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Extracellular circular RNA profiles in 
plasma and urine of healthy, male 
college athletes
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Circular RNA (circRNA) are a recently discovered class of RNA characterized by a covalently-bonded 
back-splice junction. As circRNAs are inherently more stable than other RNA species, they may be 
detected extracellularly in peripheral biofluids and provide novel biomarkers. While circRNA have 
been identified previously in peripheral biofluids, there are few datasets for circRNA junctions from 
healthy controls. We collected 134 plasma and 114 urine samples from 54 healthy, male college athlete 
volunteers, and used RNASeq to determine circRNA content. The intersection of six bioinformatic 
tools identified 965 high-confidence, characteristic circRNA junctions in plasma and 72 in urine. Highly-
expressed circRNA junctions were validated by qRT-PCR. Longitudinal samples were collected from a 
subset, demonstrating circRNA expression was stable over time. Lastly, the ratio of circular to linear 
transcripts was higher in plasma than urine. This study provides a valuable resource for characterization 
of circRNA in plasma and urine from healthy volunteers, one that can be developed and reassessed as 
researchers probe the circRNA contents of biofluids across physiological changes and disease states.

Background and Summary
The advent of next-generation sequencing has spurred the discovery of a growing list of RNA biotypes, many of 
which are detectable across species, detected in numerous biofluids, and have biological function. While many 
studies have focused on microRNAs (miRNA), several other small RNA species (e.g. piwi-interacting RNAs 
(piRNA), tRNA fragments, and Y RNA fragments have been detected across a range of biofluids and are being 
developed as clinical biomarkers1–4. In addition to these linear RNAs, the discovery and detection of circular 
RNAs (circRNA), those with a covalently closed loop structure, have gained attention.

CircRNAs were initially discovered by electron microscopy, in the 1970s, as viroid molecules5. Nearly two 
decades later, circRNA were identified for a handful of mammalian genes6–8. Though initially thought to be rare 
splicing events, circRNAs have recently been identified as an abundant, endogenous RNA species in a number of 
organisms from Archaea to yeast, plants, worms, flies, fish, and mammals9–11. Additionally, circRNAs are abun-
dantly expressed in a number of human tissues and cell types, and circRNA expression changes during develop-
ment, and as a response to extrinsic factors such as stress, immune response, and hormonal stimuli12–17. These 
endogenous RNAs are characterized by their circular structures, which are formed by a back-splicing event that 
covalently links the 3′ “tail” splice donor with the upstream 5′ splice acceptor “head” of the transcript, forming 
a back-spliced, or “head-to-tail” junction. While circRNA function is still being elucidated, there are examples 
of circRNA inhibiting microRNA, regulating alternative splicing, and modulating the expression of parental 
genes18–22.

In comparison to their linear counterparts, circRNA transcripts can be more abundant and have greater 
stability as they are resistant to linear decay mechanisms and do not contain 5′-3′ polarity nor polyadenylated 
tails14,21,23,24, suggesting feasibility as stable biomarkers. CircRNA stability and detection in biofluids, saliva25, 
blood24,26–30, and urine31–33, comes, in part, from their being protected in extracellular vesicles28,34–36. Changes 
in circRNA expression is altered in multiple diseases, including preeclampsia, glioblastoma and colorectal 
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cancer30,37,38. More recently, circRNAs in tumor tissues, as determined by next-generation sequencing, corre-
lated with disease progression39,40. Urine circRNAs correlated with kidney rejection post-transplant31, while 
differentially expressed circRNAs have been determined in plasma exosomes of lung cancer patients versus con-
trols41. Most studies of circRNA have small sample sizes or are based on targeted microarray data, rather than 
discovery-based methods. This dataset includes more than 100 samples from 54 volunteers from two easily acces-
sible biofluids (plasma and urine). In some cases, multiple samples were collected from the same participant 
longitudinally, allowing us to assess the reliability of circRNA detection in biofluids.

