
REVIEW

Host-mycobiome metabolic interactions in health and disease
Neelu Begum a, Azadeh Harzandia, Sunjae Lee a, Mathias Uhlen b, David L. Moyes a, and Saeed Shoaie a,b

aCentre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK; bScience for 
Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden

ABSTRACT
Fungal communities (mycobiome) have an important role in sustaining the resilience of complex 
microbial communities and maintenance of homeostasis. The mycobiome remains relatively unex-
plored compared to the bacteriome despite increasing evidence highlighting their contribution to 
host-microbiome interactions in health and disease. Despite being a small proportion of the total 
species, fungi constitute a large proportion of the biomass within the human microbiome and thus 
serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. 
Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their 
levels prelude changes associated with metabolic diseases and cancer. Given the complexity of 
microbial interactions, studying the metabolic interplay of the mycobiome with both host and 
microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic 
biology can provide an integrative platform that allows elucidation of the multifaceted interactions 
between mycobiome, microbiome and host. The inferences gained from understanding myco-
biome interplay with other organisms can delineate the key role of the mycobiome in pathophy-
siology and reveal its role in human disease.
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Introduction

Until recently, fungal infections, unlike bacterial 
and viral infections, had been largely neglected 
despite being a significant cause of global morbidity 
and mortality.1,2 The importance of fungi in the 
host has been largely overlooked as the number of 
fungal genes in the gut is relatively low compared to 
bacterial genes, as reported by the Human 
Microbiome Project (HMP).3 With the advent of 
high throughput sequencing technologies, our 
knowledge of the bacterial communities of the 
microbiome has expanded exponentially, along 
with our understanding of their potential roles in 
disease pathology. In contrast, the mycobiome 
(fungal community) study remains in its formative 
years.4–6 To date, there are substantially fewer stu-
dies focused on fungi within the microbiome due to 
difficulties in nucleic acid extraction, rudimentary 
fungal genome annotations and limited bioinfor-
matic tools to analyse these data or established 
standards. Early studies using culture-dependent 
studies suggested that only 70% of the population 
harboured a fungal population.7 A total of 267 

fungal taxa have been identified in the human gut 
mycobiome by several studies. However, the valid-
ity of some of these fungal species (e.g. Penicillium) 
is unclear as they cannot be grown under human 
gut conditions in the laboratory.8 The long-term 
residence of fungi in the gut microbiome is thus still 
the subject of debate as the longevity of fungal 
species within a mycobiome is undetermined.8 

Further, fungal genes within the microbial meta-
genome have been estimated to only make up 0.1% 
of the total microbial genes.9 However, the impor-
tance of fungi to the host cannot be determined by 
measures of the overall relative abundance of their 
genetic material within the microbiome. 
Production of metabolites and small molecules by 
fungi potentially has a more significant impact in 
the microbiota and host compared to bacterial pro-
duction, owing to the greater fungal biomass and 
associated higher occupation of surface area, how-
ever, this remains largely unproven.9–11 A summary 
table of mycobiome studies associated with dysbio-
sis highlights the increasing relevance of fungi 
(Table 1).
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The variation in species seen within the myco-
biome is attributable to dietary changes, skin con-
tamination, drug therapy, geographical location 
and oral hygiene.8,12,13 There are, however, some 
common features to the different mycobiome com-
munities. Candida and Saccharomyces are the most 
common fungal genera in the gut, with their pre-
sence detected from infancy, indicating they are 
likely to be permanent colonisers.3,4,8,12,14–17 

Aspergillus and Penicillium genera are less com-
mon, indicating the transient nature of these 

genera, whilst reports of Mucor, Cladosporium 
and Cyberlindera presence are inconsistent. The 
disparate nature of fungal community structure is 
due to culture-dependent and -independent 
approaches lacking gold standards.18 For example, 
varying extraction methods and primer selection 
can skew mycobiome analyses. In essence, there is 
a lack of reference gene catalogues and bioinfor-
matic tools for consistent taxonomic profiling and 
reconstitute fungal metagenome species.

Although increasingly being seen as important, 
investigations of the impact of the mycobiota on 
both host and microbiome are in their infancy. In 
particular, our understanding of host-fungal meta-
bolic interactions is limited in both health and 
disease. Although host-microbiome metabolic 
interactions have been studied, further develop-
ment is needed in understanding the impact of 
fungal biochemical pathways and their downstream 
metabolites in these interactions.19 In this review, 
we explore the role of fungal metabolism in human 
disease, and this will help us understand the extent 
of how mycobiome interacts with its environment. 
This review will go onto explore the impact of 
secondary metabolites and how we can use sys-
tems-level approaches to explore this deeper level 
of functioning of the mycobiome for therapeu-
tic use.

Mycobiome and importance in health and 
disease

In the last decade, fungal infection research has 
exploded, focussing on the host immune response 
towards these microbes, including adaptive and 
innate immunity.20,21 Even though fungal disease 
leads to inflammation, the mechanisms at mucosal 
surfaces are not well elucidated.2 However, the host 
immune response and subsequent imbalance of 
homeostatic microbial communities can lead to 
dysbiosis. Dysbiosis is the unfavourable changes/ 
imbalance in the community of organisms within 
the microbiota, leading to the progression of the 
disease. This term is highly used in microbiome 
research and infers misunderstanding as the biolo-
gical context is undetermined as healthy microbiota 
remains unknown and not specific to the presence 
of a particular genus or community distribution.22 

Detailed information of data source was tabulated 

Table 1. The effect of fungal species in human health. The table 
indicates the fungal species causing diseases with references.

