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Abstract

Shear wave elastography is emerging as a clinically valuable diagnostic tool to differentiate

between benign and malignant breast masses. Elastography techniques assume that soft

tissue can be modelled as a purely elastic medium. However, this assumption is often vio-

lated as soft tissue exhibits viscoelastic properties. In order to explore the role of viscoelastic

parameters in suspicious breast masses, a study was conducted on a group of patients

using shear wave dispersion ultrasound vibrometry in the frequency range of 50–400 Hz. A

total of 43 female patients with suspicious breast masses were recruited before their sched-

uled biopsy. Of those, 15 patients did not meet the data selection criteria. Voigt model based

shear elasticity showed a significantly (p = 7.88x10-6) higher median value for the 13 malig-

nant masses (16.76±13.10 kPa) compared to 15 benign masses (1.40±1.12 kPa). Voigt

model based shear viscosity was significantly different (p = 4.13x10-5) between malignant

(8.22±3.36 Pa-s) and benign masses (2.83±1.47 Pa-s). Moreover, the estimated time con-

stant from the Voigt model, which is dependent on both shear elasticity and viscosity, dif-

fered significantly (p = 6.13x10-5) between malignant (0.68±0.33 ms) and benign masses

(3.05±1.95 ms). Results suggest that besides elasticity, viscosity based parameters like

shear viscosity and time constant can also be used to differentiate between malignant and

benign breast masses.

1. Introduction

Breast cancer is estimated to be the second most common cancer among American women in

2016 [1]. Mechanical properties of soft tissue are related to the physiology and pathophysiol-

ogy. Any changes in the mechanical properties may indicate the onset or the effects of disease.

A broad spectrum of modalities are used in diagnosing breast cancer including ultrasound

imaging, shear wave elastography imaging (SWEI), mammography, magnetic resonance
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imaging (MRI) and magnetic resonance elastography (MRE). Most elastography modalities

model the tissue as purely elastic medium and only report the shear modulus [2, 3] of the

tissue, whereas in reality the breast tissue or any soft tissue exhibits viscoelastic response.

Modeling the soft tissue as purely elastic medium can result in biased estimation of elasticity

especially in strongly viscous mediums like breast and liver. A shear wave propagating in visco-

elastic medium exhibits frequency dispersion, which means that waves at different frequencies

travel at different phase velocities. Ultrasound has been used to non-invasively estimate the tis-

sue viscoelastic parameters. Supersonic shear imaging has been proposed to estimate the elas-

ticity and viscosity of the soft tissue by applying a local inversion algorithm, but has limited

real time viability as no in-vivo results were presented [4]. Shear wave dispersion ultrasound

vibrometry (SDUV) was introduced to quantify the viscoelastic properties of tissue by induc-

ing a shear wave in the range of hundred hertz and then monitoring the shear wave at 1600

frames per second [5, 6]. Liver fibrosis staging has been evaluated using both shear modulus

and shear viscosity parameters estimated from SDUV technique [7–10]. Acoustic radiation

force imaging (ARFI) has shown the impact of propagating shear wave frequency on fibrosis

and steatosis staging [11], and separation of fibrosis staging in non-alcoholic fatty liver disease

patients [12]. Time dependent strain analysis (creep deformation at constant stress) of visco-

elastic breast tissue under the uniaxial loading assumption can estimate the time constant

(retardation time) in the sub-Hertz frequency range [13–16]. Viscoelastic response (VisR)

imaging based on the acoustic radiation force calculates the time constant of the Voigt model

assuming both the absence and presence of inertial terms [17–21]. VisR has been used to non-

invasively monitor renal transplant health [20]. Kinetic acoustic vitreoretinal examination

(KAVE) used the Voigt model with an inertial component attached in series to study tissue

creep behavior based on an acoustic radiation force push [22]. Lamb wave dispersion analysis

has been used to assess the correlation between bladder wall mechanical properties and urody-

namic study [23].