The stability and abundance of circRNAs led us to investigate detection in two easily accessed biofluids: 
plasma and urine. As the volunteers were part of a larger study elucidating concussion biomarkers in male, col-
lege athletes, the samples are derived from young (18–25), healthy, male volunteers as depicted in Table 1. The 
longitudinal sample collections of plasma and urine are depicted in Online-only Table 1, including the number of 
circRNAs identified in each biofluid and those circRNAs observed concurrently in the biofluids. We identified cir-
cRNA in plasma (n = 134) and urine (n = 114), using RNAseq data followed by one of six different bioinformatic 
tools (Fig. 1). The intersection of the 6 bioinformatic tools provides a catalog for circRNA in plasma (Fig. 2a) and 
urine (Fig. 2c).

As there are few datasets with circular RNAs cataloged in clinically-relevant biofluids, we expect this data to 
contribute to the characterization of circRNAs in young, healthy males. While this might be a direct comparator 
for concussions, or other diseases more prevalent in young men, we also expect this dataset to help begin to fill 
out a broader assessment of circRNAs present in healthy populations.

Methods
Sample collection and participants.  Samples were collected from healthy, male volunteers, ages 18–25, 
with consent and approval from the Western Institutional Review Board (WIRB) study ID #1307009395. All 
participants provided written consent prior to enrollment. We obtained plasma (n = 134) and urine (n = 114) 
samples from 54 healthy male volunteers. In 71.4% of participants, both biofluid types were collected from the 
same individual. Blood samples were collected in EDTA tubes, and urine was collected in sterile cups. After 
collection, samples were placed in a cooler with ice packs and transported from Arizona State University to the 
Translational Genomics Research Institute, within 2–3 hours of collection. Blood samples were spun down at 
1320 x G for 10 minutes at 4 °C, and 1 mL aliquots of plasma were collected in RNase/DNase free microcentrifuge 
tubes (VWR) and stored at −80 C. Urine samples were spun at 1900 x G for 10 minutes at 4 °C and 15 mL aliquots 
were collected in 50 mL conical tubes for storage at 80 °C.

RNA isolation, library preparation, and sequencing.  For plasma samples, total RNA was isolated 
from 1 mL plasma using the mirVana PARIS RNA and Native Protein Purification Kit (Thermo Fisher, Cat. No.: 
AM1556) as in Burgos et al.42, treated with the DNA-free DNA Removal Kit (Thermo Fisher, Cat. No.: AM1906), 
and purified and concentrated with RNA Clean & Concentrator – 5 columns (Zymo Research, Cat. No.: R1016) 
by following Appendix C in the kit’s protocol. For urine samples, total RNA was isolated from 15 mL urine using 
Norgen’s Urine Total RNA Purification Maxi Kit (Slurry Format) (Norgen, Cat. No.: 29600), treated with the 
RNase-Free DNase Set (Qiagen, Cat. No.: 79254), and concentrated with the speed vacuum. The isolated RNA 
was quantitated with Quant-iT Ribogreen RNA Assay (Thermo Fisher, Cat. No.: R11490). Samples were not 
ribo-depleted, double-stranded cDNA was synthesized from 10 ng total RNA with the SMARTer Universal Low 
Input RNA Kit for Sequencing (Clontech, Cat. No.: 634940) using thirteen PCR cycles. The double-stranded 
cDNA was quantitated with the Qubit dsDNA HS Assay Kit (Thermo Fisher, Cat. No.: Q32854). For each healthy 
control sample, Illumina-compatible libraries were synthesized from 2 ng double-stranded cDNA with Clontech’s 
Low Input Library Prep Kit (Clontech, Cat. No.: 634947) using four mandatory PCR cycles plus ten additional 
cycles. Each library was measured for size via Agilent’s High Sensitivity D1000 Screen Tape and reagents (Agilent, 
Cat. No.: 5067–5602 & 5067–5585) and measured for concentration via the KAPA SYBR FAST Universal qPCR 
Kit (Kapa Biosystems, Cat. No.: KK4824). Libraries were then combined into equimolar pools, and each pool was 
measured for size and concentration. Pools were clustered onto a paired-end flowcell (Illumina, Cat. No.: PE-401–
3001) with a 20% v/v PhiX v3 spike-in (Illumina, Cat. No.: FC-110-3001) and sequenced on Illumina’s HiSeq. 
2500 with TruSeq v3 chemistry (Illumina, Cat. No.: FC-401-3002). The first and second reads were each 83 bases.