Species Disease Reference

Candida spp.; 
Cryptococcus spp., 
S. cerevisiae

Liver disease Bajaj et al., 2013; Hwang et al., 
2014; Yang et al., 2017; 
Fernandez et al., 2017

S. cerevisiae; Candida 
spp.; Malassezia 
spp.

Irritable Bowel 
Disease

Ott et al., 2008; Sokol et al., 
2017; Nishida et al., 2018;

Candida spp.; 
Malassezia spp.

Crohn’s Disease Barclay et al., 1992; Poulain 
et al., 2009; Standaert-Vitse 
et al., 2009; Hoarau et al. 
2016; Liguori et al., 2016; 
Limon et al., 2019

Aspergillus sp. Cystic Fibrosis Knutsen et al., 2003; Horre 
et al., 2004; Bakare et al., 
2003; Delhaes et al., 2012; 
Willger et al., 2014;

Aspergillus spp.; 
Epicoccum 
nigrum; Wallemia 
sebi

Lung Diseases Denning et al., 2011; Knutsen 
et al., 2012; Fairs et al., 
2010; Yan et al 2009; 
McCarthy and Walsh, 2017

Aspergillus spp. Chronic 
Obstructive 
Pulmonary 
Disease (COPD)

Garcia-Vidal et al., 2008; 
Guinea et al., 2010; Huerta 
et al., 2014; Molinos-Castro 
et al., 2020

Candida spp.; 
Aspergillus spp.

Nosocomial Blood 
Infections

Wisplinghoff et al., 2004; 
Morgan et al., 2005; Pfaller 
et al., 2007; Wang et al., 
2020; Sfeir et al., 2020

Candida spp. Vaginal Infection Taylor et al., 2005; Barousse 
et al., 2007; Sobel, 2007; 
llkit and Guzel, 2011

Cryptococcus spp. Meningitis Gottfredsson and Perfect, 
2000; Lui e tal., 2012; 
Blatzer et al., 2020; Spencer 
et al., 2020

Candida spp. Oral infection Barclay et al., 1992; Poulain 
et al., 2009; Standaert-Vitse 
et al., 2009; Hoarau et al. 
2016; Liguori et al., 2016; 
Limon et al., 2019

Candida spp.; 
Aspergillus spp.; 
Coccidioides 
posadasii;

Neurological 
Infection

Sharma et al., 1997; Chopra 
et al., 2006; Thurtell et al., 
2013; Suresh, 2015; Pisa et 
a;., 2015; Benito-Leon and 
Laurence, 2017; Forbes 
et al., 2019

Candida spp. Autism spectrum Strati et al., 2017; Forbes et al., 
2019

S.cerevisiae; Candida 
spp.

Schizoprenia Severance et al., 2016; 
Severance et al., 2017; 
Cihakova et al., 2019; Zhang 
et al, 2020
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for in vivo and in vitro mycobiome studies 
(Table 2).

Fungal by-products have diverse uses, including 
agricultural supplements, food preservation, envir-
onmental farming, biotechnology and 
medicines.10,23 Routine consumption of fungal 
derivatives has inevitably resulted in changes to 
our ecosystem and adaptation of the human 

mycobiome. For example, fungal species have 
been used as probiotics, with Saccharomyces bou-
lardii currently being used as a probiotic for the 
treatment of gastrointestinal disorders.24 

Meanwhile, S. cerevisiae isolated from food sources 
inhibits the adhesion, filamentation and biofilm 
formation of multiple Candida species.25 

Additionally, exposure to environmental factors 

Table 2. Mycobiome tabulated data types. The table indicates references with fungal data types for discerning fungal genera.
Reference Data type

Han, S. H. et al. Analysis of the skin mycobiome in adult patients with atopic dermatitis. Exp. Dermatol. 27, 366–373 (2018). Human data
Mukherjee, P. K. et al. Oral Mycobiome Analysis of HIV-Infected Patients: Identification of Pichia as an Antagonist of Opportunistic 

Fungi. PLoS Pathog. 10, (2014).
Human data (saliva)

Hoffmann, C. et al. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE 8, 
(2013).

Human data (stool)

Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153–153 (2017). Human data (HMPS stool)
Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, (2010). Human data (oral rinse)
Drell, T. et al. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women. PLoS 

ONE 8, (2013).
Human data

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). Human data (stool)
Mar Rodríguez, M. et al. Obesity changes the human gut mycobiome. Sci. Rep. 5, 14,600–14,600 (2015). Human data (stool)
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017) Human data (stool)
Trojanowska, D. et al. The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in 

gastrointestinal tract based on genetic affinity between strains. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 16, CR451-457 (2010).
Human data (biopsy)

Ott, S. J. et al. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831– 
841 (2008

Human data (biopsy)

Alonso, R. et al. Fungal infection in patients with Alzheimer’s disease. J. Alzheimers Dis. JAD 41, 301–311 (2014) Human data (biopsy)
Alonso, R., Pisa, D., Aguado, B. & Carrasco, L. Identification of Fungal Species in Brain Tissue from Alzheimer’s Disease by Next- 

Generation Sequencing. J. Alzheimers Dis. JAD 58, 55–67 (2017)
Human data (biopsy)

Severance, E. G. et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 138, 48– 
53 (2012)

Human data (blood)

Severance, E. G. et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. Npj 
Schizophr. 2, 1–7 (2016)

Human data (blood)

Severance, E. G. et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, 
longitudinal pilot study. Brain. Behav. Immun. 62, 41–45 (2017).

