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Abstract: In clinical trials, sodium-glucose co-transporter (SGLT) inhibitor use as adjunct to insulin
therapy in type 1 diabetes (T1D) provides glucometabolic benefits while diabetic ketoacidosis risk
is increased. The SGLT2 inhibitor empagliflozin was evaluated in two phase III trials: EASE-2 and
EASE-3. A low, 2.5-mg dose was included in EASE-3 only. As the efficacy of higher empagliflozin
doses (i.e., 10 and 25 mg) in T1D has been established in EASE-2 and EASE-3, a modeling and
simulation approach was used to generate additional supportive evidence on efficacy for the 2.5-mg
dose. We present the methodology behind the development and validation of two modeling and
simulation frameworks: M-EASE-1, a semi-mechanistic model integrating information on insulin,
glucose, and glycated hemoglobin; and M-EASE-2, a descriptive model informed by prior information.
Both models were developed independently of data from EASE-3. Simulations based on these
models assessed efficacy in untested clinical trial scenarios. In this manner, the models provide
supportive evidence for efficacy of low-dose empagliflozin 2.5 mg in patients with T1D, illustrating
how pharmacometric analyses can support efficacy assessments in the context of limited data.

Keywords: Bayesian modeling; clinical trial simulations; SGLT2 inhibitor; supportive evidence;
type 1 diabetes

1. Introduction

Type 1 diabetes (T1D) is an autoimmune disorder causing serious metabolic dysregu-
lation characterized by insulin deficiency and substantial reduction in life expectancy [1,2].
Inhibitors of sodium-glucose co-transporters 1 (SGLT1) and 2 (SGLT2) have been shown to
improve glycemic control and result in weight loss in patients with T1D [3–7]. Although
these agents have been shown to improve glucometabolic outcomes in the context of clini-
cal trials, their use is associated with an increased risk of diabetic ketoacidosis [6–8]. As a
consequence, while dapagliflozin and sotagliflozin have been approved for the treatment
of T1D in Europe, no SGLT2 inhibitors have been approved for this indication in the United
States, owing to the increased risk of diabetic ketoacidosis.

Empagliflozin is a highly selective SGLT2 inhibitor that has been approved for use
in adults with type 2 diabetes (T2D). The benefit–risk profile of empagliflozin in T1D
was evaluated in the Empagliflozin as Adjunctive to Insulin Therapy (EASE) clinical
program, which included two international, multicenter, phase III, randomized, double-
blind, placebo-controlled, parallel-group sister trials of once-daily oral empagliflozin
doses conducted over 52 weeks (EASE-2) and 26 weeks (EASE-3) [8–10]. In phase III
trials, empagliflozin significantly improved glycemic control and resulted in significant
reductions in weight, daily insulin dose, and blood pressure; severe hypoglycemic episodes
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were rare and occurred with similar frequency with empagliflozin and placebo. The
EASE-2 trial included empagliflozin at doses of 10 and 25 mg, while the EASE-3 trial
also included a unique, lower, 2.5-mg empagliflozin dose; this 2.5-mg dose resulted in
improvements of glucometabolic endpoints. The 4-week phase II trials (EASE-1 [8] and
EASE-J [9]) also assessed the efficacy of the empagliflozin 2.5-mg dose, alongside the 10-
and 25-mg empagliflozin doses. In these trials, reductions in plasma glucose were observed
with all empagliflozin doses [10].

Typically, two separate confirmatory and well-controlled clinical trials are needed
to gain regulatory approval for a sought indication. However, the US Food and Drug
Administration (FDA) Modernization Act of 1997 allows determination of substantial
evidence of effectiveness to be based on “data from one adequate and well-controlled
investigation and confirmatory evidence” [11]. In some cases, this confirmatory evidence
can be provided by other types of evidence, including exposure–response studies [12,13].
Exposure–response analyses done by population pharmacokinetic/pharmacodynamic
(PopPK/PD) modeling may be used to generate primary evidence of a drug’s efficacy. It
has been suggested that these data could be used as supportive, or even pivotal, evidence
of effectiveness [14].

The objective of this work was to generate additional supportive evidence on effi-
cacy and to investigate factors that drive the variability in treatment effect on glycated
hemoglobin (HbA1c). This was done using a descriptive exposure–response model to
simulate the longitudinal placebo-adjusted HbA1c change from baseline in EASE-2 up to
52 weeks, and to assess the impact of covariates on the exposure–response relationship for
HbA1c (M-EASE-2). To gain further confidence in the predictions, confirm the simulation
results, and investigate the impact of insulin titration, a second, independent modeling
approach was implemented. This approach, referred to herein as M-EASE-1, was a semi-
mechanistic, exposure–response model used to simulate the longitudinal placebo-adjusted
HbA1c change from baseline in EASE-2 up to 52 weeks and to assess the impact of adjusted
vs. fixed insulin dose treatment on HbA1c.

