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Abstract

Bats are highly diverse and ecologically valuable mammals. They serve as host to bacteria,

viruses and fungi that are either beneficial or harmful to its colony as well as to other groups

of cave organisms. The bacterial diversity of two bat guano samples, C1 and C2, from

Cabalyorisa Cave, Mabini, Pangasinan, Philippines were investigated using 16S rRNA gene

amplicon sequencing. V3-V4 hypervariable regions were amplified and then sequenced

using Illumina MiSeq 250 PE system. Reads were processed using Mothur and QIIME pipe-

lines and assigned 12,345 OTUs for C1 and 5,408 OTUs for C2. The most dominant OTUs

in C1 belong to the Proteobacteria (61.7%), Actinobacteria (19.4%), Bacteroidetes (4.2%),

Firmicutes (2.7%), Chloroflexi (2.5%), candidate phylum TM7 (2.3%) and Planctomycetes

(1.9%) while Proteobacteria (61.7%) and Actinobacteria (34.9%) dominated C2. Large pro-

portion of sequence reads mainly associated with unclassified bacteria indicated possible

occurrence of novel bacteria in both samples. XRF spectrophotometric analyses of C1 and

C2 guano revealed significant differences in the composition of both major and trace ele-

ments. C1 guano recorded high levels of Si, Fe, Mg, Al, Mn, Ti and Cu while C2 samples

registered high concentrations of Ca, P, S, Zn and Cr. Community structure of the samples

were compared with other published community profiling studies from Finland (SRR868695),

Meghalaya, Northeast India (SRR1793374) and Maharashtra State, India (CGS). Core

microbiome among samples were determined for comparison. Variations were observed

among previously studied guano samples and the Cabalyorisa Cave samples were attributed

to either bat sources or age of the guano. This is the first study on bacterial diversity of guano

in the Philippines through high-throughput sequencing.
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Introduction

Bats (Order: Chiroptera) are highly diverse and ecologically valuable comprising 25% of living

mammalian species. The most abundant group of mammals based on the number of individu-

als, they evolved into an incredibly rich diversity that roost in foliages, caves, rock crevices

even in man-made structures[1, 2]. They feed on insects, nectar, fruits, seeds, fish, frogs and

small mammals [3, 4].

Bats serve the ecosystem as pollinators, agents of seed dispersal and sources of guano-based

fertilizers. As biological agents to control pest population, they limit spread of human diseases

and prevent significant economic losses on crops and livestock [4–7]. Through the production

of guano, their accumulated excrement, bats are also responsible for nutrient cycling. As the

main source of energy for a wide range of unique species found on specific caves, guano depos-

its form the basis of cave ecosystems [7]. The formation of bat guano is an interesting interplay

among bats as primary producers, the nutrients present in the food they eat and the biological

and environmental changes inside the cave ecosystem. Guano is noted for its agricultural ben-

efits as an ideal fertilizer attributed to its richness in carbon, nitrogen, potassium and phospho-

rus. In the US, Asia, Cuba and South America, guano is being marketed as the best organic

fertilizer available. In the Philippines, caves in the Bicol Region, Pangasinan and Samal (Davao

del Norte) are few places that produce abundant guano in high risk of disturbance due to ille-

gal extraction. According to local government officials, guano-mining is inevitable since it is

the source of income among the locals and, likewise, a free organic fertilizer for agricultural

crops within the vicinity of the caves.

As prey and predator, bats have been implicated in epidemiologic cycles of several emerging

and re-emerging zoonoses [8] and carriers of pathogenic agents that include more than 200

different types of viruses such as rabies [9], Ebola and Marburg viruses [10–12], and Severe