Human data (blood)

Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, 
(2016).

Human data (stool)

Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 1–4 (2019) doi:10.1038/ 
s41586-019-1608-2.

in vivo (mice)

Harriott, M. M. & Noverr, M. C. Candida albicans and Staphylococcus aureus Form Polymicrobial Biofilms: Effects on Antimicrobial 
Resistance. Antimicrob. Agents Chemother. 53, 3914–3922 (2009)

in vitro

Guinan, J., Wang, S., Hazbun, T. R., Yadav, H. & Thangamani, S. Antibiotic-induced decreases in the levels of microbial-derived 
short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci. Rep. 9, 8872–8872 (2019).

in vivo (mice)

Nguyen, L. N., Lopes, L. C. L., Cordero, R. J. B. & Nosanchuk, J. D. Sodium butyrate inhibits pathogenic yeast growth and enhances 
the functions of macrophages. J. Antimicrob. Chemother. 66, 2573–2580 (2011).

in vitro

Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites. Infect. Immun. 72, 6206– 
6210 (2004).

in vitro

García, C. et al. The Human Gut Microbial Metabolome Modulates Fungal Growth via the TOR Signaling Pathway. mSphere 2, 
e00555-17 (2017)

in vitro

Baltierra-Trejo, E., Sánchez-Yáñez, J. M., Buenrostro-Delgado, O. & Márquez-Benavides, L. Production of short-chain fatty acids 
from the biodegradation of wheat straw lignin by Aspergillus fumigatus. Bioresour. Technol. 196, 418–425 (2015)

in vitro

Borges, F. M. et al. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on 
Aerobic Culture-Dependent Approach. Curr. Microbiol. 75, 726–735 (2018).

Human data (stool)

Auchtung, T. A. et al. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. mSphere 3, e00092-18 
(2018).

Human data (saliva, stool 
HMP)

Strati, F. et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 
7, (2016)

Human data (stool)

Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010) Human data (stool)
Raimondi, S. et al. Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization. Front. Microbiol. 

10, (2019)
Human data (stool)

Botschuijver, S. et al. Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel 
Syndrome and Rats. Gastroenterology 153, 1026–1039 (2017).

Human data (stool)

Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314– 
1317 (2012)

in vivo (mice)

Kaur, J. et al. “Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen 
isolated from the lungs of cystic fibrosis patients.” Frontiers in microbiology, 866. (2015).

in vitro (human sputum)

*in vitro (lab experiments), in vivo (animal experiments), in silico (computational analysis) and human data (clinical sample collection)
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including age, gender, diet, host genetics, therapeu-
tic intervention and host lifestyle affect individual 
mycobiome composition.5,8,14,26 Diets with high 
carbohydrates can drive the increased gut presence 
of Candida species.14,27,28 Likewise, obesity is asso-
ciated with an increased abundance of Ascomycota 
and a parallel decrease in gut mycobiome 
richness.29

Fungal dysbiosis potentially affects a significant 
portion of the population, being implicated in irri-
table bowel syndrome (IBS) and Crohn’s disease 
(CD) and a direct contributing factor in IBD30 

(see Table 1). For example, greater fungal diversity 
occurs in CD patients compared to healthy 
controls,31,32 whilst C. albicans overgrowth in the 
gastrointestinal (GI) tract is a contributing factor to 
IBD onset.31–36 Further, a shift in Ascomycota and 
Basidiomycota proportions potentially drives 
inflammatory processes in IBD.31,32,37 The distal 
effect of mycobiome dysbiosis is chronic immune- 
mediated inflammation and appears to be related to 
central nervous system (CNS) infection associated 
with neurological diseases.38–40 Fungal products 
have been found in Alzheimer patients,41 whilst 
another study confirmed the presence of 14 fungal 
species, including Malassezia, Candida, Alternaria 
and Botrytis,42 in different brain regions of 
Alzheimer’s patients.43 Similarly, fungi have been 
associated as triggers of autoimmunity and multi-
ple sclerosis,44 whilst the presence of C. albicans 
and S. cerevisiae antibodies in schizophrenia 
patients has been linked to the gastrointestinal dis-
order, supporting the hypothesis of a gut-brain 
axis.5,38,39,45

Mycobiome dysbiosis is a predisposing factor in 
other diseases as well.37,40 For example, the myco-
biome is associated with cancer development and 
progression,46 where Malassezia spp. are increased 
in pancreatic ductal adenocarcinoma (PDA) in an 
in vivo (murine) study.46 In contrast, Candida tro-
picalis, another commensal fungus, is associated 
with slower or lack of tumour development.46 