Similar to ultrasound, MRI has also been used to characterize the viscoelastic properties of

soft tissues. MRI has the advantage of reaching deeper organs and is more suitable for bariatric

patients compared to ultrasound. MRE, an MRI based technique for estimating tissue mechan-

ical properties, has been used successfully for determining the stages of liver fibrosis by esti-

mating both the shear modulus and shear viscosity [24–26]. In breast tissue MRE has been

used to differentiate between benign and malignant tumors [27] at a frequency of 65 Hz. Shear

modulus showed a good separation but shear viscosity was not useful in separating benign and

malignant masses [27]. It is noteworthy that MRE is expensive and less universally available.

Viscoelastic parameters estimated using wideband MRE have shown sensitivity to alteration of

tissue structure in hepatic fibrosis [26].

This study further explores the role of viscoelastic parameters in a wider frequency range

for differentiating between benign and malignant breast tumors. To this end, SDUV tech-

nique was used to estimate the viscoelastic parameters of in-vivo breast masses in the fre-

quency range of 50–400 Hz. SDUV can estimate viscoelastic parameters but has some

limitations. The amplitude of the propagating shear wave decays rapidly due to the attenuat-

ing media and geometric dispersion which is proportional to the inverse square root of the

distance travelled from the source. Especially, malignant breast masses are highly attenuative

and shear waves can be observed for only a few milliseconds. Additional factors influencing

geometric dispersion are the boundary conditions, the difference in size of scatterer’s and

the wavelength of the propagating wave. The medium closer to the push vibrates with higher

amplitude and higher particle motion causing the displacement tracking to fail due to dec-

orrelation among the speckles, whereas the region further away from the push sees apprecia-

ble geometric dispersion and attenuation. Furthermore, the frequency range of shear waves
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produced using SDUV is limited to around 400 Hz, as higher frequency shear waves are

weak and attenuate quickly. Finally, heterogeneity of tissue introduces error in the shear

wave dispersion analysis as the viscoelastic constitutive model assumes a homogenous

medium and does not account for the effect of heterogeneity on dispersion. These factors

were considered during selection and processing of shear wave data for dispersion analysis.

In this study we ignored the effect of geometric dispersion. To the best of the author’s knowl-

edge, this is the first paper demonstrating estimation of viscoelastic parameters using acous-

tic radiation force in the 50–400 Hz frequency range for shear wave dispersion in breast

tissue. Furthermore, this paper shows the correlation between the viscoelastic properties of

the suspicious masses with their pathology.

2. Material and methods

2.1 Theoretical background of viscoelasticity

SDUV technique employs an acoustic radiation force to generate a push inside the soft tissue.

The acoustic radiation force is dependent on the attenuation of medium α, acoustic intensity

of the ultrasound beam, I, and speed of sound in medium c as described in Eq 1

F ¼
2αI
c
: ð1Þ

The resulting force generates a shear wave which propagates in the medium at a speed cs.

Assuming a linear isotropic elastic material, the shear wave speed, cs, can be written in terms

of the shear modulus, μ, of the material and the medium density, ρ, as shown in Eq 2

cs ¼
ffiffiffi
μ
ρ

r

: ð2Þ

However, Eq 2 gives a biased estimate of elasticity when the material exhibits viscoelastic

properties. To model the frequency dispersion in viscoelastic material, the wave speed has to

be estimated as a function of frequency. Different models have been suggested to parametrize

the frequency dependent phase velocity, such as the Voigt model, Maxwell model and standard

linear solid model. Voigt model has been shown to outperform the Maxwell model for the

agar-gelatin phantom and bovine muscles [28]. The effect of inertia is neglected as other stud-

ies have shown that the percentage error in the estimated time constant after correction was

only 10% [18]. Also due to the complexity of the three dimensional acoustic radiation force

push, a correction function had to be derived empirically [18]. The Voigt model consists of a

spring and dashpot in parallel, where spring represents the elastic part of the medium and the

dashpot represents the viscous part. The propagation of frequency dependent phase velocity,

cs(ω), in a homogenous Voigt medium is represented by Eq 3

csðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ2þω2η2Þ

ρðμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þω2η2
p

Þ

s

; ð3Þ

where μ is the shear modulus, ω is the frequency in radians/sec, ρ is the density of the medium

and η is the shear viscosity. Both Eqs 2 and 3 assume that the medium is incompressible (Pois-

son’s ratio = 0.5) in nature and the density of medium stays constant at 1000 Kg/m3. Eq 3 can

be inversely fitted on the frequency dependent phase velocity data to estimate the shear modu-

lus and the shear viscosity of the medium in which the shear wave is propagating. The time

constant of the Voigt model is defined as the ratio of shear viscosity to shear modulus as
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shown in Eq 4

t ¼
Z

m
; ð4Þ

and is representative of the medium in which the shear wave is propagating.