CircRNA prediction.  Samples were demultiplexed and raw fastqs generated using CASAVA (v1.8.2, 
Illumina). Raw fastqs were trimmed using cutadapt (v1.9) with a quality score cutoff of 30 and a minimum length 
of 30 bp43. For each sample, 6 different algorithms (Table 2) were used to predict circRNA: KNIFE v1.444, find_
circ21, MapSplice245, CIRCexplorer46, CIRI247, and DCC48. Indices of the GRCh37/hg19 genome were created 
using bwa and STAR v2.4.0j using default parameters49,50; bowtie and bowtie2 genome indices were downloaded 
with the KNIFE package51,52. Reads were mapped to the genome with the recommended aligner and alignment 
parameters for each program: STAR v2.4.0j for DCC and CIRCexplorer, bowtie2 v2.2.1 for find_circ and KNIFE, 
bowtie v0.12.9 for MapSplice2, and bwa v0.7.13 for CIRI2. CircRNA prediction was then completed with the 
suggested parameters for each program, with the exception of incorporating a minimum 18nt overlap on either 
side of the junction. CircRNAs were kept for downstream analysis if they 1) had 2 or more junction counts and 2) 
were identified in at least 5 samples for each respective program.

Analysis of predicted circRNA.  The version of CIRCexplorer used here does not support paired-end 
data; therefore, circRNA prediction was performed on each pair separately and then combined for analysis. For 
each program, BED files containing count expression data were created from the output data. CIRCexplorer, 
KNIFE, and find_circ output files all produce output files with 0-based coordinates while CIRI2, MapSplice, 
and DCC output files have 1-based coordinates; therefore, all coordinates were converted to a 0-based system 
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Participant # plasma samples # urine samples Age Racial or Ethnic Category Protocol dbGaP Participant ID