This study, among others, indicates that myco-
biome composition is paramount to host health 
and disease status. However, specific fungal species 
do not exclusively drive these interactions. In order 
to survive, fungi adapt to their local environment; 
this includes adjusting to acidic environments 
through morphology switching and metabolic 

plasticity. Biofilms are a classic example of fungi 
changing their growth pattern in response to host 
responses and environmental cues. Fungi-microbe 
interactions play a key role in adaptation. Fungi 
cooperate with bacteria to increase fungal biofilm 
potential, resulting in significant increases in the 
severity of inflammatory diseases – most notably in 
IBD.37 Alternatively, Pichia spp. interaction with 
Candida results in the reduction of biofilm due to 
competition in the environment.47 Thus, myco-
biome composition plays a significant role in the 
maintenance of the homeostatic relationship within 
the microbiota. Determining whether fungal- 
bacterial-host relationships drive compositional 
changes and whether controlling each element in 
these networks could potentially prevent disease is 
a fundamental goal for future microbiome research.

Mycobiome and it’s environment

The interplay between the mycobiome and host 
immune responses involves physical interactions 
at the cell surface, metabolic reprogramming, reg-
ulatory pathways, and secretion of small molecules. 
Exposure to host responses and environmental 
stressors provides a platform for metabolic plasti-
city to manipulate host interactions and promote 
invasion48 or modulate immunological responses.49 

These host immune responses to fungal infection 
have been reviewed extensively elsewhere.20,50–54 

To creates symbiotic relationship with microbiota 
for host immune-tolerance, there is a positive 
exchange of compounds and nutrients. With evi-
dence of fungi producing vitamins and fatty 
acids,55–57 there is an opportunity and potential 
for these exchanges with the mycobiome that 
remains to be investigated.

Microbial metabolism, including fungal metabo-
lism, has been associated with driving inflamma-
tion, various diseases and even cancer 
progression.58–60 For instance, short-chain fatty 
acids (SCFA), tryptophan and branched-chain 
amino acids have all been identified as playing 
a role in immune and homeostatic responses.61 

Short-chain fatty acids (SCFAs) available within 
the host are necessary for regulating some fungal 
growth as well as modulating immune responses. 
Fungi are capable of producing vitamins, notably 
including vitamin D and B6, that can impact the 
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immune system.62–66 The different fungal moieties, 
such as cell wall polysaccharides and melanin,67 

drive metabolic reprogramming of innate immune 
cells to confer protective inflammation and activate 
antimicrobial defences.68–70 Equally, contact with 
host cells drives shifts in fungal metabolism.52 For 
instance, host recognition of ß-glucan from fungal 
cell walls reprogrammes macrophage glucose meta-
bolism towards aerobic glycolysis, promoting more 
rapid ATP creation.67 Importantly, however, 
C. albicans undergoes a similar metabolic repro-
gramming, meaning that local glucose is rapidly 
depleted, leading to the premature death of 
macrophages.52 As C. albicans has a significant 
degree of metabolic plasticity, it can then revert to 
using alternative carbon sources to survive. 
Melanin produced by Aspergillus fumigatus is 
recognised by macrophages via MelLec (a C-type 
melanin-sensing receptor) via calcium sequestering 
in phagosomes, leading to activation of antifungal 
defences within the host.71 A. fumigatus responds 
further by reducing melanin for fungal persistence, 
leading to conidia germination and increased gly-
colysis allows metabolic repurposing of macro-
phage response for effective fungal defence.70 

Hosts defensive metabolic responses and the paral-
lel evasive mechanistic pathways in fungi demon-
strate a need to understand metabolic networks in 
host mycobiome in health and disease.52

Bacteriome-mycobiome interaction

In a series of animal model studies, the interaction 
between host-mycobiome and fungus-bacterium 
has been linked to the health status of the host 
(expansion of the in vivo data set sources is listed 
in Table 2).37,72–74 The interaction of fungi and 
bacteria occurs on several different levels. Physical 
contact can occur between members of microbial 
communities leading to the exchange of secreted 
products and communication between the two cell 
surfaces. Cell signalling between microbes also pro-
vides regulation and trade of metabolites and 
genetic materials through different mechanisms, 
such as horizontal gene transfer, signal transduc-
tion and interaction with the host.75,76 This 
exchange allows for an interplay between microbes 
that can maintain the ecosystem’s resilience or 
drive a dysbiosis state. This interplay within the 

host means there is a knock-on effect for the host, 
potentially resulting in disease pathology. For 
example, C. tropicalis is significantly more abun-
dant in Crohn’s disease (CD) patients in compar-
ison to non-CD relatives.37 This increased 
abundance correlates with increased abundance of 
some bacterial species and related improved biofilm 
formation and disease severity. These interactions 
can potentially be bi-directional. For example, 
Escherichia coli, Serratia marcescens, and Candida 
tropicalis together exhibit enhanced biofilm forma-
tion, giving a thicker, more robust film.37 

Furthermore, the production of bile acids (e.g. cho-
lic acid) from the microbiota and environment 
have been shown to promote the growth and mor-
phogenetic plasticity of C. albicans,77 whilst hexa-
decanedioic and caproic acids have demonstrated 
antifungal activity.29