2.2 Cohort

The study was approved by the Mayo Clinic Institutional Review Board. Written informed

consent was obtained from each patient. Forty-three female patients with suspicious breast

masses who were scheduled to undergo biopsy were recruited for the study. The inclusion cri-

teria specified patients over the age of 18, while patients with breast implants, breast abnormal-

ity or those who have undergone breast surgery were excluded. Patients were scanned in a

supine or lateral oblique position and the location of the suspicious mass and its boundaries

were confirmed by a board certified sonographer with 28 years of experience. For each patient

at least 4 acquisitions were taken from the suspicious breast mass and at least 2 were taken

from a normal breast tissue region. For the recruited patients, SDUV data were collected from

the orientation having the biggest lesion cross sectional area, consistent with previous work [2,

29]. For suspicious masses the push location was focused outside the suspicious mass bound-

ary with 2 acquisitions focusing on the left side and 2 on the right side of the suspicious mass

boundary. The reasoning behind selection of the push location outside the suspicious mass is

provided in section 2.5. The sonographer helped in guiding the location of push in normal

tissue.

2.3 Experimental setup and data processing

A single transducer can be focused to generate a vibrational motion of the tissue at the

desired spatial location followed by compounded plane wave imaging which can track the

generated shear wave, as demonstrated in earlier work [6]. A linear array transducer L7-4

(Philips Healthcare, Andover, MA) with a center frequency of 5 MHz was used to create an

acoustic radiation force push of duration 600 μs (3 consecutive pushes of 200 μs each). The

acoustic radiation force push is followed by 3 angle (-2˚, 0˚, 2˚) compounded plane-wave

imaging at a pulse repetition frequency (PRFd) of 3.3 kHz for 15 ms using the Verasonics V-

1 research system (Verasonics Inc., Redmond, WA) [30]. Fig 1(a) illustrates the push beam

and the detection beam associated with SDUV technique. A two dimensional (2D) auto cor-

relation technique [31] was used on the gathered in-phase and quadrature (IQ) data to calcu-

late the particle velocity. Fig 1(b) presents a flowchart summarizing the data processing steps

involved in estimation of viscoelastic parameters. The auto correlation technique used a fast

axis window length of 2λ (λ = 3.08 μm) and a slow axis window length of 0.9 milliseconds

[32]. The particle velocity data was restricted to depths in which the shear wave travelled

inside the lesion as determined with the aid of B-mode ultrasound imaging. The particle

velocity data was band-pass filtered from 50 Hz to 400 Hz and a median filter of size 3λ × 3λ
was applied to reduce the noise spikes due to physiologic and transducer motion [32]. Fre-

quencies higher than 400 Hz were removed as higher shear wave frequencies attenuate faster.

Spatio-temporal (xt) maps were generated to display the particle velocity. Particle velocities

in the axial direction were averaged over the suspicious mass area. Time to peak velocity esti-

mation method was used to calculate shear wave group velocity in the medium based on a

purely elastic medium assumption, as described in Eq 2. To calculate the viscoelastic parame-

ters, based on Eq 3, the method described by Nenadic, et al. [33] was implemented. The

Viscoelasticity of breast masses
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frequency dependent phase velocity cs(ω) was estimated by calculating a 2D Fourier trans-

form of the particle velocity data for the propagating shear wave and measuring the spatial

frequency k(ω) from the location of the peak 2D Fourier transform signal at discrete tempo-

ral frequencies. The peak signal at different frequencies was used to calculate the phase veloc-

ity at a given frequency. The frequency with the highest signal power was identified as the

center frequency of the shear wave. The energy of the 2D-FFT signal was limited to -12dB.

Phase velocities higher than 10 m/s were ignored as such high velocities are not feasible.