001 1 1 19 AA RNAseq 2048063

002 1 1 20 AA RNAseq 2048064

004 3 3 22 AA RNAseq 2048065

005 5 1 21 AA RNAseq 2048066

006 3 3 22 W RNAseq 2048067

007 3 5 20 AA RNAseq 2048068

008 2 0 21 H RNAseq 2048069

010 3 2 21 AA RNAseq 2048070

011 4 6 20 AA RNAseq 2048071

013 2 5 20 HAW RNAseq 2048072

014 3 4 22 W RNAseq 2048073

015 1 1 20 HAW RNAseq 2048074

019 3 1 23 AA RNAseq 2048075

022 2 6 N/A W RNAseq 2048076

023 0 1 19 AA RNAseq 2048077

024 7 6 21 AA RNAseq 2048078

025 2 2 20 AA RNAseq 2048079

029 2 2 21 W RNAseq 2048080

030 3 2 22 AA RNAseq 2048081

031 5 2 23 W RNAseq 2048082

036 0 1 21 W RNAseq 2048083

039 4 3 22 W RNAseq 2048084

042 1 0 23 AA RNAseq 2048085

044 1 2 22 W RNAseq 2048086

045 5 5 20 W RNAseq 2048087

046 7 4 22 AA RNAseq 2048088

048 2 1 21 AA and H RNAseq 2048089

049 5 3 22 AA RNAseq 2048090

170 1 1 18 Asian RNAseq 2048091

201 3 5 N/A AA RNAseq 2048092

202 0 3 22 AA RNAseq 2048093

203 9 4 22 AA RNAseq 2048094

204 1 0 N/A AA RNAseq 2048095

205 1 1 N/A N/A RNAseq 2048095

206 5 0 20 AA RNAseq 2048097

207 2 1 20 HAW RNAseq 2048098

208 1 0 19 AA RNAseq 2048099

209 1 1 20 W and H RNAseq 2048100

210 1 1 21 AA RNAseq 2048101

211 1 0 N/A N/A RNAseq 2048102

212 1 0 20 W RNAseq 2048103

213 1 3 22 AA RNAseq 2048104

214 0 2 20 W RNAseq 2048105

215 0 1 20 H RNAseq 2048106

216 1 3 19 AA RNAseq 2048107

218 1 1 20 AA RNAseq 2048109

220 1 0 N/A N/A RNAseq 2048111

221 8 3 19 AA RNAseq 2048112

222 1 0 N/A N/A RNAseq 2048113

223 1 3 18 AA RNAseq 2048114

224 1 2 19 HAW RNAseq 2048115

226 4 1 21 AA RNAseq 2048117

227 7 2 21 W RNAseq 2048118

228 1 3 19 AA RNAseq 2048119

Table 1.  Healthy Participant Characteristics. AA = African American, Asian = Asian or Asian American, 
H = Hispanic or Latino, HAW = Native Hawaiian, W = White, N/A = not available.
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for comparison. BED12 GRCh37 RefSeq gene annotation files were obtained from UCSC (http://genome.ucsc.
edu/cgi-bin/hgTables), and bedtools v2.26.0 was used to infer genes from reported backsplice junction genome 
locations53. Data were analyzed using the R v3.3.2 statistical package (https://cran.r-project.org). UpSet plots were 
generated using the UpSetR v1.3.3 package54.

Fig. 1  Study Workflow.

In
te

rs
ec

tio
n 

S
iz

e
In

te
rs

ec
tio

n 
S

iz
e

3'UTR

5'UTR

intronic

CDS

3'UTR

5'UTR

intronic

CDS

a b

c d

plasma

urine

plasma

urine

Fig. 2  CircRNAs were predicted from 134 plasma (a,b) and 114 urine (c,d) samples using 6 different 
bioinformatic tools. 965 circRNA were identified by all 6 tools in plasma (a; red bar), and 72 circRNA were 
identified by all 6 tools in urine (c; red bar). Genomic features located within predicted back-spliced junctions 
in plasma (b) and urine (d), respectively.
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Quantification of circRNA expression.  CircRNA count expression data was obtained from each respec-
tive bioinformatic program. Junction reads per million (JRPM) were calculated according to the total number of 
junction reads found in each sample as identified by STAR (both canonical and chimeric); therefore, JRPM = (cir-
cRNA count/junction reads) * 1,000,000. The circular-to-linear ratio (CLR) for each circRNA was calculated 
as described previously13,27, by counting the linear spliced reads identified by STAR on the 5′ and 3′ flanks of 

Program Aligner Version
Paired-End 
Read Aware

Annotation 
Aware

Default Junction 
Overlap

Adjusted Junction 
Overlap Reference

KNIFE bowtie2 1.4 Yes Yes 13 nt 18 nt 44

find_circ bowtie2 1.0 No No 18 nt — 21

MapSplice bowtie 2.1.8 Yes Yes 10 nt 18 nt 45

CIRCexplorer STAR 1.1.7 No* Yes 15 nt** 18 nt 46

CIRI bwa 2.0.1 Yes Yes 19 nt*** — 47

DCC STAR 0.3.2 Yes Yes 15 nt** 18 nt 48

Table 2.  CircRNA program characteristics. *The latest version of CIRCexplorer now supports paired-end 
reads. **CIRCexplorer and DCC use the STAR chimeric junctions output, so the junction overlap for these 
tools is set by the splice junction parameters during STAR alignment. ***The default minimum seed length (k) 
for bwa mem is 19 nucleotides.