The analyses presented here focus on the efficacy of empagliflozin. Modeling of the
important safety endpoint, diabetic ketoacidosis (DKA), was not possible, as although
information on increases in beta-hydroxybutyrate (BHB) was available, information on
precipitating factors, such as non-adherence, insulin restriction/omission, disordered
eating behaviors or infections, was not available in patients who did not experience such
an event. The clinical effects of empagliflozin on HbA1c and BHB levels as determined
by modeling efforts have been discussed and put into clinical perspective previously [15].
Here, we present the detailed methodology for the development, validation and clinical
trial simulations behind the two modeling and simulation frameworks: M-EASE-1, a semi-
mechanistic model integrating information on insulin, glucose, and glycated hemoglobin;
and M-EASE-2, a descriptive model informed by prior information.

2. Materials and Methods
2.1. Included Study Data

Both modeling frameworks were informed by data from EASE-1 (a 4-week phase II
study that included empagliflozin 2.5, 10, and 25 mg once-daily (qd) treatment arms)
and EASE-2 (a 52-week study that included empagliflozin 10 and 25 mg qd treatment
arms) [8,16], while data from EASE-3, which included the low 2.5-mg dose of empagliflozin,
was only used for evaluation of the model (Table 1). This was done to generate evidence
of efficacy independent of the effect observed in EASE-3. A detailed description of the
phase III study methodology, including the insulin intensification protocol used, has been
previously published [8].
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Table 1. Overview of included studies.

Study Phase Description Study Population Patient Demographics: Median (95%
Confidence Interval)

EASE-1 [16] II
Once-daily EMPA 2.5,
10, 25 mg, or placebo

for 28 days
75 patients with T1D

Age (y): 43.0 (21.7–61.0)
Weight (kg): 79.0 (52.0–107)

eGFR (mL/min/1.73 m2): 102 (78.7–128)
TDID (IU/kg): 0.640 (0.361–1.13)

HbA1c (%): 8.20 (7.18–9.61)

EASE-2 [8] III
Once-daily EMPA 10,
25 mg, or placebo for

52 weeks
721 patients with T1D

Age (y): 46.0 (21.0–69.0)
Weight (kg): 84.0 (55.0–126)

eGFR (mL/min/1.73 m2): 97.0
(57.0–127)

TDID (IU/kg): 0.680 (0.370–1.34)
HbA1c (%): 8.00 (7.20–9.50)

EASE-3 [8] a III
Once-daily EMPA 2.5,
10, 25 mg, or placebo

for 26 weeks
948 patients with T1D

Age (y): 43.0 (21.0–69.0)
Weight (kg): 81.0 (55.0–121)

eGFR (mL/min/1.73 m2): 99.0
(54.7–129)

TDID (IU/kg): 0.660 (0.360–1.24)
HbA1c (%): 8.10 (7.20–9.50)

a Used for population pharmacokinetic/pharmacodynamic model evaluation only. eGFR, estimated glomerular filtration rate;
EMPA, empagliflozin; HbA1c, glycated hemoglobin; T1D, type 1 diabetes; TDID, total daily insulin dose.

2.2. Software

The PopPK and PopPK/PD analyses were conducted via nonlinear mixed effects
modeling using the nonlinear mixed effects modeling (NONMEM®) software versions 7.3
and 7.4 (ICON Development Solutions, Hanover, MD, United States), respectively. The
PK and semi-mechanistic exposure–response models employed first-order conditional
estimation with η–Є interaction. The descriptive exposure–response model utilized a
Markov chain Monte Carlo (MCMC) Bayesian estimation; specifically, a Hamiltonian
Monte Carlo estimation with the No-U-Turn sampler was utilized with default settings.
All data processing and graphical generation were conducted using R version 3.3 (www.r-
project.org, The R Foundation, Vienna, Austria). Simulations were performed using the
mrgsolve package (version 0.9.0., Metrum Research Group, Tariffville, CT, USA) [17] in R.

2.3. Population PK Model
2.3.1. Model Development

The PopPK model used in this analysis was adapted from a previous PopPK modeling
study [18] and updated using plasma empagliflozin concentrations, dosing history, ob-
servation times, and covariate factors from empagliflozin patients in EASE-1 and EASE-3
for initial model development, with EASE-2 data used as an external evaluation dataset.
The best-performing model was re-estimated using combined data from all studies to
predict individual patient exposures (area under the curve at steady-state; AUCss) for the
exposure–response analyses.

The analysis used a full covariate modeling approach [19] that emphasized parameter
estimation. Covariates incorporated into the full PopPK model included age, weight, sex,
total protein, alkaline phosphatase, smoking status, total daily insulin dose (TDID), and
estimated glomerular filtration rate (eGFR).

