned to GNPDA1 (Figure 7b). Similar calculations are used to
apportion nonredundant peptides. Apportioned spectral counts
for bridge and nonredundant peptides are then summarized in
Section 3 of the IsoformResolver output (Figure 4, Suppl. Figure
S2, Supporting Information). We report spectral counts for

distinguishable and bridge peptides separately, as the primary
evidence for each protein. Apportionment of spectral counts
according the number of distinguishable peptides is also included
which can be useful for comparing proteins containing bridge
peptides with those that do not.30,31

Figure 7c shows examples which break down spectral counts
according to SAX fractions, and illustrate how spectral counts for
nonbridge vs bridge peptides can provide information about the
reliability of protein identifications and the presence of related
proteins.Case [i] shows a simple example, where bridge peptides
track two proteins (1009*, 1010) in each of fractions #19�22,
and support the presence of each protein.Case [ii] shows bridge
peptides which match two primary proteins (1065, 1066*) but
track only one protein (1065). In Case [iii], some bridge
peptides appear in fractions #33�39 but track neither primary
protein (363or364), suggesting that they instead correspond to
another protein. Because IsoformResolver reports detailed in-
formation about all proteins and their spectral counts, such cases
can be readily assessed and overlooked proteins identified.

A unique feature of IsoformResolver is that it clusters the
display of proteins based on shared peptides, allowing proteins
related by bridge peptides and belonging to the same MSD and
ISD groups to be listed adjacently. This solves problems caused
by listing proteins separately, which may lead to overconfidence
in protein identifications. For example, Figure 7c, Case [iv]
shows two paralogous proteins from different genes which differ
widely in spectral counts (81 for 121*, 1 for 122*). Redundantly
assigning the 18 bridge peptides to both proteins might create
false confidence for the presence of protein 122*, especially if the
proteins were reported in different regions of the output. By
displaying these proteins adjacently in the output, potential false
positive peptide assignments (e.g., with disproportionately few
spectral counts) and the apportionment of bridge peptides are
readily evaluated. In addition, clustering proteins by ISD groups
allows related proteins to be easily identified. For example, inCase
[v], proteins 1470* and 1290 are paralogs that share amino acid
sequences, but no bridge peptides were observed and the peptides
for proteins 1470* and 1290 were nonoverlapping. Here, protein-
centricmethods would have placed each protein in separate groups,
and the fact that these genes are related would have been missed.
The ability of IsoformResolver to display ISD groups adjacently
allowed these related gene products to be listed together, facilitating
evaluation of their relative abundance by spectral counting.

Proteins in ISD Groups Are Functionally Related and Vary
with Shared Peptide Length

We evaluated whether ISD groups might contain proteins that
share biological function as well as peptide sequence. Functional
relatedness was evaluated in multiprotein ISD groups (i.e., with
two or more proteins), scoring agreement between IPI UniProt
(DAT) andGO database annotations, and requiring one or more
annotation to be shared in common among all proteins within an
ISD group. We assessed first whether proteins within each group
were derived from common genes; second, whether they were
members of a common protein family, although not derived from a
common gene; and third, whether they were functionally related by
GO or other annotations, although not a common protein family.

Of the 10 651 multiprotein ISD groups generated from shared
peptides of 8 amino acids or longer, 7136 (67%) contained
protein members all derived from a common gene (e.g., splice
variants, processed protein forms), 1683 more (16%) contained
members all belonging to a common protein family, and 538
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more (5%) contained protein members sharing GO or another
cross-reference annotations (Figure 8a). Another 929 (9%)
contained members with incomplete annotations; however, the
proteins that were annotated showed complete agreement in
gene, protein family, or other annotations. Thus in 97% of ISD
groups, all protein members that could be evaluated were
functionally related. In the remaining 3%, proteins often appeared
related. For example, one group contained proteins with similar
gene names (CNNM1, CNNM2, CNNM3, and CNNM4, cor-
responding to cyclins M1�M4), even though their annotations
were nonoverlapping. Because gene names do not always report
function, this group was not scored, although its members were
clearly related.