Fig. 3  (a,b) Highly-expressed, predicted back-spliced junctions were validated by qRT-PCR. qRT-PCR 
validation of the 15 most highly expressed circRNA found in plasma (a) and urine (b), respectively. Each 
circRNA was examined in 10 cDNA samples from the same source RNA as sequenced samples. (c,d) Circular-
linear ratios are higher in plasma than urine. Linear splice junction expression plotted against circular splice 
junction expression in plasma (c) and urine (d). Points representing circRNA between 1-fold and 5-fold higher 
than their linear counterparts are blue; 5x or higher are red.
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each circRNA junction, and dividing the back-spliced read count by the flank with the highest count; therefore, 
CLR = circRNA count/max (5′ linear junction count, 3′ linear junction count). In order to avoid division by 
zero, if no linearly spliced reads were detected, a pseudo count of 1 was added to the denominator. The number 
of reads assigned to the transcriptome was calculated using featureCounts (subread v1.5.1) with the Ensembl75 
gene annotation55. Differential expression analysis was performed using DESeq. 2 v1.14.156, after filtering to select 
samples which had detected at least 300 circRNA/sample as well as exclusion of circRNA that were expressed in 
less than 50% of samples.

DNA isolation and qRT-PCR.  After centrifugation of blood samples, DNA was isolated from the buffy 
coat using the DNeasy Kit (Qiagen, Cat. No.: 69504). Previously isolated RNA from samples matching those 
used for library prep were selected for cDNA synthesis. cDNA was synthesized with random hexamers using 
the SuperScript III First-Strand Synthesis System for RT-PCR following manufacturer’s protocols (Invitrogen, 

Plasma Urine

total circRNA mean circRNA/sample
total 
circRNA mean circRNA/sample

CIRCexplorer 6,297 909 1,142 119

CIRI2 6,789 1,075 1,205 131

DCC 7,159 1,009 1,287 132

find_circ 2,916 396 438 44

KNIFE 7,462 1,086 1,349 139

MapSplice 1,835 279 163 17

Table 3.  CircRNA totals detected across six informatic tools in plasma and urine.

Plasma 
(n = 134)

Urine 
(n = 114)

Both Plasma 
and Urine

Detected in at least 1 sample 965 72 61

Detected in 10% of samples 964 71 60

Detected in 20% of samples 881 61 51

Detected in 30% of samples 675 41 34

Detected in 40% of samples 538 28 24

Detected in 50% of samples 395 16 16

Detected in 60% of samples 273 14 11

Detected in 70% of samples 177 10 10

Detected in 80% of samples 68 4 2

Detected in 90% of samples 15 2 1

Detected in 100% of samples 0 0 0

Table 4.  Number of circRNA detected in plasma and urine by all 6 bioinformatic tools.