2.3.2. Model Evaluation

Internal and external evaluations of the model were performed using posterior predic-
tive checks (PPCs) via 500 Monte Carlo simulation replicates. The results were summarized
as longitudinal visual predictive checks (VPCs) [20] and landmark checks of Cmax and
Cmin for individual patients at steady-state. In addition, the precision of parameters was
estimated via a nonparametric bootstrap (250 iterations) [21,22].

www.r-project.org
www.r-project.org


Pharmaceutics 2021, 13, 485 4 of 14

2.4. Exposure–Response Analyses
2.4.1. Model Development: Semi-Mechanistic Model (M-EASE-1)

The time course of HbA1c was initially planned to be estimated via an indirect-
response model but, due to identifiability issues, a simpler direct-effect model was imple-
mented. This was driven by the information content of the data (i.e., the timing of the
endpoint collections did not support identification of indirect-response model parameters).
The direct-effect model assumed that the exposure-related effect of empagliflozin was
at steady-state (and so was time-independent) prior to the collection of the first HbA1c
sample collections at week 4 of the studies.

Exposure–response relationships between longitudinal HbA1c, TDID, and mean daily
glucose (MDG) measurements as functions of empagliflozin AUCss were parametrically
modeled in a stepwise fashion (Figure 1A). First, changes in insulin (expressed as TDID)
were described for the single endpoint TDID as a function of empagliflozin exposure.
Second, to assess the impact of changes in TDID on glucose levels, a model was developed
for the two endpoints (TDID, MDG) based on placebo data. Parameters for this model were
fixed, and the previously estimated effect of empagliflozin exposure on TDID was included,
which in turn resulted in changes in MDG. In addition, a placebo effect was added to
drive changes in MDG. Based on this model, individual MDG profiles were derived and
parameters affecting the time course of HbA1c were estimated. The relationships of the
final insulin-MDG and HbA1c model equations were:

TDIDi,j = TDIDt0,i·Inci·
(

1 − Emax,TDID,i·AUCss,i

AUC50,TDID + AUCss,i

)
(1)

MDGi,j = MDGt0,i·
( TDIDi,j

TDIDt0,i

)θa

+ PBOMDG·TIME −
(

Emax,MDG,i·AUCss,i

AUC50,MDG + AUCss,i

)
(2)

HbA1ci,j = HbA1ct0,i·
( MDGi,j

MDGt0,i

)θb ·expη2

(3)

In these equations, TDIDi,j represents the predicted TDID for a given patient at a
given time; TDIDt0,i represents predicted baseline insulin dose for a given patient (i); Inci
represents a scale parameter reflecting the amplitude for insulin dose adjustment (applies
only to EASE-1 during the first week of treatment); Emax,TDID,i represents the maximal effect
parameter for empagliflozin AUCss on TDID achieved; AUC50,TDID represents the AUCss
at which half the maximal effect of empagliflozin on TDID is achieved; AUCss,i represents
the individual empirical Bayes estimates of AUCss; PBOMDG is the time-dependent MDG
placebo effect; Emax,MDG,i represents the maximal effect parameter for empagliflozin AUCss
on MDG achieved; AUC50,MDG represents the AUCss at which half the maximal effect of
empagliflozin on MDG is achieved; HbA1ct0,i represents the predicted baseline HbA1c for
a given patient; and MDGi,j represents the MDG, calculated from AUC0–24,glu,i,j/24 for a
given subject and time.

2.4.2. Model Evaluation: Semi-Mechanistic Model (M-EASE-1)

Internal and external model evaluation consisted of PPCs summarized as longitudinal
VPCs for the time courses of TDID, MDG, and HbA1c, and landmark checks at each
observation timepoint for HbA1c (Table 2).
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Table 2. Summary of simulation scenarios for model evaluation and simulation of M-EASE-1 and -2.

Scenario Data Used Description

M-EASE-2 descriptive and M-EASE-1 semi-mechanistic

Internal PPC EASE-1 and EASE-2 PPCs were generated via 500 Monte Carlo simulation replicates, which were generated and
summarized as longitudinal VPCs and landmark checks at each observation timepoint.

Parameter uncertainty was incorporated via the covariance matrix and the posterior
distribution for M-EASE-1 and M-EASE-2, respectively

External
“out-of-sample”

PPC
EASE-3

M-EASE-2 descriptive and M-EASE-1 semi-mechanistic

Sensitivity
analysis and

predictions of
response

EASE-2
(empagliflozin-treated

patients)

Steady-state exposures at the 2.5-mg dose level were generated using individual-specific
empirical Bayes estimate of the PK parameters.