We also examined the frequency with which proteins between
different ISD groups were unrelated. Here, we scored “exclusivity”,

when a group was the only one which corresponded to a
particular gene, protein family, or other cross-reference identifier.
Among the 7136 ISD groups whose protein members unan-
imously specified a single gene annotation, 7041 (99%) were
exclusive. Not surprisingly, protein family annotations did not
show the same degree of exclusivity. Among 5868 groups
whose proteins unanimously specified a common protein
family annotation (4185 also specifying a common gene),
only 1410 cases were exclusive. The results show that proteins
that share even few peptides in common are related function-
ally, and that for the most part, ISD groupings capture all
proteins which are related, while excluding proteins which are
unrelated.

This behavior changed with the length of shared peptides.
Protein groups constructed from shared peptides with minimum

Figure 8. ISD protein groups define functionally related proteins. (a) Proteins show strong functional relatedness within multiprotein ISD groups
(defined by aminimum shared peptide length of 8 amino acids). In 67% (7136 of 10 630) ISD groups where all proteins are annotated, all proteins within
the group were related based on gene database annotation and agreement on a gene identifier. In 16% (1684) of cases, all proteins within the group were
related based on protein family annotation, and consensus for a single identifier. In 5% (538) of cases, all proteins were related based on GO or other
database annotations. In ISD groups where the proteins were incompletely annotated, 9% (929) showed complete agreement in gene, protein family,
GO or other annotations for those proteins which were annotated. (b) As the minimum length of the shared peptides are set to increasing values, the
number of ISD protein groups increases while the average number of proteins per ISD protein group decreases. (c) Consensus and functional
relatedness between proteins within each ISD group increases as the length of shared peptides increases.
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length 5, 6, or 7 amino acids produced fewer protein groups, each
with higher average numbers of proteins (Figure 8b). On the
other hand, as peptide length and the number of groups
increased, the relatedness of proteins within each group also
increased (Figure 8c). Considering only gene annotations,
increased peptide length led to increased consensus, while
exclusivity remained constant (data not shown). A minimum
length of 5 amino acids yielded large ISD groups, averaging 98
protein entries, whose proteins exhibited functional relatedness

within 84% of groups. A minimum length of 12 amino acids
yielded more ISD groups, with little change in functional
relatedness compared to 8 amino acids. Overall, 8 amino acids
was the optimal minimum length for grouping proteins with
common function. This was the minimum length previously
determined for filtering out false positives during peptide
identification.9,14 We conclude that 8 amino acids provide an
optimal minimum peptide length for protein grouping as well as
peptide identification.

Figure 9. Protein inference differences are mainly due to whether programs report primary or representative proteins. Six protein inference programs
(TPP ProteinProphet, Panoramics, Scaffold, IsoformResolver, Phenyx, and IDPicker) were used to analyze a data set. One-hundred twelve ISD protein
groups with common peptides are shown here. Color shadings distinguish programs which report primary proteins (TPP ProteinProphet, Panoramics,
Scaffold, IsoformResolver in its default mode), versus programs that report a single representative protein from among indistinguishable proteins
(IsoformResolver in its representative selecting mode, Phenyx, and IDPicker). (Top) Close-up of Case 5 illustrating the organization of each case. In this
example between 1 and 6 proteins were reported for this ISD protein group, and boxes indicate proteins inferred by each program. (Bottom) all 112 ISD
protein groups. In Case 1 (20 of 112 ISD groups), identical proteins were inferred by all programs. In Case 2 (34 groups), proteins agreed between
primary selecting programs and between representative selecting programs, although the two types of programs disagreed. In Case 3 (53 groups),
primary selecting inference programs agreed with each other, but programs which select representative proteins did not. In Case 4 (3 groups), only
representative selecting programs agreed. In Case 5 (2 groups) there was no overall agreement in either set of programs. Additional information is in
Suppl. Table S3 and the entire annotated compare profile can be found in Suppl. Worksheet:3.xlsx (Supporting Information).
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Comparison of Protein Profiling and Inference Software
We compared IsoformResolver to other programs used for

protein inference (IDPicker, Panoramics, Phenyx, Scaffold, TPP
ProteinProphet). The programs varied with respect to input/
output format, ease of use, and other features (summarized in
Suppl. Table S2, Supporting Information). Here, we focused on
their differences with respect to protein inference, protein
grouping, how they dealt with indistinguishable proteins, their
ability to handle large data sets, and comparison of results
between different data sets.
Protein Inference.We first compared software with respect

to protein inference on a single LC�MS/MS run (Suppl. Table
S1, Data set 1D, Supporting Information). The numbers of
peptides and proteins reported by each program were compar-
able and default parameters were used in each case, with settings
chosen to yield comparable numbers of identified peptides. One
complication was that Phenyx, Scaffold, and ProteinProphet
integrate peptide identification algorithms into the software,
each using different underlying methods to choose peptides,
assess false assignments, and evaluate low scoring MS/MS
spectra. This introduced variations in identified peptides, which
complicated the comparison of protein identifications. There-
fore, IsoformResolver was used to specify ISD groups from the
peptides identified by each program. In this way, we could assess
proteins identified by each program that were within the same
ISD group, allowing differences in protein inference rather than
differences in peptides to be evaluated.
Each program yielded proteins corresponding to 255�295