Plasma

CIRCexplorer CIRI DCC find_circ KNIFE MapSplice

CIRCexplorer 1 0.878 0.945 0.838 0.845 0.798

CIRI 0.878 1 0.882 0.836 0.841 0.908

DCC 0.945 0.882 1 0.843 0.887 0.79

find_circ 0.838 0.836 0.843 1 0.82 0.776

KNIFE 0.845 0.841 0.887 0.82 1 0.773

MapSplice 0.798 0.908 0.79 0.776 0.773 1

Urine

CIRCexplorer CIRI DCC find_circ KNIFE MapSplice

CIRCexplorer 1 0.824 0.916 0.74 0.824 0.767

CIRI 0.824 1 0.869 0.738 0.843 0.817

DCC 0.916 0.869 1 0.793 0.889 0.733

find_circ 0.74 0.738 0.793 1 0.801 0.718

KNIFE 0.824 0.843 0.889 0.801 1 0.709

MapSplice 0.767 0.817 0.733 0.718 0.709 1

Table 5.  Pearson’s correlation of circRNA expression (JRPM) between informatic tools.
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Cat. No.: 18080-051) with three nanograms of total RNA as input, and stored at −20 °C. Inward-facing (crossing 
the back-splice junction) custom primers were designed with Primer3 and LabReady primers (100 µM in IDTE 
pH 8.0) were ordered from Integrative DNA Technologies with Standard Desalting Purification57,58. Real-time 
qRT-PCR was performed with SYBR Select Master Mix (Thermo Fisher, Cat. No.: 4472919) on the QuantStudio 
7 (Applied Biosystems), with 0.2 µM of primer and 0.2 µL of cDNA template or 2 ng of gDNA template per 10 µL 
reaction. U6 was used as a positive control and no template controls (NTCs) were used as a negative control. All 
results are expressed as the mean of three independent reactions, with a standard deviation less than 0.5. The 
ReadqPCR v1.20.0 and NormqPCR v1.20.0 Bioconductor v3.4 packages were used for qRT-PCR data analysis59.

Data Records
Raw FASTQ files for the RNAseq libraries were deposited into dbGap (accession # phs001258.v2.p1) (https://
identifiers.org/dbgap:phs001258.v2.p1)60. Data (circRNAs identified across all informatic tools and raw cirRNA 
expression) are also provided in figshare: https://doi.org/10.6084/m9.figshare.c.542083261.

Technical Validation
CircRNA set size and genomic alignment.  The set size (all circRNA in any sample by one tool) ranges 
from 1,835 to 7,462 and 163 to 1,349 in plasma and urine, respectively (Table 3). 965 and 72 circRNA were 
detected across all six tools in plasma and urine, respectively (Fig. 2a,c, red bars; Table 4; full list in figshare File 
1 and 261). KNIFE predicted the most circRNA per sample in plasma and urine, while MapSplice predicted the 
fewest (Table 3). Table 5 displays the correlations between all of the tools, CIRCexplorer and DCC had the highest 
correlation. 85% (61 of the 72) of the circRNAs found in urine were also detected in plasma (Table 4). Figure 2b 
(plasma) and 2d (urine) display the number of detected circRNAs and the number that span introns, exons, and 
UTRs for both plasma and urine. The majority of circRNA identified in plasma and urine contain at least two 
exons and span an intron; 671 in plasma and 52 in urine; green bars (Fig. 2b, plasma and 2d, urine). A small num-
ber of circRNA are transcribed from a single exon (15 in plasma and 2 in urine).