Recently, multiple studies have begun to eluci-
date how our bacteriome and mycobiome interact 
with each other and the contribution of these inter-
actions to human health and disease. In particular, 
the bacteriome and mycobiome can alter each 
other’s composition.28 For example, competition 
between bacteria and fungi leads to stunted 
Candida growth.78 The release of various com-
pounds can drive these interactions. For instance, 
Pseudomonas aeruginosa releases bacterial com-
pounds called phenazines, in particular pyocyanin, 
that suppress A. fumigatus, C. albicans and 
Cryptococcus neoformans growth in the lungs of 
cystic fibrosis patients (in vitro; Table 2).79 Nor 
are these interactions purely suppressive. 
Dimethyl sulphide, a volatile compound released 
by strains of P. aeruginosa derived from human 
sputum samples, stimulates the growth of 
A. fumigatus within in vitro experiments.80 These 
bacterial-produced compounds demonstrate the 
varied effects of secondary metabolites produced 
by the bacteriome on the mycobiome. Moreover, 
P. aeruginosa has been shown to attach to 
C. albicans hyphae, killing them via type IV pili.81 

Similarly, Staphylococcus aureus and C. albicans are 
frequently co-isolated in immunocompromised 
patients.82,83 Serum analysis showed S. aureus has 
preferential adherence to C. albicans driving 
hyphae formation. Interestingly, S. aureus formed 
microcolonies with a halo formation on the surface 
of C. albicans biofilm, resulting in an increase in 
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vancomycin resistance.84 C. albicans hyphae initi-
ates innate responses in attracting phagocyte cells 
for transporting the fungi into a protected intracel-
lular host environment. S. aureus is shown to take 
advantage of this by escaping intracellular killing 
and disseminating to cause sepsis.85

Alteration of the bacteriome composition drives 
diverse changes in metabolite levels in the gut and 
effects on the mycobiome. For example, antibiotic- 
treated mice have increased levels of C. albicans in 
their gut.77 Whilst it could be argued that this is 
purely due to an increase in the available nutrients, 
this is unlikely to be the sole reason, given the lack 
of presence of this species in mice under normal 
conditions. There is evidence of SCFA release by 
bacteria incurring modifications in host transcrip-
tion activation,86–88 signalling89,90 and chromatin 
changes91 in the host. The increased fungal pre-
sence may be due to bacterial species reduction 
resulting in diminished SFCA production, giving 
rise to changes in pH. Therefore, the changes in 
bacterial abundance due to antibiotics drive shifts 
in gut bacteriome composition and abundance, 
altering cross-talk with the mycobiome. There is 
further potential for fungi to interact with SCFAs. 
Aspergillus can produce SCFAs from aromatic 
compounds biodegradation. A. fumigatus degrades 
these compounds to produce acetic acid, among 
others.92 Investigation of the effects of SCFAs on 
C. albicans in the presence of bacteria found they 
control yeast growth.93 Further investigation 
revealed that butyrate and lactic acid inhibit hyphal 
germination94,95 whilst sodium butyrate increases 
phagocytic macrophage rates along with increasing 
production of nitric acid.96 SCFAs also induce bio-
film formation in C. albicans, decreasing its meta-
bolic activity.77 Acetate exhibited the most potent 
inhibitory effects on C. albicans, directly preventing 
germ tube formation and adherence independent 
of pH.77 These studies indicate that microbially- 
produced SCFAs (from either bacteriome or myco-
biome) affect both confirmation and community 
structure of the mycobiome, potentially leading to 
dysbiosis.

Mycobiome metabolism

Fungi produce an expansive variety of metabolites 
with varied impacts on their survival, as well as host 

and microbiota interactions. For example, the fun-
gal metabolite N-acetyl-L-glutamic acid has hypo-
tensive effects.29 The natural ability of fungi to 
produce this cornucopia leads to ripple effects in 
their environment.97 The metabolic activity of fun-
gal communities has a pivotal role in microbiome 
modulation, contributing to disease pathogenesis 
and pathology. Fungi can catabolise a panoply of 
different substrates, including carbohydrates, 
amino acids, lipids, proteins, and vitamins utilising 
both primary and secondary metabolism. Primary 
metabolism is involved in the growth and develop-
ment of the cell, whilst secondary metabolism 
increases fungal viability in the environment. 
Fungi produce a variety of secondary metabolites, 
including acids, toxins, polyols and sugars that 
mediate cross-talk and are considered a by- 
product of other reactions.98

Secondary metabolites are key by-products of pri-
mary reactions and play a crucial role in shaping the 
interaction within a niche. In the elucidation of enzy-
matic processes, fungal secondary metabolites have 
been classed into several groups depending on the 
biosynthesis of these products. The most notable 
involves polyketide synthases (PKS), non-ribosomal 
peptides synthases (NRPS), fatty acid derivatives, ter-
penoids, and steroids.99–102 Polyketide (PKS) class 
consists of derivatives of fatty acids and the output of 
acetyl CoA pathways that allow for various structures 
and functions.102,103 Non-ribosomal peptides (NRPS) 
are derived from amino acids and cannot perform 
RNA transcription.99,101,102,104 Terpenes class are gen-
erated from terpene synthases, a product of the meva-
lonic acid pathway and produced as steroid 
compounds.105 Terpenoids are a modified class of 
terpenes. Dimethyallyl tryptophan (DMATs) class is 
comparable to the ergot alkaloid class and are usually 
pharmacologically active compounds responsible for 
producing indoles.106–108 As the detection of growing 
numbers of metabolites progresses, methods in find-
ing genes responsible for secondary metabolites are 
also being developed. These genes are called biosyn-
thetic gene clusters (BGCs) and are based on the 
chromosomal arrangement of the synthesis of second-
ary metabolites. These BGCs ranges from smaller 
clusters relating to synthases to a larger cluster of 
genes that include transcription factors, as detailed in 
Keller et al. (2019). These genes are globally regulated 
by transcriptional activity, not all necessarily from 
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within the cluster, thus indicating that transcription 
and epigenetic activation of BGCs is dependent on 
external factors. These factors include environmental 
stimuli, metal presence, nutritional availability, tem-
perature, pH and light, triggered by regulatory 
pathways.76