Phase velocity of 10 m/s corresponds to a Young’s modulus of 300 kPa which is much higher

than typically observed values of Young’s modulus in breast. The frequency dependent phase

velocity is then fitted to the Voigt model based on Eq 3. The problem was modelled as a con-

strained nonlinear curve-fitting problem in least-squares sense using trust-region-reflective

algorithm. Elasticity values were constrained between 0 and 200 kPa whereas viscosity value

was constrained between 0 and 100 Pa-s. The shear modulus and shear viscosity were used to

estimate the time constant (τ) based on the Voigt model.

All data were processed using MATLAB (The MathWorks Inc., Natick, MA) and MedCalc

(MedCalc, Seoul, Republic of Korea). A Mann-Whitney U-test was performed to assess the sig-

nificant differences in viscoelastic parameters between benign, malignant and normal tissue. P

values less than 0.05 were considered to be statistically significant. An IQ data rejection crite-

rion was setup based on the visualization of shear waves inside the lesion. If no shear waves

propagating inside the suspicious mass were observed in the xt maps, the IQ data was rejected.

This rejection criterion was frequently observed in highly attenuative and smaller sized suspi-

cious breast masses. The shear modulus and shear viscosity estimate for all acquisitions that

passed the acceptance criteria were averaged.

Fig 1. (a) SDUV technique is comprised of a push beam followed by a detection beam. The push beam perturbs the medium at the desired spatial

location (illustrated in red) for 600μs. The detection beam is a spatially compounded beam (-2˚, 0˚, 2˚) at a pulse repetition frequency (PRFd) of 3.3

kHz for 15 ms and is used to observe the propagating shear wave in the medium. (b) Flowchart summarizing the process of estimating tissue

viscoelasticity from the data gathered in the detection phase.

https://doi.org/10.1371/journal.pone.0205717.g001

Viscoelasticity of breast masses

PLOS ONE | https://doi.org/10.1371/journal.pone.0205717 October 12, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0205717.g001
https://doi.org/10.1371/journal.pone.0205717


2.4 Histopathological examination

All patients underwent ultrasound guided core needle biopsy or surgical excision biopsy after

the ultrasound research study as part of routine clinical procedure. Five core biopsy samples

were obtained for each case by board certified radiologists with more than 15 years of experi-

ence using a 14-gauge needle (Achieve biopsy device, CareFusion Corporation, Waukegan,

IL). Surgical pathology results matched core biopsy results for the malignant cases. Histopath-

ological results were used as a gold standard to compare the viscoelastic parameters of the sus-

picious breast masses.

2.5 Selection of push location

Since ultrasonic attenuation of normal tissue and pathological tissue can be different [34]. The

difference results in a variable force and peak displacement amplitude at the focal region. Dif-

ferent peak displacements at the focal region were reported for different tissue types in ex vivo

pigs [10]. Reducing the variability in peak displacement can help in generating pushes which

are similar for all suspicious masses, enabling a more controlled method of discriminating

those masses. The variability in peak displacement can be reduced by focusing the push in the

normal tissue region as the variability in physical properties of normal tissue is low compared

to pathological tissue.

Furthermore, the acoustic radiation force push vibrates the medium over a broad range of

frequencies and the emanating shear waves have this broadband characteristic. As the shear

wave propagates in the medium, its frequency content changes, as higher frequencies are

attenuated more than lower frequencies resulting in downshift of the shear wave center fre-

quency. The center frequency at which the medium vibrates at the push location is dependent

on the excitation duration and the shear modulus of the medium [35]. The excitation duration

can be kept constant experimentally, but shear modulus for pathological tissue and normal tis-

sue is different. Hence, an acoustic radiation force push focused inside the suspicious mass

would result in different spectral characteristics of the emanating shear wave when compared

to a push focused outside the suspicious mass. If the push is focused in a region of normal tis-

sue, however, the vibrating medium at the push location will have similar mechanical proper-

ties, resulting in similar spectral properties of the originating shear wave. The change in

acoustic properties of the propagating shear wave would then arise due to the mechanical

properties of the medium in which the shear wave is propagating. This change in acoustic

properties of the propagating shear wave can be used to differentiate pathological tissues.

For a small sized mass with the push focused inside the mass, interference could arise from

the shear wave reflected by the mass boundary resulting in a biased estimation of phase veloc-

ity. Moreover, if the small sized mass has high shear modulus, tracking the shear wave inside

the mass could be challenging due to the small travel time inside the mass and insufficient

sampling rate.