ISD groups. Of the 238 groups common to all six programs, 60
contained proteins that were distinct and unambiguously identi-
fied by all. In order to minimize differences due to peptide
variations, 112 of the remaining 178 ISD groups were selected
because all programsmapped identical proteins to the peptides in
these groups (termed “meta-peptides” by ref 22). We inspected
and compared proteins inferred for these 112 ISD groups.
Certain programs showed greater similarities in their protein

identifications. Programs that reported all indistinguishable
proteins as primary (TPP ProteinProphet, Panoramics, Scaffold,
and IsoformResolver in its default mode) showed greater simila-
rities in protein identification with each other, compared to
programs which selected a single, representative protein from
among each indistinguishable set (IsoformResolver in its repre-
sentative protein selecting mode, Phenyx, and IDPicker). We
identified five different cases. In 20 of 112 ISD groups (Case 1),
the same proteins were identified by all 6 programs (Figure 9, see
Suppl. Table S3 and Suppl. Worksheet:3.xlsx for the entire
analysis, Supporting Information). In 34 ISD groups (Case 2),
identical proteins were inferred by programs which selected and
displayed all primary proteins, and by programs which displayed
only representative proteins, although the proteins differed
between the two program types. In 53 ISD groups (Case 3),
proteins were identical among programs that displayed primary
proteins, but nonidentical among programs that selected repre-
sentative proteins. In 3 ISD groups (Case 4), the proteins were
nonidentical among programs displaying primary proteins but
identical among those selecting representative proteins. The
remaining 2 ISD groups (Case 5) showed no agreement in
proteins identified between the two kinds of programs. Thus,
agreement was generally found between programs that selected
primary proteins, while programs that selected representative
proteins often disagreed with each other, and sometimes chose
proteins that none of the other programs inferred. Similarly,

analysis of the Sigma-Aldrich UPS1 sample of purified human
proteins, where true and false protein identifications could be
determined, showed that programs reporting primary proteins
yielded more true assignments than programs reporting repre-
sentative proteins (data not shown). We conclude that reporting
primary proteins yields greater agreement after protein inference,
whereas representative proteins, while convenient for simplifying
output, loses important information.
Protein Display. An important difference between these

programs was how they displayed bridge peptides. Phenyx,
Panoramics, Scaffold, and ProteinProphet replicated bridge
peptides, listing them redundantly with proteins that shared
them. IDPicker dealt with bridge peptides by assigning them to
only one protein and discarding them from others. When
ProteinProphet and IsoformResolver profiles were compared
(Suppl. Table S1, Data set 1C, Supporting Information), 777
MSD groups were found in common by both programs. Pro-
teinProphet displayed secondary (subset) proteins within its
protein groups (e.g., as in Suppl. Figure S3a, Supporting In-
formation), but separated protein groups that shared bridge
peptides. By contrast, IsoformResolver listed each peptide
together within their MSD group, therefore bridge peptides were
neither overrepresented nor underrepresented (Suppl. Figure
S3b, Supporting Information), and reported the MSD groups
adjacently in the output. By separating protein groups that shared
bridge peptides, 17 of the 777 MSD groups in IsoformResolver
were displayed as 34 protein groups in ProteinProphet, where
members of each pair of related protein groups were separated far
from each other in the output. This illustrates the advantage of a
display that positions related proteins adjacently, in a manner
that avoids peptide replication and redundancy.
Compare Profiles. Finally we examined the ability of each

program to compare results from two or more data sets.
IsoformResolver, Scaffold, Phenyx, and IDPicker were each able
to display differences between multiple data sets within a single
protein inference profile. Scaffold and Phenyx only allowed
comparison of individual LC�MS/MS runs, while IsoformRe-
solver and IDPicker allowed for any number of LC�MS/MS
data sets (Suppl. Table S2, Supporting Information).
We also examined the ability of each program to compare