The mycobiome includes metabolic processes with 
an extensive pool of secondary metabolite production 
that can be key in driving or preventing a pathogenic 
switch. For instance, metabolites and small molecules 
can activate the host immune system via recognition 
of foreign material or the release of toxins, driving 
inflammatory responses. Potential effects of known 
metabolites produced by Candida, Penicillium and 
Aspergillus species and their possible metabolic path-
ways have been illustrated in Figure 1, demonstrating 
a likely impact on the host during infection.

Secondary metabolites can have a knock-on effect 
on host metabolism, and this has been used exten-
sively for therapeutic effects (Table 3). One metabolite 
isolated from Aspergillus species is naptho-γ-pyrones. 
This natural metabolite has various biological effects, 
including anti-bacterial and anti-oxidant activity.120– 

124 The wide variety of fungal metabolite functions 
makes them ideal targets for therapeutic use. This can 
be done by targeting metabolic pathways to derive 
benefits. For example, by driving immunometabolic 
shifts that affect glucose competition and redirecting 
pathways for cancer treatment.125 As well as direct 
impacts on the host whether as colonisers or during 
infection, these metabolites are ideal potential drugs 
for treating the microbiome directly. For example 
Penicillium produces a mycotoxin called citrinin that 
has antibiotic properties against bacteria and can have 
a toxic effect on kidney and liver.126–128 Secondary 
metabolites can thus conceivably both provide diag-
nostic markers for the detection of disease and manip-
ulate metabolic pathways, altering host health status. 
System biology contributes useful tools in investigat-
ing metabolic pathways in fungi in the context of the 
human mycobiome.

Systems and synthetic biology approach to 
elucidate interactions

To date, mycobiome studies have primarily been 
grounded in culture-based techniques that are hostage 
to the diverse requirements of each community mem-
ber, meaning many fungi remain undetected and 

undiscovered.4 The development of molecular techni-
ques such as 18S ribosomal RNA and inter transcribed 
spacer (ITS) sequencing has profoundly impacted the 
detection of fungi and the characterisation of the 
mycobiome. However, these techniques are limited 
in understanding the mycobiome community’s over-
all structure, function, and dynamic existence on 
a large-scale platform.129 Many mycologists face the 
obstacle of limited bioinformatic tools and databases 
available compared to bacteriologists. With improving 
next generation sequencing (NGS) technologies and 
lower costs, multi-omics data generation is increasing 
rapidly. Multi-omics data includes metagenomics, 
transcriptomics, proteomics, metabolomics and fluxo-
mics that impart in-depth information that has 
enabled us to learn about microbiota interactions 
(Figure 2).130–132 Each multi-omics dataset provides 
a different view on either single species or commu-
nities of varied microbes.133,134 Experimental studies 
and multi-omics data generate abundant information; 
however, we currently lack the ability to fully integrate 
this information to give us a systematic overview. 
Individual data have so far failed to elucidate the 
interactions involved in fungi-fungi, fungi-bacteria 
and fungi-host relationships. Systems biology, by its 
holistic approach and mathematical models, provides 
a computational platform to integrate the different 
multi-omics datasets, presenting a better structure to 
understand the relationship between gene, protein 
and metabolites, and additionally to explore the inter-
actions between organisms in a complex 
community.33,135–137 Among the mathematical mod-
els as the core of the systems biology approach, gen-
ome-scale metabolic models (GSMM) has proven to 
enable the genotype-phenotype relationships through 
a series of connected gene-protein-reaction links, pro-
viding a powerful predictive toolkit.135 GSMM have 
been applied in different microbial and human studies 
as a discovery platform to propose novel markers, 
treatments and bioproduction enhancement.138–141 

GSMM predictions and discovery can be further eval-
uated and validated using synthetic biology, such as 
CRISPR-cas systems (Clustered Regularly Interspace 
Short Palindromic Repeat) for genome editing to test 
and manipulate molecular and metabolic pathways.142

The S. cerevisiae model is the benchmarking 
fungal GSMM with a comprehensive network 
structure including the 3D structure and protein 
kinetics.143 This GSMM is a reference model used 
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to generate the scaffold of other fungal species 
models.30 Other well-constructed fungal reference 
models that have been generated include 
Scheffersomyces stipitis,144 C. glabrata145,146 and 
Pichia pastoris.147 Fungal GSMM are mainly used 

to inform the metabolic engineering experiments, 
increase the efficiency of the process and markers, 
such as modelling yeast suggested methods for 
increasing vanillin production by 5-fold.148 