Acute Respiratory Syndrome (SARS) coronavirus [5, 13, 14]. Fungi likeHistoplasma capsula-
tum [15–18], Geomyces destructans [19] and Pseudogymnoascus destructans [20] were reported

to be isolated, considered as cause of infection and death in hibernating bats. Although bacte-

rial colonization has been observed only on samples of rocks, cave wall and/or ceiling paint-

ings, dripping waters, springs and underwater passages, oligotrophic cave-dwelling microbial

species have been described as phylogenetically diverse with lineages across the breadth of the

bacteria. Presence of pathogenic enteric bacteria mainly from the family Enterobacteriaceae

and some bacterial pathogens common in human and animal diseases (e.g. Pasteurella, Salmo-
nella, Escherichia and Yersinia spp.) [21, 22] was reported to be affected by the foraging habits,

diet and activities of the bats inside and outside of caves. Other bacterial pathogens (e.g. Barto-
nella, Borrelia, Leptospira spp., Serratia, Pseudomonas, Enterobacter, Acinetobacter, Bacillus,
Arthrobacter andMicrococcus spp.) provided evidence for novel species that seem to be specific

for bat hosts with probable medical importance to humans and other animals [23–26]. These

harmful microorganisms may also contribute to continuous decline of bat population in caves.

In addition, human-induced environmental stresses such as habitat destruction and fragmen-

tation, overhunting for bush meat, and increased use of pesticides also have negative impact to

bat population in caves [4]. Thus a persistent call for global bat conservation is necessary.

So far, the discovery of novel and potentially pathogenic bacteria and its interaction with

the environment is limited by culture-based approaches. Culture-independent methods are

essential to understand the genetic diversity, population structure, and ecological roles of the

majority of microorganisms [27]. High-throughput screening allows the paradigm shift on

microbiology and bioinformatics towards modern metagenomics that augment the limitations

of culture-based methods [28, 29]. Availability and accessibility of cost-effective next-genera-

tion high-throughput sequencing methods improved understanding of the assembly, evolution
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and functions of ecological communities. Metagenomic studies using 16S rRNA gene sequenc-

ing were used to characterize gut and guano microbiome of several bat species [22, 27, 30–32]

and feces of different animals to determine their diet as well as the diversity of metabolic func-

tional genes (i.e. enzymes) [33–35].

To date, there have been no reports on the bacterial diversity of guano from Philippine

caves. There is limited local information in terms of benefits and harmful effects as well as eco-

logical importance. Bacterial diversity of guano may give insights on its potential as source of

nutrients for plant growth and their impacts on human health. This is the first report on the

bacterial diversity of bat guano using metagenomics in the Philippines particularly at Caba-

lyorisa Cave, Mabini, Pangasinan.

Materials and methods

Sample collection

Guano samples were collected from two large chambers, Chamber 1 (C1) and Chamber 2 (C2)

in Cabalyorisa Cave Complex, Mabini, Pangasinan, Philippines (N16˚00’22.6"E and N119˚

56’35.2"E, respectively at 100 msl). Prior to sampling, a Wildlife Gratuitous Permit (WGP)

(2015–002) has been granted by the Department of Environment and Natural Resources

(DENR), La Union, Philippines. The WGP allowed the conduct of field collection for the

assessment of bat guano community in selected caves in Mabini, Pangasinan, Philippines with

clearances and endorsements of the local government unit.

The first guano sample, C1, was collected from a chamber located 50 meters from the cave

entrance. Patches and pool of powdery guano were collected in between rocks, rock crevices

and on pot holes of the breakdown pile of about 3–4.5 m high and 3–5 m from the ceiling

using sterile hand trowel. The chamber was about 9 m at its widest and near a pool of water.

The second sample, C2, was collected 77 m further up near the flyway of bats. It is 6 m at its

widest with ceiling of 3 to 7 m high [36] and host sizable roost of bats of about 10–100 bat indi-

viduals. This chamber is an important flyway for bats roosting further in the cave and host

about 1–10 bat individuals. The floor of the site was uneven, made of large boulders and rock

formations that holds pool of guano. Guano were collected from seven sites in each chamber,

pooled and placed inside re-sealable zipper plastic bags using sterile shovel. Composite sam-

ples were then brought to the laboratory inside an ice chest and subjected to immediate DNA

extraction and X-ray Fluorescence (XRF) spectrophotometric analysis.