To address the above mentioned concerns, a phantom study was conducted to determine

the optimal push location. A CIRS (CIRS, Norfolk, VA) elasticity QA phantom (model 049)

with spherical inclusion was used. The inclusion with a radius of 0.492 cm and elasticity of 80

kPa was studied to determine the optimal push location. The phantom does not have a cali-

brated viscoelastic response but no such calibrated phantom was available commercially. The

push was focused both inside and outside the inclusion; the resulting shear waves were studied

for optimal push location.

Fig 2(a) shows the B-mode image for the elasticity phantom along with push location

(shown in red) outside the inclusion. Fig 2(b) illustrates the particle velocity map obtained

from displacement tracking of the propagating shear wave. The decrease in particle velocity
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for the left wing of the shear wave inside the inclusion suggests that the inclusion was stiffer

than the background. The two horizontal red lines indicate the depth from which the particle

velocities were averaged to construct the xt map of breast tissue motion as shown in Fig 2(c).

Part of the propagating shear wave was reflected from the inclusion boundary and can be seen

in Fig 2(c) as a wave propagating towards the right side of the inclusion around 3 to 5 ms. The

wave selection should be limited to the inclusion region, otherwise it could result in a biased

estimate of group velocity. Fig 2(d) shows the B-mode image of the same elasticity phantom

but the push was focused inside the inclusion. Fig 2(e) shows the particle velocity map for both

the left and right wing of the propagating shear wave. Both wings of the shear wave have simi-

lar values of particle velocity unlike Fig 2(b). Fig 2(f) shows the xt map for the phantom mate-

rial. From the xt map it is difficult to segregate the part of the shear wave which is inside the

inclusion from the background. A time-to-peak method for group velocity estimates the speed

inside inclusion as 2.53 m/s, which pegs the elasticity estimate around 18.75 kPa by assuming a

density of 1000 Kg/m3. The estimated elasticity value is closer to background material (25 kPa)

than the inclusion (80 kPa), implying that the shear wave was propagating outside the inclu-

sion in the background material rather than inside the inclusion.

Elasticity measurements close to the push are not accurate as the tissue close to the push

location vibrates at high amplitude, resulting in poor estimation of particle velocity due to dec-

orrelation in displacement tracking. Hence, if the push is centered inside the suspicious mass,

there would be some region inside the suspicious mass for which the elasticity could not be

estimated accurately. The diameter of the inclusion used in the phantom study was 1 cm,

therefore any mass less than 1 cm with the push focused inside the mass would face the same

challenges. For large masses with sufficient size to accommodate both the displacement dec-

orrelation zone and a few milliseconds of shear wave propagation distance, the push could be

Fig 2. (a) B-mode image of a type IV inclusion (yellow circle) along with push beam location (red dot). (b) Particle

velocity maps showing right and attenuated left wing of the shear wave. (c) Spatio-temporal map for the region selected

by two horizontal red lines, the estimated group velocity for left shear wave is 5.59 m/s. (d) B-mode image of type IV

inclusion along with push beam focused inside the inclusion. (e) Particle velocity map with similar looking left and

right wings of shear wave. (f) Spatio-temporal map with estimated group velocity for right shear wave as 2.53 m/s,

which corresponds to background material.

https://doi.org/10.1371/journal.pone.0205717.g002
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focused inside. However, when the push location is inside the mass, the vibrating medium at

the push location will have acoustic characteristics (center frequency, displacement amplitude)

dependent on the mechanical properties of the suspicious mass. In comparison, normal breast

tissue has lower variance in viscoelastic properties for different patients. In order to limit the

variance in acoustic characteristics of the shear wave, it is recommended to focus the push just

outside the suspicious mass boundary in the normal tissue region. The boundaries of suspi-

cious masses can be subjective and B-mode imaging does not depict the true size of the suspi-

cious mass.