Similarly, the model’s biological interpretation of 

GABA pathway

Aflatoxin pathway

Fatty acid sythesis

Acetyl-CoA

Malonyl-
CoA Norsolorinate

Averantin

Averantin

Versiconol A

Versiconal

Versiconol B

Aflatoxin
G1

Aflatoxin
B1

Aflatoxin
G2

Aflatoxin
B2

Alfatoxin released into bloodstream

Aspergillus species

Candida species

Citrinin pathway

Citrinin released into bloodstream

Pencillium species

GABA released into bloodstream

Acetyl-
CoA Citrate

Succinate

Glutamate

Glutamine

GABA

Succinate
Semi-aldehyde

γ-Hydroxy
ButyrateSecondary Metabolism of the

Mycobiome on 
the Human Host

Glucose Pathway

Acetyl-CoA

Malonyl
-CoA

Pyruvate Pathway

Oxylacetate

PKS Pathway
Oxylacetate

Tetraketide Octaketide

Pentaketide

Decaketide

Figure 1. Fundamental metabolic interactions between host-mycobiome in health and disease. A. indicates Candida contribution to 
the production of γ-amino butyric acid (GABA) through the tricarboxylic acid cycle to produce succinate may perceptively occur during 
systemic infection. GABA has a role in dampening the effect of the nervous system, and generally, deficiency involves epilepsy.109 

Indirectly targeting mycobiome in specific regions such as Candida species can have a better effect than providing analogues of GABA 
that has been identified to lead to anxiety, stress and seizures. Exploring this metabolic pathway of the mycobiome, especially 
targeting the succinate pathway, the production of semi-aldehydrase could lead to alteration of disease with better regulation from 
the microbiota, as alternatively, high levels of GABA have been linked to Alzheimer’s disease.110 B. Penicillium species’ ability to 
produce the mycotoxin called citrinin is toxic to cause renal nephrosis.111–113 Drugs have been developed to inhibit the effect of citrinin 
in hepatoma, and several animal studies have shown the benefit.114 Ostry et al., 2013 have highlighted the dangerous effect of citrinin 
in dietary sources.115 There has been no established link of mycobiome being the contributor of toxin in humans and whether diverting 
the polyketide pathway can reduce renal cell toxicity. C Aflatoxin is a common secondary metabolite of the Aspergillus family. It has 
been associated with cancer morbidity and inducing tumour suppressor gene p53.116–119 The potential effect of the presence of 
Aspergillus needs to be investigated and whether manipulating the metabolic pathway can give a better indicator of being able to 
reverse the effects of aflatoxin by reducing the levels of the malonyl-coA pathway. All these potential pathways give us a clear 
indication of how the study of the metabolism of the mycobiome is essential in understanding pathogenesis across a wide breadth of 
diseases.
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Yarrowia lipolytica metabolic pathways identified 
that this fungal species is an ideal producer of di- 
carboxylic acid using a lipid pathway.149

The application of GSMM technologies to the 
human microbiome has identified cross-feeding of 
metabolites between host and microbiota in health 
and disease.139 This has led to a recent increase in 
studies predicting biological behaviour, the use of 
biotics for metabolic diseases, personalised medicine, 
and drug targets for pathogens.149–154 Modelling has 
implicated the production of SCFAs from microbial 
fermentation in the host in CD aetiology; thus, 
adjusting diet can control the presence of SCFAs in 
patients and modulate disease.155 Exploring IBD 
compared to healthy cohorts showed an increase in 
vitamin metabolism in IBD patients, whilst a closer 
inspection of species in the microbiome using 
GSMMs unveiled vitamin and biotin producing gut 

organisms in those suffering from IBD,156 whilst 
using modelling of the microbiome in neurological 
diseases including Parkinson’s Disease157–160 and 
Alzheimer’s disease161,162 has identified microbiome 
perturbations, causing flux changes in pathways and 
production of SCFAs that ultimately potentially 
cause disease. Studies on community modelling of 
the microbiome predict metabolic interactions 
between species with the overall metabolic contribu-
tion of each species determined.163–165 Research in 
this area remains in its infancy as the development of 
algorithms and tools used to explore community 
modelling continues, but the potential is beyond 
doubt.

As there are several available fungal GSMM, they 
could be implemented in studying the mycobiome 
to elucidate the complex interactions between 
mycobiome, bacteriome and host, thereby 

Figure 2. System and synthetic biology approach in investigating mycobiome’s important role in the gut-liver axis. This image shows 
the interaction of the microbiome-mycobiome with the host cells in the gut, translocation of intermediaries through the blood, and 
prospectively leading to the composition of the liver environment to change. The biological knowledge from the collection of omics 
data such as proteome, metabolome and transcriptome generates information that can be integrated into functional mathematical 
models. The structural data is placed into the stoichiometric matrix and after several steps of adding biochemical information the draft 
of the GSMM can be reconstructed and further validated for new biological interpretation and predictions. Different constraint can be 
applied on the GSMMs to investigate the models for novel discovery. CRISPR as one of the gene editing approaches in validating 
predictions based on GSMM; these can be done using the CRISPR-cas9 system to perform genome modification such as gene slicing, 
gene mutation, secondary metabolite modification, base editing, and gene editing tagging and gene overexpression, down-regulation 
methods. The application can be used in tackling drug resistance, alteration of the metabolic pathway with the possibility of amending 
toxic pathways in pathogenesis, rationalising gene essentiality and genome-wide screening. The application of these potential 
methods in assessing the mycobiome community and particularly within the gut-liver axis.
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explaining the metabolic role of fungi in disease 
pathophysiology. Exploring the mycobiome with 
GSMM will significantly improve our understand-
ing of fungal interactions with the host in health 
and disease. Synthetic biology can then be used to 
validate and assess genetic circuits and metabolic 
frameworks for complex interactions. Recently, 
CRISPR-based systems for repression and activa-
tion in C. albicans have been used to investigate its 
regulatory system in the clinical context.166