Bat species identification

Bats were identified through a combination of cave bat survey methods such as live-trapping

with mist nets, acoustic analysis using a bat detector (Dodotronic Ultranic 250K, Brazil) and

visual surveys. Six meter long mist nets were placed along the entrance and flyways inside the

cave. Individual bats were collected and identified by the Zoological and Wildlife Museum of

the University of the Philippines Los Baños Museum of Natural History (UPLB-MNH) based

from the guide “Key to the Bats of the Philippine Islands” [37]. Bats were immediately released

upon identification. No bats were killed in this study.

Elemental analysis of bat guano

The elemental compositions of bat guano C1 and C2 were analyzed semi-quantitatively using

handheld X-Ray Fluorescence Spectrometer (Delta Professional, Olympus, Japan) at the

Earth Material Science Laboratory of the National Institute of Geological Science, University

of the Philippines Diliman. Guano samples were dried at 105˚C and elemental analysis was
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done in triplicates. Light elements, Silver (Ag), Cadmium (Cd), Tin (Sn) and Antimony (Sb)

were removed to normalize the results and reported as semi-quantitative or based on a relative

composition.

DNA extraction, amplicon library construction and sequencing

Total DNA was extracted using the PowerSoil DNA Isolation Kit (MoBio, Solana Beach, CA,

USA) and used as template for polymerase chain reaction (PCR) amplification with primer set

341F (5’-CCTACGGGNGGCWGCAG-3’ and 805R: 5’-GACTACHVGGGTATCTAATCC-3’)

targeting the V3-V4 region of the 16S rRNA gene. Amplifications were performed in a final

volume of 50 μl containing 10X Taq buffer, dNTP mixture, 10 mM of each primer and 2 U of

Taq polymerase (ExTaq, Takara, Japan). Cycling conditions in C1000 Touch thermal cycler

(Bio-Rad, Hercules, CA, USA) were: initial denaturation at 95˚C for 3 min; followed by 25

cycles of 95˚C for 30 s, 55˚C for 30 s, 72˚C for 30 s; with final extension at 72˚C for 5 min [38].

The PCR products were confirmed using gel electrophoresis and purified using the Agencourt

AMPure XP Reagents beads (Bechman Coulter, Brea, CA, USA). Equal amounts of purified

product were pooled, and final product quality were assessed on a Bioanalyser 2100 (Agilent,

Palo Alto, CA, USA) using a DNA 7500 chip. Sequencing was performed by Chunlab Inc.

(Seoul, Republic of Korea) with Illumina MiSeq 250 paired-end system (Illumina, San Diego,

CA, USA), in accordance with the manufacturer’s instructions.

Bioinformatic and statistical analyses of C1 and C2 guano

Data preprocessing and taxonomic classification of C1 and C2 sequence reads were carried

out in Mothur pipeline [39]. Forward and reverse reads, after primer and barcodes removal,

were aligned to form one continuous DNA sequence. Sequences that contained ambiguous

bases less than 430 bp in length, or with homopolymers of greater than 8 bp were discarded.

Chimeras were identified and removed using UCHIME [40]. SILVA reference database release

128 [41] was used for sequence alignments and classification. The microbial diversity was ana-

lyzed using QIIME software [42]. In addition, the upstream analyses of microbial sequences

through Mothur pipeline were also complemented with QIIME tool.

Alpha diversity analysis included Shannon index, Simpson, Chao1, and observed number

of bacterial species. The functional profiles of microbial communities were predicted by the

software “Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

(PICRUSt)” and Kyoto Encyclopedia of Genes and Genomes (KEGG) Database [43]. The phy-

loseq, biom, and pheatmap R packages were used for data analysis and plotting. Metagenome

sequence data of C1 and C2 guano are available at NCBI with accession no. SRP101645.

Comparative analysis of bat guano microbiome

C1 and C2 bat guano data were compared with published microbiome profiles retrieved

from NCBI SRA (Sequence Read Archives) in fastq or fasta format [22, 35, 44], according to

protocol. Briefly, data were quality filtered using Mothur. Good quality sequences, defined as

sequences having a length of at least 100 bases, contain homopolymers of not more than 5 bp,

and having zero ambiguity were used for comparison. All the filtered sequences were merged

into a single fasta file and processed using QIIME pipeline. SILVA123_QIIME_release was

used as reference to pick OTUs employing a closed reference approach based from different

studies that utilized different regions of the 16S rRNA gene. Non-bacterial OTUs were

removed from the dataset. Core OTU was defined as an OTU present in 100% of the samples.