239 patients from the M-EASE-2 population were randomly sampled, without replacement,
for each of the 500 simulations. Parameter uncertainty was incorporated via the covariance

matrix and the posterior distribution for M-EASE-1 and M-EASE-2, respectively

M-EASE-1 semi-mechanistic

Stable vs.
adjustable insulin EASE-1, EASE-2, EASE-3

Each of the 500 simulations included 500 patients per dose group (placebo, EMPA 2.5, 10,
and 25 mg qd) randomly sampled from the full data set (EASE-1, -2, and -3 populations);

parameter uncertainty was incorporated via the covariance matrix. Two scenarios with and
without an EMPA exposure effect on TDID (hypothetical stable insulin) were performed

EMPA, empagliflozin; PK, pharmacokinetic; PPC, posterior predictive check; qd, daily; TDID, total daily insulin dose; VPC, visual
predictive check.

2.4.3. Applied Simulations: Semi-Mechanistic Model (M-EASE-1)

To assess the effect of insulin adjustment, simulations with and without an em-
pagliflozin exposure effect on TDID (hypothetical stable insulin) were conducted. Clinical
practice would not allow for stable insulin without an increased risk of hypoglycemia. This
simulation can show the net effect in T1D patients. In addition, simulations of the placebo-
adjusted HbA1c response for a 2.5 mg dose in the EASE-2 population were conducted to
generate additional evidence of efficacy, independent of EASE-3 (Table 2).
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2.4.4. Model Development: Descriptive Model (M-EASE-2)

As with M-EASE-1, initial considerations for a more complex indirect-response model
were exchanged instead with direct exposure–response models. As EASE-2 and EASE-1
mainly provided information from the 10- and 25-mg doses, an informative prior for
AUC50 (AUCss leading to 50% of maximal effect) was used from a previously conducted
analysis in patients with T2D (AUC50 of 704 nmol·h/L) [23]. For all other parameters,
noninformative prior distributions were utilized, with normal distributions used for the
fixed-effect parameters and inverse Wishart distributions (degrees of freedom (df) = no.
diagonal elements of OMEGA) for the random effects. For each model, four separate chains
were run with the initial estimates varied for all parameters. Each chain was run with a
total of 2000 warm-up samples followed by 10,000 post-warm-up samples. The observed
placebo effect was described by a linear function of time:

BaselineHbA1c,i = θa·
m

∏
1

(
covmi
re fm

)θ(m+a)

·
p

∏
1

θ
covpi
(p+m+a)·expηz (4)

AUC50 = θb (5)

Emax,i = θc·
m

∏
1

(
covmi
re fm

)θ(m+c)

·
p

∏
1

θ
covpi
(p+m+c)·expηs (6)

Placebo = θd (7)

HbA1ci,j = BaselineHbA1c,i −
(

Emax,i·AUCss,i

AUC50 + AUCss,i

)
+ Placebo·TIME (8)

In these equations, BaselineHbA1c,i is the patient-specific predicted HbA1c level at
baseline; AUC50 is the AUC at which half the maximal effect of empagliflozin on HbA1c is
seen; covmi is the individual covariate value for the continuous covariate “m”; covpi is the
individual covariate value for the categorical covariate “p”; refm is the population covariate
value for the continuous covariate “m”; η: are individual-specific inter-subject random
effects; Emax,i is the patient-specific predicted maximal effect parameter on HbA1c; Placebo
is an additive placebo effect as a function of time; and AUCss,i is the individual empirical
Bayes estimate of empagliflozin exposure AUCss.

Using the final model (Figure 1B), a full covariate analysis was conducted; preselected
covariates included for baseline HbA1c were baseline weight, gender, baseline TDID,
multiple daily injections (MDI) vs. continuous subcutaneous insulin infusion (CSII), and
baseline eGFR; Emax covariates were baseline weight, gender, baseline HbA1c, baseline
TDID, MDI vs. CSII, and baseline eGFR; placebo covariates were gender and MDI vs.
CSII. The key assumptions of the final model were considered and tested (Supplementary
Materials Table S1).

2.4.5. Model Evaluation: Descriptive Model (M-EASE-2)

To assess the convergence of the MCMC chains, trace plots of the posterior samples,
posterior histograms, the calculated effective sample sizes, and the Gelman–Rubin conver-
gence diagnostic were evaluated [24]. Internal and external model evaluation consisted of
PPCs summarized as longitudinal VPCs of the HbA1c response and landmark checks at
each observation timepoint (see Table 2 for details).

2.4.6. Applied Simulations: Descriptive Model (M-EASE-2)

Simulations were conducted to assess the impact of covariates on HbA1c lowering. A
specific emphasis on change in HbA1c as a function of baseline HbA1c was evaluated.