qRT-PCR circRNA Detection RNASeq circRNA Detection

plasma X out of 10 samples tested plasma X out of 10 samples tested

circARHGEF12 10 circARHGEF12 9

circFIP1L1-1 10 circFIP1L1-1 9

circMCU 10 circMCU 9

circRHBDD1 10 circRHBDD1 9

circSIAE 9 circSIAE 9

circCDK17 8 circCDK17 9

circFIP1L1-2 10 circFIP1L1-2 9

circNRIP1 10 circNRIP1 9

circPOMT1 10 circPOMT1 9

circSMARCA5 10 circSMARCA5 9

circETFA 10 circETFA 7

circPCMTD1 10 circPCMTD1 6

circPRKCB 10 circPRKCB 9

circUXS1 10 circUXS1 9

circYPEL2 10 circYPEL2 9

qRT-PCR circRNA Detection qRT-PCR circRNA Detection

urine X out of 10 samples tested urine X out of 10 samples tested

circPHC3 0 circPHC3 8

circPOMT1 4 circPOMT1 8

circRHBDD1 2 circRHBDD1 6

circSMARCA5 7 circSMARCA5 7

circYPEL2 3 circYPEL2 7

circCDYL2 3 circCDYL2 4

circFARSA 3 circFARSA 7

circPAPOLA 3 circPAPOLA 7

circRBM23 5 circRBM23 4

circUBAP2 6 circUBAP2 6

circARHGEF12 6 circARHGEF12 7

circDMXL1 1 circDMXL1 5

circFIP1L1 2 circFIP1L1 7

circMYO5B 0 circMYO5B 7

circSTK39 3 circSTK39 7

Table 6.  circRNA detection in 10 samples by qRT-PCR and RNASeq.
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Highly expressed, back-spliced junctions were validated by qRT-PCR.  In order to validate pre-
dicted back-spliced junctions by qRT-PCR, we designed inward-facing primers for the 15 most highly expressed 
circRNA in each biofluid and tested each primer pair in samples from 10 different individuals, using the same 
source RNA for cDNA synthesis that was used for RNAseq (Fig. 3a,b). Figure 3a shows that the 15 circRNAs are 
detected in most of the 10 plasma samples. The numbers of samples are described in Table 6, and compared with 
the RNASeq detection for those circRNAs in the same samples. 13 primer pairs were validated in urine. Detection 
in urine samples was sparse, with fewer samples positive for each circRNA than for plasma (Fig. 3b and Table 6). 
For the two back-spliced junctions detected in RNASeq data, but not validated by qRT-PCR in urine (circMYO5B 
and circPHC3), it is possible that the circRNA primers did not work, or there were qPCR inhibitors in the sam-
ple, or the circRNA was not present. Two of the samples did not have enough assigned reads via RNASeq to be 
included, so the total number of samples was 8. In order to rule out chimeric junctions that might be present in 
DNA or resemble artifacts introduced during library preparation, we also used genomic DNA (gDNA) from each 
individual as a negative control. All 15 primer pairs used in the plasma and urine samples were not detected in 
gDNA (data not shown). Table 7 describes the rank from highest to lowest expression for each of the circRNA val-
idated by qRT-PCR, and compares it with the expression detected with sequencing. Their ranks do not correlate 
well between the two platforms.

Circular-to-linear RNA ratios.  While the overall expression of most circRNAs is low compared to their 
linear counterparts, there are a number of circular RNA transcripts that have been described as more abundant 
than their linear host, cellularly as well as extracellularly23,27,62,63. We examined the circular-to-linear ratio (CLR) 
of circRNA transcripts found in plasma and urine as described previously; by taking the ratio of the circular, 
back-spliced junction counts compared to the linear count of the nearest 5′ or 3′ splice junction13,24,27. On average, 
28.5% of circRNA transcripts in plasma and 21.5% of circRNA transcripts in urine have higher expression than 
their linear host gene (Fig. 3c, plasma and 3d, urine). Extracellular RNA is often fragmented and may have a 3′ 

Plasma

circRNA mean Ct qRT-PCR Rank mean JRPM RNA-Seq Rank

circUXS1 27.4 1 51.21 15

circNRIP1 27.96 2 89.8 10

circARHGEF12 28.04 3 110.13 5

circMCU 28.53 4 415.78 1

circPCMTD1 28.8 5 60.09 13

circFIP1L1-1 28.99 6 250.67 2

circRHBDD1 29.75 7 217.81 4

circETFA 30.05 8 66.35 11

circPRKCB 30.16 9 65.81 12

circSMARCA5 30.64 10 99.59 9

circSIAE 31.41 11 234.59 3

circYPEL2 31.88 12 51.44 14

circCDK17 32.12 13 102.04 7

circFIP1L1-2 32.36 14 100.46 8

circPOMT1 32.6 15 106.79 6

Urine

circRNA mean Ct qRT-PCR Rank mean JRPM RNA-Seq Rank

circARHGEF12 31.27 1 5.27 15

circRBM23 31.46 2 8.21 5

circUBAP2 31.68 3 6.49 10

circCDYL2 31.93 4 6.72 8

circPAPOLA 32.64 5 6.61 9

circSMARCA5 32.72 6 7.85 6

circRHBDD1 33.22 7 10.72 3

circYPEL2 33.25 8 9.3 4

circDMXL1 33.63 9 6.29 11

circPOMT1 33.67 10 28.46 2

circFARSA 33.75 11 7.5 7

circFIP1L1.2 33.8 12 5.61 14

circSTK39 34.45 13 6.24 12

circMYO5B N/A 14 5.7 13

circPHC3 N/A 15 81.19 1

Table 7.  qRT-PCR and RNA-Seq expression of the 15 most highly expressed genes in plasma and urine.
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bias64. Before examining the expression of circular RNA in relation to their host genes, we calculated the overall 
5′ to 3′ coverage of linear transcripts and did not find a bias in our samples.