Correspondence analysis of the samples was done in R using the FactoMineR package [45].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0200095 July 19, 2018 4 / 17

https://doi.org/10.1371/journal.pone.0200095


Results and discussion

Cabalyorisa Cave, Mabini, Pangasinan

Mabini is a third-class municipality located in the Western district of the Province of Pangasi-

nan, Philippines. Mabini, named after the sublime paralytic Philippine hero, was once part of

the Province of Zambales and formerly known as Balincaguin or “Bali lan Caguin”, a Zambal

phrase which translates to “Abode of Bats” [46]. The municipality lies at about 15˚55’00” and

16˚52’00” longitudes and about 119˚56’00” and 120˚04’00” latitudinal lines and bounded on

the north by the City of Alaminos and town of Sual, on the northwest by the municipalities of

Agno and Burgos and on the southwest by the municipality of Dasol [36, 46]. The town was

formerly named Balincaguin because of its numerous karstic and limestone caves that include

Cacupangan Cave, Binmatya Cave, Ara-saas and Santo Rosario Caves, and Tinmori Tower

Karst [47] which serve as roosting sites for various species of bats.

Bat guano

A combination of several approaches on bat survey, namely, live-trapping with mist nets,

acoustic monitoring using bat detector and visual surveys, were used. Bats inside Cabalyorisa

Cave were mainly insectivorous and identified asMiniopterus australis, little long-fingered bat

or little bent-winged bat;M. schreibersii, a common bent wing bat and Rhinolophus amplixe-
dectus, the horse shoe bat. Encinares (2016) documented that aside from macroarthropods,

microarthropods observed included isotomid, sminthurid and an unidentified springtail, Geo-
laelaps, Oplitis, Deraiophorus, two uropodids and one oribatd mite, and an unidentified brown

ant. Presence of these microarthropods confirmed the insect-feeding nature of the bats roost-

ing in Cabalyorisa Cave [36].

XRF spectrophotometric analyses of C1 and C2 samples revealed significant differences in

the composition of both the major and trace elements (Table 1). C1 guano had high levels of

Si, Fe, Mg, Al, Mn, Ti and Cu while C2 samples yielded high concentrations of Ca, P, S, Zn

and Cr. The differences may be attributed to the decaying process once the guano were

Table 1. Elemental composition of bat guano from Cabalyorisa Cave using XRF spectrophotomer.

Elementsa, %

Sample SiO2 CaO Fe3O4 P S MgO Al2O3 Mn Zn Ti Cu Cr2O3

C1 26.52 23.63 15.45 6.12 1.66 7.45 13.61 4.72 0.21 0.35 0.23 0.05

C2 15.83 38.68 11.51 13.01 4.94 5.68 8.19 1.15 0.40 0.17 0.20 0.25

aLegend:

SiO—Silicon monoxide

Al2O3—Aluminum oxide

CaO—Calcium oxide

Mn—Manganese

Fe3O4—Iron oxide

Zn—Zinc

P—Phosphorus

Ti—Titanium

S—Sulfur

Cu—Copper

MgO—Magnesium Oxide

Cr2O3—Chromium oxide

https://doi.org/10.1371/journal.pone.0200095.t001
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deposited on the ground or on rock crevices. Decomposition of bat guano is affected by vari-

ous physical and environmental factors [22] and the dynamic nature of the microorganism

present. The conversion of organic and inorganic matters by the microorganism present, in

turn, results in the change of pH due to the release of ammonia. Thus, the resulting high levels

of nutritional contents from major and trace elements are vital components of organic and

inorganic compounds used in biosynthesis and energy production supporting the growth and

diversification of guano-borne bacteria [48]. Sequentially, high nutrient levels of guano pro-

mote the growth of diverse groups of microorganisms.

Richness and diversity analysis of bacterial community composition from

two guano samples

A total of 220,152 and 169,161 reads were obtained from C1 and C2, respectively. After contig

assembly, trimming, and chimera removal, a total of 104,764 and 87,379 valid reads were

obtained for C1 and C2, respectively. Valid reads for C1 were assigned to 12,435 OTUs, while

valid reads for C2 were assigned to 5,408 OTUs.