2.6 Examples of estimation of shear elasticity and viscosity in-vivo
Fig 3 outlines the process for estimating shear modulus and shear viscosity in a malignant

mass. Fig 3(a) shows the B-mode image of the suspicious mass (marked in yellow) along with

the push location (marked in red). Fig 3(b) presents a single frame showing the particle veloc-

ity map. The parallel red lines indicate the region from which the particle velocity data were

averaged in the axial direction. Fig 3(c) plots the xt map for axially averaged particle velocity.

The group velocity was calculated by tracking the velocity peaks (red line) and determining

the slope (cg = dx/dt) of the line. The group velocity for the right wing of the shear wave was

4.35 m/s. Fig 3(d) depicts the K-space map obtained after fast Fourier transform (FFT) of parti-

cle velocity data. The center frequency is marked with a black circle. Fig 3(e) plots the phase

velocity as a function of frequency. The phase velocity was calculated by taking the peak signal

at different frequencies. Shear modulus (5.29 kPa) and shear viscosity (7.33 Pa-s) values were

estimated by fitting the phase velocity data to the Voigt model.

Fig 3. Outline of the process for estimating shear modulus and shear viscosity in a malignant mass. (a) B-mode image of the suspicious map, (b) Particle

velocity map showing the left and right wings of shear wave, (c) Xt map showing particle velocity with shear wave marked in red, group velocity was estimated as

4.35 m/s using time to peak method, (d) K-space dispersion map with phase velocity calculated at peak energy for each frequency, (e) Phase velocity experimental

data with Voigt model estimation of viscoelastic parameters.

https://doi.org/10.1371/journal.pone.0205717.g003
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3. Results

3.1 In-vivo results

Out of the 43 patients recruited for the pilot study, 28 met the data selection criteria. Thirteen

patients had malignant masses (8 ductal carcinoma, 3 mammary carcinoma, 1 lobular carci-

noma, 1 metastatic renal cell carcinoma), and 15 had benign masses (6 Fibroadenoma, 3 fibro-

cystic changes, 3 clustered apocrine cysts, 1 fat necrosis, 1 papilloma, 1 pseudoangiomatous

stromal hyperplasia). All suspicious masses had a BIRADS (Breast Imaging Reporting and

Data System) score higher than or equal to 3. The suspicious mass size varied from 5.5 to 39

mm in diameter along the greatest dimension, with malignant masses averaging slightly larger

than benign (15.56 ± 9.37 mm and 13.19 ± 6.23 mm, respectively). The average age of the

cohort was 53.90 ± 14.30 years. Table 1 summarizes the mean and standard deviation values

for shear elasticity, viscosity and retardation time constant for each tissue type.

Fig 4 shows the box plot for shear modulus of benign, malignant and normal tissue calcu-

lated from phase velocity based on the Voigt model. The central box represents the values

from 25th-75th percentile. The horizontal line inside each box represents the median value.

Error bars depict minimum and maximum values. Each datum point (orange circle) is also

represented in the box plot. Malignant masses had the highest median value of shear modulus

followed by benign masses and normal tissue. The difference between shear modulus for

malignant masses and benign masses was statistically significant (p = 7.88�10−6). The

Table 1. Mean and standard deviation values of Voigt-based viscoelastic parameters for malignant, benign and

normal breast tissue.

Histopathology Shear elasticity(kPa) Shear viscosity(Pa-s) τ (ms)

Malignant (n = 13) 16.76±13.10 8.22±3.36 0.68±0.33

Benign (n = 15) 1.40±1.12 2.83±1.47 3.05±1.95

Normal (n = 28) 1.02±0.97 1.41±0.67 2.55±2.45

https://doi.org/10.1371/journal.pone.0205717.t001

Fig 4. Box plot showing shear modulus distribution for benign masses, malignant masses and normal tissue

estimated using a Voigt model with statistically significant differences marked.

https://doi.org/10.1371/journal.pone.0205717.g004
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difference between shear elasticity for malignant masses and normal tissue was also statically

significant (p = 3.68�10−7). However, shear elasticity cannot significantly differentiate between

normal and benign masses. The variance in shear elasticity for malignant masses was much

higher compared to benign masses and normal tissue.

Fig 5 shows the shear viscosity distribution for benign masses, malignant masses and nor-

mal tissue based on the Voigt model. Malignant masses had the highest median value for shear

viscosity, followed by benign masses and normal tissue. The variance of shear viscosity in

malignant masses was much higher compared to benign masses and normal tissue. Shear vis-

cosity was significantly different between malignant and benign tissue, malignant and normal

tissue, and benign and normal (p = 4.13�10–5, 3.67�10–7, and 1.25�10–4, respectively).