results from separate protein inference analyses, for example,
data sets analyzed at different times and then compared retro-
spectively. All programs allowed primary proteins to be manually
compared between separate analyses; however, differences in
protein inference and shortcomings of protein reporting led to
overestimates of variation between analyses. This was alleviated
by reporting protein groups, as allowed by IsoformResolver and
IDPicker. However, IDPicker identified protein groups sequen-
tially per profile, preventing their comparison against protein
groups from other protein profiles. Only IsoformResolver had a
stable (ISD) numbering scheme that allowed uniform compar-
isons between different experiments.

’CONCLUSIONS

In this study, we describe IsoformResolver in detail for the first
time. We demonstrate that protein inference exacerbates volati-
lity in protein identifications, such that small changes in peptides
lead to greater changes in the inferred proteins. We show that
protein inference causes significant protein variation introduced
by LC�MS/MS sampling in technical replicates, and even when
peptides are completely overlapping between full data sets and
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simulated subsets. When many data sets are compared, protein
repeatability is improved by pooling data sets at the peptide level
and performing inference once, instead of performing inference
on each experiment and aggregating the results. However, the
pooled analysis loses important information gained by analyzing
each experiment individually.

Underlying the problem of protein volatility is the question of
how to select between indistinguishable proteins, inferred as
present but not distinguishable from other equally possible
candidates. Indistinguishable proteins must be counted singly
and yet must be linked to multiple protein identifiers, because
reporting all proteins in an indistinguishable set overestimates
their presence, but reporting only one of several proteins loses
valuable information. No single method of reporting protein
identifiers—listing all proteins, primary proteins, concatenated
identifiers, or representative proteins—completely solves the
problem of underrepresenting or overrepresenting proteins in
the sample due to protein inference.

Another important question is how to treat peptides that
bridge multiple primary proteins. The results can be misleading
when protein inference programs either assign the bridge pep-
tides to only one protein arbitrarily, or else replicate the peptides
and match them redundantly to multiple proteins, which may
underestimate or overestimate the peptide evidence for a protein.
We find that in complex protein databases like the human
proteome, the number of bridge peptides increases as more
peptides are identified with higher depth (e.g., see Data set 1 in
Suppl. Table S1, Supporting Information).

IsoformResolver addresses all of these problems by reporting
proteins and peptides in the context of MSD and ISD groups,
developed using a peptide-centric strategy which lists each
peptide once, and matching each observed peptide to all proteins
that share its sequence. In this way, primary, secondary, and
indistinguishable proteins can be immediately assessed by the
presence or absence of distinguishing peptides, and are clearly
marked in the output. Displaying proteins in the context of MSD
groups avoids the problems of listing peptides redundantly or
arbitrarily assigning them to one primary protein. Displaying
primary, indistinguishable, and secondary proteins adjacently
avoids loss of information about their relatedness, and allows the
experimentalist, not the software, to decide which proteins are
most likely present.

By displaying MSD groups adjacently and linked by ISD
groups, all proteins linked by shared peptides can be listed
together, even when the peptides are not observed experimen-
tally. We show that proteins within ISD groups are usually
derived from the same gene or products of gene duplication,
exhibiting functional relationships which reflect their underlying
sequence identity. Importantly, experimentally observed pep-
tides and proteins can be mapped to protein identifiers which are
invariant for a given database, lending stability to the protein
profiles by allowing comparisons to be made between experi-
ments analyzed at different times and using different software.
ISD groups also allow IsoformResolver to facilitate comparison
between data sets by spectral counting, by allowing related
proteins to be listed adjacently.

In summary, protein inference remains a challenging problem,
but the approach used by IsoformResolver, of converting a
protein database into a peptide-centric format in which all
nonredundant peptides are premapped to proteins, and all
proteins are mapped to ISD groups, helps counteract many
ambiguities introduced by the inference problem. In addition,

when large data sets are involved, or many data sets must
be compared, the algorithms employed by IsoformResolver allow
greatly increased speed in execution time compared to other
software. Presenting protein and peptide results in the con-
text of MSD and ISD groups is a logical, complete, and concise
way to display proteomics information, which solves prob-
lems in comparing data sets of high complexity from shotgun
proteomics.

Software and peptide-centric database files are available upon
request.
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