To generate additional evidence of efficacy for empagliflozin 2.5 mg qd administered to
patients with T1D, independent from the EASE-3 clinical results, simulations of the placebo-
adjusted HbA1c response for a 2.5-mg dose in the EASE-2 population were conducted.
To assess the impact of the prior information on the model predictions, a sensitivity
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analysis was performed [24]. Specifically, varying levels of informativeness (magnitude
of variance for prior distribution: fixed to zero, inflated by 10-, 50-, and 100-fold, and an
extreme noninformative prior) and alternate location parameters for the prior distribution
(extreme large value (22,026 nmol·h/L), extreme small value (0.00005 nmol·h/L), and a
50% increase and decrease were utilized for the final model to assess how dependent the
model predictions were on the choice of prior (Table 2).

3. Results
3.1. Population PK Model

The study population included 1241 patients (614 males, 627 females) from EASE-1,
-2, and -3 on active treatment. A two-compartment model with first-order elimination
and a sequential zero- and first-order oral absorption and a lag time described the base
model for the PopPK of empagliflozin (Table S2). Structural parameters were comparable
to previous modeling conducted in T2D [23]; no covariates were found to have clinically
relevant impacts on exposure (Figure S1). Evaluation of the PopPK model by PPCs and a
nonparametric bootstrap demonstrated that the model provided an adequate description
of the data; re-estimation with the inclusion of EASE-2 data produced similar results.

3.2. Semi-Mechanistic Model (M-EASE-1)

The model included 796 patients (534 empagliflozin patients and 262 placebo patients),
with a total of 4824 HbA1c observations, 189,182 TDID observations, and 4243 MDG ob-
servations. Overall, TDID was well described using a proportional Emax function driven
by AUCss (Equation (1)). MDG was affected by three components: empagliflozin expo-
sure expressed as a direct-response Emax function (Equation (2)); a linear time-dependent
placebo effect (Equation (3)); and TDID profiles derived from the first part of the model de-
velopment. Changes in HbA1c were driven by changes in MDG as predicted in the second
step (Figure 1A). In general, the population parameters, inter-individual, proportional and
additive residual variability estimates were precisely estimated and were representative of
the observed data (Table 3).

Table 3. Exposure–response parameters in M-EASE-1 and M-EASE-2.

Key Parameters in M-EASE-2 Reference patient: Male, MDI of insulin, baseline total daily dose = 0.660 U/kg,
HbA1c = 8.1%, eGFR = 98 mL/min/1.73 m2, and baseline body weight = 82 kg.

Parameter Estimate, median 95% CI
Baseline HbA1c, % 8.14 8.07, 8.22
AUC50, nmol·h/L 498 296, 819

Emax, % 0.579 0.491, 0.678
Placebo effect, %/h 2.61 × 10−5 1.96 × 10−5, 3.29 × 10−5

Key parameters in M-EASE-1 Reference patient: Male, eGFR = 99 mL/min/1.73 m2, body weight = 82 kg,
cumulative MDG over 24 h, MDG = 4266 mg·day/dL

Parameter Estimate, median 95% CI
Baseline HbA1c, % 8.15 8.09, 8.21

AUC50 for TDIDEASE-1, nmol·h/L 110 14.3, 836
Emax for TDID 0.186 0.145, 0.238

AUC50 for MDG, nmol·h/L 370 83.9, 1630
Emax for MDG, mg·day/dL 634 534, 753

WTHbA1c −0.0258 −0.0528, 0.00125
SEXHbA1c 0.99 0.98, 1
γMDG EFF 0.487 0.445, 0.532

AUC50, the AUCss at which half the maximal effect of empagliflozin on TDIDEASE-1 and MDG is achieved; AUCss, area under the curve at
steady-state; CI, confidence interval; EFF, power coefficient; eGFR, estimated glomerular filtration rate; Emax, maximal effect parameter
for empagliflozin AUCss on TDID and MDG; HbA1c, glycated hemoglobin; MDG, mean daily glucose; MDI, multiple daily injections;
SEX, patient gender; TDID, total daily insulin dose; WT, patient weight; γ, insulin effect.
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With the exception of the baseline HbA1c effect on Emax,MDG and eGFR effects on
baseline HbA1c, which were excluded due to model instability, all pre-specified covariate
effects were maintained in the final version of the models. However, all estimated covariate
effects were either negligible in magnitude or estimated with poor precision (Table S3).

3.3. Model Evaluation: Semi-Mechanistic Model (M-EASE-1)

The developed models were able to accurately capture the time courses of TDID,
MDG, and HbA1c across each treatment arm for the EASE-1 and EASE-2 data. Similarly,
the external evaluation using out-of-sample predictions from EASE-3 indicated that the
model adequately captured the time courses of TDID, MDG, and HbA1c across all dose
groups including the 2.5-mg treatment arm (Figure S2).