Fig 6 shows the estimated τ distribution in milliseconds for benign masses, malignant mas-

ses and normal tissue based on the Voigt model. The median value of τ was lowest in malig-

nant masses and highest in benign masses. The variance in τ of malignant masses was smaller

compared to benign masses and normal tissue. Normal tissue had high variance in τ and

values overlapped with those of the benign masses; thus, no significant differences were found

between the two tissue types. On the other hand, differences in τ values between malignant

and benign tissue, and malignant and normal tissue were significant (p = 6.13�10-, and

4.38�10–4, respectively).

4. Discussion

This study presents a quantitative analysis of viscoelastic properties exhibited by breast tissue

based on the Voigt model. As viscoelastic properties of soft tissue depend on the frequency of

excitation and observation time, the viscoelastic properties of in-vivo breast tissue reported

here are valid only in the frequency range of 50–400 Hz and less than 15 ms of observation

time. Other ultrasound based techniques have also reported time constant values of breast tis-

sues in the sub-hertz range [13, 16].

Fig 5. Box plot showing shear viscosity distribution for benign masses, malignant masses and normal tissue

estimated using a Voigt model with significantly different pathologies marked.

https://doi.org/10.1371/journal.pone.0205717.g005
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Previous work done in MRE for breast tissue have used a single excitation frequency,

thereby limiting the viscoelasticity measurement to that frequency [27]. An impulse excitation,

as proposed in previous papers and demonstrated in-vivo in this study, excites a broad range

of frequencies, enabling the estimation of viscoelastic parameters from a broader range of fre-

quencies. The limitation of this study is that the frequency range above 400 Hz cannot be

observed due to attenuation, which may lead to bias in the estimation of viscoelasticity param-

eters. In this study all frequencies in the 50–400 Hz range were used to estimate the viscoelastic

parameters. The MRI-based method found that malignant masses have higher viscosity than

surrounding tissue [27]. It is not feasible to compare the viscosity values estimated from MRE-

based study with our study as the excitation frequency in MRE was limited to 65Hz. However,

viscosity values from MRE-based study and our study show the same trend with respect to

pathology. Similarly, the τ values cannot be compared as the observation time for our study is

limited to 15ms and the observation time for MRI-based study was close to 10 min. Although

τ cannot be compared quantitatively, the value of τ calculated from Fig 5 of Sinkus et al. [25]

reported that the τ for malignant masses was lower than the τ calculated for benign masses,

which concurs with our results.

Breast tissue is viscoelastic in nature and should not be modelled as purely elastic medium,

since the absence of a viscosity based parameter will lead to bias in estimation of shear elastic-

ity. SDUV enables the estimation of both viscous and elastic parameters of the tissue, leading

to better estimation of shear elasticity and additional information related to shear viscosity.

The SDUV technique is dependent on the model used to parameterize viscoelastic properties

of the medium. A simplistic lumped Voigt model enables easier comparison between benign

and malignant masses without the concern of overfitting when compared to higher order

models. The shear elasticity for malignant mass was higher compared to benign mass, in accor-

dance with the literature. The Voigt model based shear elasticity for malignant and benign

masses was lower than shear wave elastography based elasticity reported in the literature. How-

ever, the two shear elasticities should not be compared since the difference stems from the

modeling technique, frequency of excitation and overestimation of shear elasticity in shear

Fig 6. Box plot showing τ distribution for benign masses, malignant masses and normal tissue estimated using a

Voigt model with significantly different pathologies marked.

https://doi.org/10.1371/journal.pone.0205717.g006
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wave elastography techniques. Furthermore, the effect of dispersion is also ignored in shear

wave elastography, resulting in overestimation of shear elasticity, especially in cases with large

frequency dispersion [11]. The shear elasticity values from SDUV are in the same range as pre-

sented in the literature in the 100 hertz range [27]. The shear elasticity and viscosity values

reported here are not an estimation of the ground truth, but an estimation of shear elasticity

and viscosity based on the Voigt model.