Rarefaction was done to a maximum depth of 85,000 counts per sample and 10 replicates

per iteration. The results of the Shannon, Simpson, and Chao1 indices, and the number of

observed species are show apparent variations between the two samples (Fig 1). Analysis of

within-sample alpha diversity suggests that the bacterial community of C1 and C2 samples

exhibited high biodiversity in all tested metrics, with C1 being more diverse than C2. Compari-

son of observed species and Chao1 diversity indices suggest adequate sampling of the commu-

nities in both samples.

In order to determine the difference in bacterial diversity between two cave locations, the

true diversity was computed using Shannon-Weiner Index and Shannon entropy. Since diver-

sity indices alone cannot distinguish two or several unequal samples, it is desirable to deter-

mine the number of equally-common genus termed as “effective genus number.” In this study,

effective genus number was calculated as a function of the natural exponent raised to a Shan-

non entropy value, estimated according to Chao and Shen’s formula from the Shannon index

[49, 50]. C1 was computed to have an effective genus number of 11.33, while C2 effective

genus number was 2.04. Thus, the bacterial diversity at genus level in C1 is five times higher

compared to C2, despite yielding lesser number of OTUs.

Fig 1. Shannon, Simpson, and Chao1 indices, and the number of observed species in bat guano samples, C1 (red)

and C2 (blue).

https://doi.org/10.1371/journal.pone.0200095.g001
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Bacterial composition in the two guano samples

Bacterial OTUs of the representative sequences were taxonomically assigned to a total of 30

phyla excluding the unclassified reads. Most OTUs within these phyla belonged to unclassified

groups suggesting the presence of novel groups of microorganisms. Apparent dominance of

Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, candidate phylum TM7

(or Saccharibacteria), and Planctomycetes in the C1 and C2 guano samples was observed (Fig

2). C1 and C2 shared 2,467 OTUs (24.8%) classified under 15 phyla, despite being obtained

from the same cave system inhabited by the same species of bats. The differences between C1

and C2 microbiome profiles were attributed to these factors: a) the physico-chemical proper-

ties of guano; b) decaying process or age of the sampled guanos; c) host species; d) surrounding

environment.

Core microbiome of C1 and C2 revealed 117 shared genera. Fourteen genera have relative

abundance greater than 1% which is dominated by unassigned Xanthomonadaceae andMyco-
bacterium (Fig 3). Other significantly abundant genera on both C1 and C2 samples include

Bacillus (1.9% and 0.18%), Luteibacter (3.8% and 5.2%) and Rhodococcus (1.6% and 0.14%).

Much of the core microbiome members are yet to be classified.

C1 and C2 samples harbored potentially pathogenic genera such as Burkholderia, Coryne-
bacterium, Francisella, Legionella, Mycobacterium, Pseudomonas, and Rickettsia. This sug-

gested that guano may act as source of microorganisms that could potentially be pathogenic

to humans and animals [51]. The frequent intra- and inter-roost movements and long dis-

tance migrations of bats enhance the potential of bacterial transmission among individuals

[17, 22, 25, 52]. Presence of beneficial bacteria in bats like probiotics can provide vital func-

tions to their host such as processing of skin proteins, freeing fatty acids to reduce invasion

of transient microorganisms and inhibiting pathogenic microorganisms [53–57]. Pseudomo-
nas spp. isolated from bats, amphibians and plants produce antifungal properties particu-

larly against Pseudogymnoascus destructans, a causative fungus of white-nose syndrome in

bats [57]. Dietary habits were, likewise, reported to affect the bat gut microbiome and allow

Fig 2. Comparison of the phylum level distribution of bat guano samples, C1 and C2.

https://doi.org/10.1371/journal.pone.0200095.g002
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the acquisition and transmission of infectious agents to other bats and organisms inside a

cave. [53–55]. Indeed, several insects consumed by insectivorous bats have been found to

harbor harmful bacteria and indigenous bacteria common in human and animal diseases,

including Salmonella, Yersinia or Campylobacter species and several enteric pathogens

[22, 25, 54, 58–64]. Similarly, contaminated fruits [51] or water [25] might also be possible

sources of bacteria.