3.4. Applied Simulations: Semi-Mechanistic Model (M-EASE-1)

The simulated median (95% CI) placebo-adjusted HbA1c change from baseline at
week 26 for empagliflozin 2.5 mg qd was −0.29% (−0.40%, −0.10%) and −0.40% (−0.53%,
−0.23%) with adjusted and stable insulin therapy, respectively (Figure 2). In the 10- and
25-mg groups, median (95% CI) placebo-adjusted changes in HbA1c at week 26 were
−0.44% (−0.55%, −0.33%) and −0.50% (−0.63%, −0.38%), respectively, with adjusted
insulin therapy and −0.58% (−0.69%, −0.46%) and −0.65% (−0.78%, −0.52%), respectively,
with stable insulin therapy.
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Simulations of a 2.5-mg dose in the EASE-2 population resulted in a median (95% CI)
placebo-adjusted HbA1c change from baseline of −0.31% (−0.48%, −0.10%) at week 26; the
effect was predicted to be sustained over 52 weeks. The distribution of median values at
week 26 across 500 study replicates was relatively small; 81.2% of study replicates showed
an HbA1c change of at least −0.20% and 67.0% of the study replicates showed an HbA1c
change of at least −0.25% (Figure 3A).
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Extreme small mean: 0.00005 nmol·h/L. AUC50, AUCss leading to 50% of maximal effect; AUCss, area under the curve at
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3.5. Descriptive Model (M-EASE-2)

The M-EASE-2 descriptive model included data from 391 males and 405 females (total
796; 534 on empagliflozin, 262 on placebo), with a total of 4899 observations of HbA1c
(4750 in EASE-2 and 149 in EASE-1). There was relative balance between categorical
covariates, with the majority of patients using MDI (64%). The 95th percentile intervals for
age, baseline weight, HbA1c, eGFR, and baseline TDID (IDB) were 21–69 years, 55–125 kg,
7.2–9.5%, 57–127 mL/min/1.73 m2, and 0.370–1.30 IU/kg, respectively.

There were no apparent correlations between continuous covariates with the exception
of age and eGFR, and no overt trends in continuous covariates were observed except for
a slight trend towards higher baseline HbA1c with increased IDB. A simple Emax model
driven by AUCss with a linear placebo effect as a function of time was utilized (Figure S3). A
proportional Emax model was also tested but did not perform as well as the nonproportional
model. The estimated maximal decrease from baseline as a function of empagliflozin
exposure was 0.58%, and the AUC50 was estimated to be 498 nmol·h/L (Table 3). Patients
receiving CSII had larger placebo increases in HbA1c (47% greater) relative to patients
receiving MDI. In addition, greater baseline HbA1c and eGFR values were estimated to
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increase Emax (e.g., a 32% increase when baseline HbA1c ranged from 7.2% to 9.5%; a 50%
increase when eGFR ranged from 54 to 120 mL/min/1.73 m2).

3.6. Model Evaluation: Descriptive Model (M-EASE-2)

The majority of parameters were sampled with limited autocorrelation as demon-
strated by the trace plots, Rhat values of approximately 1.0, and effective sample sizes all
at approximately 1000 or higher. The developed model was able to accurately capture the
time course of HbA1c across each treatment arm for the data used to initially develop the
model. Similarly, when predicting into the external data across all the timepoints at the
median value, no consistent trend of over- or underpredicting was observed (Figure S4).

3.7. Applied Simulations: Descriptive Model (M-EASE-2)

Simulations to illustrate the impact of baseline HbA1c on change in HbA1c were
performed; for a 2.5-mg qd dose, a median placebo-adjusted change in HbA1c at 26 weeks
relative to baseline of −0.28% vs. −0.32% was predicted for a baseline HbA1c of 8.0% and
9.0%, respectively (Table S4 and Figure S5).

Simulations of a 2.5-mg dose in the EASE-2 population resulted in a median (95% CI)
placebo-adjusted HbA1c change from baseline of −0.29% (−0.39%, −0.19%) at week 26;
the effect was predicted to be sustained over 52 weeks. The distribution of median values
at week 26 across 500 study replicates was relatively narrow; 95.0% of study replicates
showed an HbA1c change of at least −0.20%, and 76.8% of the study replicates showed
an HbA1c change of at least −0.25% (Figure 3B). Simulated population exposures for the
2.5-mg dose were centered at the estimated AUC50 (Figure S6).

The simulated distribution of placebo-adjusted HbA1c change from baseline for the
final model at a dose of 2.5 mg falls close to the distribution generated when fixing the
AUC50 value to the estimated value from patients with T2D (Figure 3C). This was in contrast
to the distributions obtained when increasing the variance on the parameter. Increasing the
variance resulted in greater changes from baseline, with a noninformative prior resulting
in median values of −0.46% (Table S5) and a smaller estimated AUC50 value. As expected,
increasing the mean of the prior distribution resulted in decreased drug effects and the
converse resulted in increased drug effects (Figure 3D).