Participants sequenced 5 or more times have less inter-sample variation.  A notable feature of 
this dataset is that many participants were sampled longitudinally, allowing for analysis of circRNA stability in 
individuals versus the entire dataset. Figure 4a,b show longitudinal circRNA expression in the same participants 
in plasma and urine, respectively. Broadly speaking, the heatmaps demonstrate similar expression patterners 
in the same participant over time. In order to assess variability within individuals, we calculated the coefficient 
of variation (CV) of circRNA expression, normalized to junction reads per million (JRPM). Here, we focus on 
participants sampled on 5 or more occasions over approximately one year. In both plasma and urine, the CV 
for each individual participant is displayed along with the CV for all participant samples. The data indicate that 
individuals have a statistically-significant consistency in circRNA expression pattern over time (Fig. 4c, plasma 
and 4d, urine).

Usage Notes
As the approach to detecting circRNA from RNA-Seq data differ with available tools, we employed 6 different 
bioinformatic tools: CIRCexplorer, CIRI2, DCC, KNIFE, find_circ, and MapSplice, in two clinically relevant 
biofluids, plasma and urine, using 134 and 114 samples, respectively. Most of these circRNA pipelines use an 
external aligner, such as bowtie, STAR, or bwa, to align reads to the genome and/or transcriptome (Table 2). After 
alignment, reads that contiguously align to the genome and/or transcriptome are filtered out, and the remaining 
unmapped reads are further filtered to identify back-spliced junctions. Differences in circRNA identification 
algorithms include: 1) how paired-end reads and gene annotations are used, if at all, 2) the amount of overlap 

Fig. 4  Participants sequenced five or more times have less inter-sample variation. CircRNA populations 
identified in plasma (a,c) and urine (b,d) from participants sampled five or more times. (a,b) Heatmaps showing 
the log-normalized JRPM expression of plasma (a) and urine (b) samples taken longitudinally from the same 
participant. The coefficient of variation (CV) of circRNA expression is significantly lower across individual 
participant samples when compared to the entire dataset (c, plasma; and d, urine). ****p <  = 0.0001.
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over the junction that a read must contain, 3) the types of junctions considered, and 4) various filtering steps 
(Table 1)65. We sought to generate a high confidence set of circRNA expressed in plasma and urine with the 
following requirements for each circRNA: 1) detection in at least 5 samples for each respective biofluid, 2) a min-
imum 18 nt overlap on either side of the junction, 3) at least two reads spanning the back-spliced junction, and 4) 
identification by all 6 tested bioinformatic tools as identification can vary widely between tools66–68.

We tested alignment parameters and their influence on the detection rate of circRNA and found that the num-
ber of input reads, genome mapped reads, and junction reads did not correlate well with the number of circRNA 
detected per sample; rather the number of reads assigned to the transcriptome had the greatest correlation with 
the number of circRNA (R2 = 0.805; data not shown).

Code availability
Code used for circRNA identification is available in the Supplemental data. Software versions used for analysis 
are as follows:

STAR v2.4.0j for DCC and CIRCexplorer
bowtie2 v2.2.1 for find_circ and KNIFE
bowtie v0.12.9 for MapSplice2
bwa v0.7.13 for CIRI2
bedtools v2.26.0
Data were analyzed using the R v3.3.2 statistical package (https://cran.r-project.org). UpSet plots were gen-

erated using the UpSetR v1.3.3 package54. The ReadqPCR v1.20.0 and NormqPCR v1.20.0 Bioconductor v3.4 
packages were used for qRT-PCR data analysis59.
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