Many members of identified core microbiome of C1 and C2 were uncultured or unclassi-

fied. These data validate possible presence of novel microorganisms found in the guano sam-

ples from Cabalyorisa Cave, Mabini, Pangasinan.

Functional profiles of the two guano samples

A total of 1136 OTUs were used to predict the functional profile of the microbial communities.

Using PICRUSt, genes found to be involved in metabolism of carbohydrates, amino acids,

nucleotides, lipids, xenobiotics and other compounds were both equally abundant in C1 and

C2. Pathways involved in biosynthesis of other secondary metabolites such as antimicrobials

(i.e. streptomycin biosynthesis, novobiocin biosynthesis, stilbenoid, diarylheptanoid and gin-

gerol biosynthesis, penicillin and cephalosporin biosynthesis, etc.) are inferred based on the

samples. Other pathways involved in metabolism of xenobiotics and of other compounds (i.e.

polycyclic aromatic hydrocarbon degradation, chloroalkane and chloroalkene, naphthalene,

benzoate, aminobenzoate degradation, bisphenol, caprolactam, etc.) were also predicted

(Fig 4).

Based on predicted functions of C1 and C2 microbiome, the enrichment of genes related to

pathways involved in metabolism of carbohydrates, amino acids, lipid, and energy were com-

parably abundant in C1 and C2. This suggested role of microorganisms active in decay and

biogeochemical processes. Moreover, pathways involved in the biosynthesis of secondary

metabolites such as antimicrobials and other degrading recalcitrant compounds indicated

presence possible novel of microorganisms that produce these metabolites.

Fig 3. Relative abundance of dominant core bacterial genera present in bat guano samples, C1 and C2.

https://doi.org/10.1371/journal.pone.0200095.g003
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Fig 4. Relative abundance of predicted function of C1 and C2 guano microbiome.

https://doi.org/10.1371/journal.pone.0200095.g004
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Comparative analysis of bat guano microbiome

Bat guano microbiome have been reported from composite guano collected on the cave floor

(no information about the host bats) and on fresh and decaying guano (source bat is Rousettus
eschenaultia) from Robber’s Cave in India [22]. Analysis of C1 and C2 microbiome data along

with previous data from NCBI GenBank database revealed differences in terms of composition

and relative proportion of bacterial communities. The relative abundances of major phyla in

previous studies were different. Quality filtered and analyzed sequence reads (SRR868695)

from the study of Veikkolainen et al. (2014) [44] showed only four dominant phyla, namely,

Chlamydiae (50%), Proteobacteria (27.8%), Firmicutes (16.7%), and Bacteroidetes (5.6%). In

the SRR1793374 study of de Mandal et al. (2015) [34] and the CGS study of Banskar et al.

(2016) [22], at least 28 and 22 bacterial phyla were detected (Fig 5), respectively. Actinobac-

teria, Chloroflexi, Planctomycetes, and Proteobacteria dominated in the study of de Mandal

et al. (2015) [35] while Proteobacteria (54.2%), Bacteroidetes (24.4%) and Actinobacteria

(8.6%) were the most dominant phyla in the CGS sample of Banskar et al., (2016) [22].

To further compare the samples, beta diversity analysis using CGS sample of Banskar et al.,

(2016) [22], the composite guano samples of de Mandal et al., (2015) [35] and the C1 and C2

samples were done in QIIME. This comparison was conducted for the representatives of

decaying guano samples. The core microbiome of CGS, composite guanos, and C1 and C2

showed 35 core OTUs (Fig 6). At the Phylum level, the major phyla common to all samples

are Acidobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Proteobacteria, and Saccharibac-

teria. Bray-Curtis distance and UPGMA cluster analyses revealed that C1 and C2 guano sam-

ples were more similar than the composite guano and CGS sample. This suggested that C1

and C2 microbiome exhibited some unique microbiome profiles, further illustrated in the

Fig 5. Phylum level distribution of different microbiome studies compared.

https://doi.org/10.1371/journal.pone.0200095.g005
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correspondence map of four guano samples shown in Fig 7. Moreover, CGS and SRR1793374

microbiome profiles were remarkably different from those of C1 and C2.