4. Discussion

Two independent approaches were followed in order to address different questions
and to gain confidence in the clinical trial simulations that were conducted to provide sup-
portive evidence. On the one hand, the impact of insulin adjustment should be quantified
in order to compare the HbA1c reduction to patients with T2D. This was only possible with
the semi-mechanistic model. On the other hand, factors that drive the variability in treat-
ment should be quantified. This could only be done with the descriptive model. To provide
supportive evidence for the efficacy of the 2.5-mg dose of empagliflozin in patients with
T1D, independent of the EASE-3 clinical trial, both PopPK/PD models were developed
using data from EASE-1 and EASE-2 only. To assess the utility of the developed models to
reliably predict the long-term effect of the 2.5-mg dose, EASE-3 was used as an external
evaluation dataset. As predictions into independent data provide a stringent test of a given
model’s assumptions and predictive ability, the authors considered this approach to offer a
more rigorous evaluation relative to pooling all available data to estimate a model and then
using it to simulate supporting efficacy data. However, there were limitations with the
descriptive model as the majority of data used for model building was at the 10- and 25-mg
dose levels, both of which were expected to be near the plateau of the exposure–response
relationship. To address the issue, estimation was conducted in a Bayesian framework,
borrowing information from a prior analysis of fasting plasma glucose (FPG) and HbA1c
lowering in patients with T2D (drug effect included on degradation of FPG).

Using an informative Bayesian prior necessitated the execution of a sensitivity analysis
to assess the impact of the employed prior on the model’s predictive performance. The
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selected variance for the final model trended to the conservative side of the predicted
placebo-adjusted HbA1c change from baseline at 52 weeks, as increases in variance pre-
dicted larger drug effects. This occurred due to the estimated AUC50 being lower with
increased variance for the prior. When adjusting the mean of the prior distribution, in-
creases resulted in decreased drug effects and decreases resulted in increased drug effects.
The results of the sensitivity analysis demonstrate that the prior that was utilized for the
AUC50 parameter provided the requisite support for estimation of the AUC50, and resulted
in conservative estimates of the 2.5 mg empagliflozin effect on HbA1c that were consistent
with EASE-3.

As part of a regulatory review, an additional sensitivity analysis was conducted
for the descriptive modeling whereby the model was estimated without the use of a
Bayesian prior [25]. Using this model, the median simulated placebo-adjusted change from
baseline HbA1c for a typical patient in EASE-2 receiving a 2.5-mg dose was −0.43% (95% CI
−0.52%, −0.31%) at 26 weeks. This value is approximately 50% larger than what was
observed in EASE-3 (−0.28%) [8] but was consistent with the predictions observed during
the sensitivity analysis when using a noninformative prior, as Bayesian estimation can
approximate maximum likelihood estimates under conditions of noninformative priors [24].
As an alternative, a conservative approach considering the lower bound of the 95% CI of
the model prediction as a “worst-case-scenario” was assessed. In this case, the median
value was simulated to be −0.23% (95% CI −0.38% to −0.05%), which was similar to
the empirical model’s prediction and the observed effect in EASE-3 [25]. Even though
the employment of an informative Bayesian prior is not standard to support evidence of
efficacy, the FDA concluded during an Endocrinologic and Metabolic Drugs Advisory
Committee meeting, “we believe this model provides supportive evidence of the effect size
for the 2.5-milligram dose independent of EASE-3” [25].

The semi-mechanistic model allowed for the investigation of the interplay between
empagliflozin exposures, changes in insulin dose and MDG, and their joint effect on HbA1c
lowering. Such a framework permitted the evaluation of insulin titration on changes
in HbA1c time course. As expected, a greater magnitude of percentage change from
baseline HbA1c resulted from a stable insulin regimen (30% greater decrease), relative to an
adjusted insulin regimen. Despite relying upon an alternate set of assumptions and level
of complexity, the semi-mechanistic model provided comparable predictions of efficacy for
a 2.5-mg dose of empagliflozin relative to the descriptive model and the effect observed
in EASE-3.