The shear viscosity values for malignant masses showed a higher spread compared to

benign masses or normal tissue implying that some malignant masses might be more viscous

than others; this finding is corroborated by other authors [27]. Both shear elasticity and viscos-

ity are parameters obtained by fitting the shear wave phase velocity, hence the two parameters

are interrelated to each other and their interaction should be studied together. To study the

combined effect of shear elasticity and shear viscosity, it is proposed to use the τ of the Voigt

model, defined as the ratio of shear viscosity to elasticity. It is observed that malignant masses

have lower τ than normal tissue, whereas benign masses have higher τ than normal tissue as

expected from mechano-pathology of pathological tissue.

5. Limitations

Based on the phantom study the acoustic radiation push needs to be focused outside the suspi-

cious mass to ensure that the shear wave propagates inside the mass. The identification of

region which is outside the suspicious mass can be subjective, since boundaries may not be

well-defined and the histological mass size can be larger than its appearance in B-mode imag-

ing [36]. The uncertainty in determining the mass boundary may result in the excited shear

wave emanating from the pathological mass rather than the normal tissue, thus having differ-

ent characteristics and increasing the variability in comparison among the suspicious masses.

This limitation can be circumvented by increasing the distance between the push location and

the apparent suspicious mass boundary.

Challenges inherent to most elastography techniques, in which the imaging transducer is

also used for pushing, is that it is hard to focus near superficial masses while, the push for

deeper masses tends to be weak. These limitations apply to SDUV technique as well. A weak

push or the presence of a highly attenuative mass makes it harder to track the shear wave.

The selection of window from an xt map plays a crucial role in determining the viscoelas-

tic parameters. If the region selected does not belong to the suspicious mass it can lead to a

wrong estimation of viscoelastic parameters, as illustrated in the phantom study. The SDUV

technique is open to subjectivity in selection of xt maps and is reliant on proper selection

of the shear wave propagating inside the suspicious lesion. In small sized masses the shear

wave travels inside the suspicious mass for a limited time, thus only few temporal points are

available (dependent on sampling rate), making the estimation of viscoelastic parameters

more challenging. Small masses with high stiffness can lead to strain hardening, resulting in

small particle displacements with poor quality xt maps. Poor xt maps are also seen in highly

attenuative lesions due to the small particle displacements. The above mentioned reasons

justify the use of a strict rejection criterion for xt maps, thus rendering the method ineffective

for some masses.

Shear wave elastography estimates the speed locally and generates a shear wave speed map.

From the shear wave speed map and with the help of B-mode imaging the elasticity of the sus-

picious mass can be determined. However, creating a viscoelastic map is not feasible with

SDUV, as the process would be computationally very intensive. In addition viscoelastic estima-

tion is not a local process as frequency dispersion has to be observed in some spatio-temporal

window. Larger spatio-temporal windows provide more reliable estimation of dispersion. On
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the other hand breast tissue is heterogeneous, thus a bigger window lumps the viscoelasticity

parameters in one model. A lumped model with largest possible spatio-temporal window was

used in this paper to provide a simplified approach of estimating viscoelastic parameters. In

future works, however, the spatio-temporal window can be further split into smaller windows,

while ensuring reliability of the estimation process, enabling estimation of viscoelasticity

parameters at more spatial locations and a viscoelastic map.

The viscoelastic parameters also depend on the time of observation. Although the time of

acquisition is kept constant the time of observation is decided by the limited region of xt map

selected for 2D FFT. The time of observation was ignored in this study as the difference in

time of observation was expected to be small (few milliseconds) amongst benign and malig-

nant masses.

6. Conclusion

Shear elasticity has been shown to differentiate between malignant and benign masses. Our

findings demonstrate that viscoelastic parameters like shear viscosity and τ can also be used

to differentiate between malignant and benign masses. The high variance of shear viscosity in

malignant masses suggests that different breast cancer pathologies might have different viscos-

ity. τ for malignant mass has a very small spread which enables it to be a more efficient and

reliable biomarker than shear viscosity. Additional studies should be performed on a larger

population to validate these results. Also, phantom experiments demonstrate that it is better

to focus the push just outside the suspicious mass in normal tissue to generate similar shear

waves for different pathologies.
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