The difficulties lie in exploiting fungal models and 
synthetic biology due to annotation accuracy with 
high plasticity of metabolic pathways, diverse mor-
phology, and evolutionary adaptive traits. There is 
a lagging development of fungal GSMM and applying 
CRISPR system in clinical and healthcare settings due 
to a lack of quantitative tools to study fungal genomes 
a lack of annotation and validation in the model. The 
global overview provided by this approach offers the 
potential to drive strategies to manipulate the myco-
biome to make predictions, test hypotheses, propose 
clinical areas for manipulation, identify new diagnos-
tics target areas with better understanding, and dis-
cover novel therapeutic targets.135,136,167

Conclusion

Understanding the behaviour of fungi, both individu-
ally and as a community, is essential in elucidating the 
role of the mycobiome in health and disease. 
Untethering the distinct metabolic interactions and 
effects of secondary metabolism provide an opportu-
nity for disease intervention, determining the point at 
which dysbiosis arises, identifying biomarkers for bet-
ter diagnostics and novel therapeutic targets. 
Metabolism is a holistic and integrative subject that 
combines genetics, molecular pathways, signalling 
and environmental factors. Multi-disciplinary tools 
and methods such as system biology are needed to 
develop in silico models as a predictive tool to validate 
current datasets and knowledge. In doing so, we will 
generate a platform to answer how mycobiome meta-
bolism affects the host in health and disease.

Background information – what is a genome- 
scale metabolic model (GSMM) and CRISPR

Genome-scale metabolic models (GSMM) are 
a systematic and curated method to establish 

genotype-phenotype relationships. GSMM aim to 
bridge together the complex network of genes, reac-
tions and thousands of metabolites in silico while 
sustaining full metabolic flux functionality of the sys-
tem. The functionality of a model refers to the natural 
ability of the model to undertake reactions, a realistic 
rate of energy consumption, rate of energy production 
and apply physio-chemical laws and environmental 
input to create a system that is true-to-life.168 The 
conversion of the reactions into a stoichiometric 
matrix allows mathematical inferences to integrate 
data into a predictive biological framework called 
constraint-based modelling.169 This developmental 
process of integration requires automated and manual 
curation for efficient quality standards. The GSMM 
community has developed a MEMOTE suite package 
to ensure the models’ standardisation and functional 
feasibility.170 With synthetic biology approach of gen-
ome engineering techniques pave the way for validat-
ing fungal species’ biological mechanisms underlying 
these systematic alterations in response to different 
environmental changes such as response to anti- 
fungal drug and the host organism’s reaction during 
fungal infection (Martins-Santana et al., 2018).142 

Figure 2 demonstrates the step-by-step inferences for 
creating a GSMM and synthetic biology to determine 
the interaction of mycobiome within the community.

The creation of a GSMM includes two methods: 
firstly, a top-down approach, which integrates 
experimental data into a mathematical model. 
This method makes it possible to create a network 
of reactions and metabolic outputs through path-
ways. The study of metabolism can provide more 
accuracy and specificity with further predictive 
analysis and assessment. Secondly, the bottom-up 
approach includes defined knowledge and informa-
tion sourced from readily available studies and the 
input of current literature (Machado et al., 2018).171 

The current approach to reconstructing GSMM 
combines top-down and bottom-up approaches 
using automated tools such as the RAVEN toolbox 
(Agren et al., 2013).172 GSMM can be used in con-
straint-based modelling to predict the flux distribu-
tion and secretion of metabolites within the 
organism under certain constraints such as the 
intake of substrates and governing specific objective 
functions such as growth, thereby providing infor-
mation that would be difficult to generate in vitro 
experiments (Bordbar et al., 2014).169 As of 2019, 
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there are reconstructed GSMM for 434 bacteria, 40 
archaea and 117 eukaryotes (Gu et al., 2019).30 The 
majority of these GSMM are used in the simulation 
of a single organism. However, their use can go 
further to study the metabolic cross-talk of micro-
bial communities.

CRISPR (Clustered Regularly Interspace Short 
Palindromic Repeat-associated (Cas) is a robust and 
customised method of gene editing which is adapted 
from the immune mechanism in bacteria and archaea 
against viral (bacteriophage) invasion (Mojica et al. 
2005).173 What makes Type-II CRISPR-Cas9 a well- 
established CRISPR approach in the genome-editing 
field is the ability of manipulation at genome level 
using just chimeric single guide RNA, making double- 
strand breaks to insert-deletion gene (indel) using cas9 
nuclease, followed by homologous/non-homologues 
recombination and multiple genes indel (Pourcel et al. 
2005; Brouns et al. 2008).109–119,174,175
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