Some limitations are noted with these analyses. First, the descriptive model relied
upon an informative Bayesian prior from a different disease population and from a different
endpoint. The decision to use a prior was based upon exposure–response modeling
performed for urinary glucose excretion (UGE), a short-term marker for efficacy of SGLT2
inhibitors, in patients with T1D and T2D [18]. The analysis showed that the estimated PD
parameters for patients with T1D and T2D were comparable with only slight differences
overall. Those differences lead to an increase in UGE in patients with T1D relative to
patients with T2D at similar exposures but a comparable shape of the exposure–response
relationship overall. As the exposure–response for UGE, a marker for glucose lowering,
was comparable between the two populations, we assumed that information on AUC50
from an exposure–response analysis for FPG and HbA1c conducted in patients with T2D
could be used as informative prior. Despite these assumptions, the insulin dose reductions
that occurred while on treatment could affect the UGE in patients with T1D differently
from T2D. Accordingly, we conducted an external evaluation to assess the adequacy of
the model predictions and a sensitivity analysis (described above) to understand the
operating characteristics of the model predictions as a function of the prior. The external
evaluation demonstrated the ability of the estimated model to independently predict
HbA1c outcomes across all dose groups and timepoints in EASE-3, and the sensitivity
analysis highlighted the necessity for the prior as predictions from a model estimated
without the prior information resulted in highly biased predictions of HbA1c changes.
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A second limitation of these analyses was the inability to use indirect response models
to characterize the time courses of the PD endpoints. For both models, this was due to
issues with identifiability, as the nadir of drug effect occurred at the first on-treatment
observation for HbA1c. Reaching the nadir of the drug effect within 4 weeks of the start of
therapy had not been expected based on earlier calculated half-lives for HbA1c [23]. The
most likely reason was the impact of insulin intensification during the run-in period of the
phase III trials. This might also explain the drop in MDG and HbA1c seen in the placebo
group after four weeks.

Third, the use of a time-dependent linear placebo response to describe changes in
HbA1c in both models has no physiological basis. This linear placebo model slightly
overpredicts the observed HbA1c values at four weeks (Figures S2A and S4) in the placebo
group and is not suitable to reliably extrapolate absolute HbA1c values beyond 52 weeks.
Alternative implementations included asymptotic functions of time with and without
lagged onsets. However, none of these tested models were stably estimated or resulted in
improved numerical performance. Despite the simplicity and empirical implementation,
the linear placebo models adequately predicted observed increases in HbA1c over time
(except for 4 weeks) and across dose groups. The adequate prediction of observed data
in EASE-3 at 26 weeks (model qualification) allows answering of the key objective, the
reliable prediction of placebo-adjusted changes in HbA1c in EASE-2 at 26 and 52 weeks.

Lastly, in the context of an overall efficacy and safety assessment, this evaluation
does not inform on safety aspects. Although quantitative BHB levels as precursor for
DKA and marker for safety could be modeled and showed a clear exposure–response
relation, DKA events as clinical relevant outcome could not be modeled because of low
event numbers and an inability to model relevant precipitating factors (such as infections
or pump malfunction) [8].

5. Conclusions

This work provides detailed methodology (model development, validation and clinical
trial simulations) for two different pharmacometric modeling approaches that indepen-
dently confirm the observed efficacy for a low dose of empagliflozin 2.5 mg in patients with
T1D, which was observed in EASE-3. Using the models to simulate the outcome of a 2.5-mg
dose in the EASE-2 study population provided supportive evidence of the efficacy of a low
dose of empagliflozin. As such, they may be considered to be examples of high-impact
analyses as defined by Marshall et al. [26], illustrating how pharmacometric analyses can
support efficacy assessments in the context of limited data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13040485/s1, Figure S1. Covariate forest plot on normalized AUCss for the
final PK model, Figure S2. M-EASE-1: External model evaluation for EASE-3 (out-of-sample) by
longitudinal visual predictive check by dose for (A) HbA1c, (B) TDID, and (C) MDG, Figure S3.
M-EASE-2: Placebo-adjusted simulated change in HbA1c at 26 weeks as a function of empagliflozin
AUCss, Figure S4. M-EASE-2: Posterior predictive check for EASE-3 (out-of-sample) changes from
baseline HbA1c by dose and week, Figure S5. M-EASE-2: Forest plot depicting the relative differ-
ence and precision of covariate effects on placebo-adjusted 26-week HbA1c change from baseline,
Figure S6. Simulated empagliflozin AUCss by dose using final population pharmacokinetic model,
Table S1. Model assumptions, Table S2. Full covariate PK model: Summary of model parameter
estimates, Table S3. M-EASE-1: Summary of final HbA1c/MDG/TDID model parameter estimates,
Table S4. M-EASE-2: Full covariate model, summary of parameter estimates, Table S5: M-EASE-2:
(A) Impact of prior variance on placebo-adjusted predicted median HbA1c change from baseline
at 26 weeks; (B) Impact of prior mean on placebo-adjusted predicted median HbA1c change from
baseline at 26 weeks; (C) M-EASE-2: Impact of prior variance on estimated AUC50 (nmol·h/L); and
(D) M-EASE-2: Impact of prior mean on estimated AUC50 (nmol·h/L).
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