Across samples, relatively high abundance of Actinobacteria suggested that members of this

phylum were conserved in bat guano. Growth of acidophilic Actinobacteria was favored due

to nutrient-rich acidic bat guano [65].

At the genus level, core microbiome of CGS, SRR1793374, C1 and C2 samples shared 27

bacterial genera (Fig 8). Majority of the 27 identified core genera are from Actinobacteria, 12,

and from Proteobacteria, 11. Other genera include Telmatobacter (from Acidobacteria), uncul-

tured Chloroflexi, Leptospirillum (Nitrospirae), and an uncultured Saccharibacteria. Relative

abundance of each genus varied across the samples. Streptomyces was one of the most abun-

dant genera in the core microbiome, followed byMycobacterium (Fig 8). A number of genera

under Actinobacteria isolated from limestone caves, such as Streptomyces and Actinomyces,
were known to produce antimicrobial compounds [66, 67]. Furthermore, some genera in the

core microbiome, such asMycobacterium, Burkholderia and Leptospirillum, were known to

Fig 6. Venn diagram showing the shared OTUs among the different microbiome studies compared.

https://doi.org/10.1371/journal.pone.0200095.g006
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have pathogenic species. The observed four microbiomes (including this study) shared com-

mon OTU under the Enterobacteriaceae family (Genus: Cronobacter). Proteobacteria were

overrepresented in C1, C2 and CGS samples while Bacteroidetes were relatively most abun-

dant in CGS [22]. Chloroflexi and Planctomycetes were most abundant in SRR1793374 [35]

relative to other samples.

Comparing guano microbiome data of C1 and C2 samples with data on composite and

decaying guano revealed that it was more similar to each other and were highly different in

microbial composition. Differences among the samples can be explained by origin, host bat

species and its diet, duration of the decaying process or age of the guano and other physico-

chemical properties. In terms of diet, the identified bats (Miniopterus schebersii, M. australis
and Rhinolophus amplixedectus) were observed to be mainly insectivorous, while R. eschenaul-
tia from Robber’s Cave is frugivorous. Phillips et al. (2012) reported that herbivorous and

reproductively active bats carried more diverse microbiota than carnivorous and reproduc-

tively inactive individuals [68]. According to Carillo-Araujo et al. (2015), diet primarily

defined the gut microbiome [62]. Banskar et al. (2016) observed that dietary overlap among

frugivorous and insectivorous bats explained the similarities in gut microbial communities

[25, 48]. Microbiome profiles observed in fresh and decaying guano might have been affected

Fig 7. Correspondence analysis map of the decaying guano samples at genus level.

https://doi.org/10.1371/journal.pone.0200095.g007
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by the age of the guano or by the decaying process dependent on physical and environmental

factors [25]. As the guano age, microorganisms initially present in the guano carry out various

biogeochemical processes such as organic and inorganic nutrient cycles leading to changes

in pH and nutritional contents determining increase in bacterial growth and diversity.

This could explain the difference in microbiome of fresh and decaying guano observed by

Banskar et al. 2016 [22]. Microorganisms present on the soil or cave floor where the guano,

was obtained also contributed to the differences.

Conclusion

High-throughput sequence-based analysis with Illumina MiSeq was used to describe the first

in-depth study on bacterial community profiles of bat guanos collected in a Philippine cave.

The microbiome profiles of the Cabalyorisa bat guano exhibited unique characteristics. Meta-

genomic analysis of OTUs from bat guano revealed it as a source of potentially pathogenic

bacteria and/or novel functional genes. Difference on bacterial diversity between C1 and C2

samples may be attributed to differences of host species, diet and other physico-chemical char-

acteristics of the guano and its environmental surroundings. This first report on bat guano col-

lected in Cabalyorisa Cave, Mabini, Pangasinan stirred scientific interest for possibilities of

isolating and characterizing novel bacteria with multiple functions for production of antibiot-

ics and enzymes. On the downside, the presence of potential pathogenic bacteria may impose

health hazards to local folks harvesting guano for agricultural purposes.
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