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Structural brain networks derived from diffusion magnetic resonance imaging data have been used extensively to
describe the human brain, and graph theory has allowed quantification of their network properties. Schemes used
to construct the graphs that represent the structural brain networks differ in the metrics they use as edge weights
and the algorithms they use to define the network topologies. In this work, twenty graph construction schemes
were considered. The schemes use the number of streamlines, the fractional anisotropy, the mean diffusivity or
other attributes of the tracts to define the edge weights, and either an absolute threshold or a data-driven al-
gorithm to define the graph topology. The test-retest data of the Human Connectome Project were used to
compare the reproducibility of the graphs and their various attributes (edges, topologies, graph theoretical
metrics) derived through those schemes, for diffusion images acquired with three different diffusion weightings.
The impact of the scheme on the statistical power of the study and on the number of participants required to
detect a difference between populations or an effect of an intervention was also calculated.

The reproducibility of the graphs and their attributes depended heavily on the graph construction scheme.
Graph reproducibility was higher for schemes that used thresholding to define the graph topology, while data-
driven schemes performed better at topology reproducibility (mean similarities of 0.962 and 0.984 respec-
tively, for graphs derived from diffusion images with b ¼ 2000 s/mm2). Additionally, schemes that used
thresholding resulted in better reproducibility for local graph theoretical metrics (intra-class correlation co-
efficients (ICC) of the order of 0.8), compared to data-driven schemes. Thresholded and data-driven schemes
resulted in high (0.86 or higher) ICCs only for schemes that use exclusively the number of streamlines to construct
the graphs. Crucially, the number of participants required to detect a difference between populations or an effect
of an intervention could change by a factor of two or more depending on the scheme used, affecting the power of
studies to reveal the effects of interest.
1. Introduction

The view that the human brain is a network of cortical and subcortical
areas connected via white matter tracts emerged several decades ago and
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Table 1
Metrics used in connectivity matrices.

Metric Abbreviation

Fractional anisotropy FA
Mean diffusivity MD
Radial diffusivity RD
Number of streamlines NS
Percentage of streamlines PS
Streamline density SLD
Tract volume TV
Tract length TL
Euclidean distance between nodes ED
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(2019), to name just a few of the studies). Structural networks can be
constructed using data collected non-invasively via magnetic resonance
imaging (MRI) and diffusion MRI (dMRI). Graph theory allows quanti-
fication of the organizational properties of structural brain networks by
using graphs to represent those networks (Bullmore and Sporns (2009)
and references therein).

For inferences drawn from graph theoretical analyses of structural
brain networks to be reliable, it is essential that the graphs representing
the structural networks reflect the true structural organization of the
brain. If that is the case, such graphs are bound to be reproducible, within
experimental error, when generated from data collected at different
times, in the absence of any true changes in the structural connectome.
Conversely, this means that graphs that are not reproducible in the
absence of age-related changes or intervention-induced plasticity are not
reliable in representing the structural organization of the human brain.
This is important because various graph construction schemes have been
presented in the literature that use different techniques to perform
tractography, define graph topology and assign edge-weights, all pro-
ducing graphs that are quite different from each other, with different
levels of robustness and reproducibility. Using schemes that result in
highly reproducible graphs and graph-attributes means that any
observed changes (in longitudinal studies) or differences between pop-
ulations (in comparative studies) can be reliably attributed to maturation
or to differences between populations respectively, rather than to
random fluctuations resulting from experimental or analysis errors.
Additionally, high reproducibility and low within-participant variability
results in higher power for the studies and therefore a lower number of
required participants, which in turn results in reduction of the cost and
resources required for the study. Several papers have investigated
different aspects of the reproducibility of structural brain networks and
their graph theoretical metrics (Dennis et al., 2012; Owen et al., 2013;
Buchanan et al., 2014; Smith et al., 2015; Owen et al., 2013, 2013; Zhong
et al., 2015; Dimitriadis et al., 2017b; Yuan et al., 2018), each using a
specific scheme for constructing the graphs, predominantly using data
acquired with low diffusion weightings (b-values of up to 1500 s/mm2).
The work of Roine et al. (2018) also investigated a higher diffusion
weighting of b¼ 3000 s/mm2.

In this work, we compared the reproducibility of structural brain net-
works generated with different graph-construction schemes for three
different diffusion weightings. 1 We investigated the reproducibility of the
graphs themselves as well as their topologies, edge-weights and graph
theoretical metrics. The article is organized as follows: Section 2 details the
data, the software and algorithms used to perform the tractography,
construct the graphs representing the structural networks, and perform the
comparative analyses. Section 3 contains a comparison of the graphs
derived using different graph-construction schemes and describes the re-
sults for the reproducibility of the graphs and their various attributes.
Finally, it presents sample calculations for the number of participants
required for different studies, for the different graph-construction schemes.
Section 4 includes a discussion of the significance of our results and the
ways they can impact graph theoretical studies of structural brain networks
in the future. We conclude with Section 5. To the best of our knowledge,
this is the first time that graph-construction schemes for structural brain
networks have been compared in terms of their reproducibility across a
wide range of diffusion weightings, in particular with an aim to inform
decisions on the number of participants required in related studies.

2. Methods

All analyses were performed using MATLAB (MATLAB and Statistics
Toolbox Release, 2015a; The MathWorks, Inc., Massachusetts, Unites
States), unless otherwise stated.

2.1. Data

We used the Human Connectome Project (HCP) (Van Essen et al.,
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2013; Sotiropoulos et al., 2013b; Glasser et al., 2013) test-retest MRI and
diffusion-MRI data, in which participants were scanned twice. The time
interval between the two scans of each participant ranged between 1.5
and 11 months, and the age range of the participants was 22–41 years.
This scan-rescan time interval is shorter than that expected for measur-
able maturation-induced structural changes to occur.

The diffusion-weighted images (DWIs) have resolution of
ð1:25� 1:25� 1:25Þ mm3, and were acquired for three different diffu-
sion weightings (b-values: 1000 s/mm2, 2000 s/mm2 and 3000 s/mm2).
We used the data from 37 participants for whom there were 90 gradient
directions for each b-value. The HCP acquisition details are described in
Sotiropoulos et al. (2013b); Feinberg et al. (2010); Moeller et al. (2010);
Setsompop et al. (2012); Sotiropoulos et al. (2013a); Xu et al. (2012). We
performed the analyses described below separately for the DWIs
collected with each diffusion weighting.

2.2. Tractography

We performed whole-brain tractography using ExploreDTI-4.8.6
(Leemans et al., 2009). Constrained Spherical Deconvolution (CSD)
(Tournier et al., 2004) was used to estimate the fiber orientation distri-
bution function. In the tractography algortihm, the seed point resolution
was ð2�2�2 mm)3, the step size was 1mm, the angle threshold was 30∘,
and the fiber length range was 50� 500 mm.

2.3. Graph generation

We constructed graphs using twenty different graph-construction
schemes. We normalized all graphs so that the maximum edge weight
in each graph was equal to 1. We also set the elements of the diagonal of
all graph matrices equal to 0, since they correspond to connections of a
node with itself.

2.3.1. Node definition
We used the Automated Anatomical Labeling (AAL) atlas (Tzour-

io-Mazoyer et al., 2002) to define the 90 cortical and subcortical areas of
the cerebrum that correspond to the nodes of the structural networks.
The white matter (WM) tracts linking those areas are the connections, or
edges, of the networks. The network generation was performed in
ExploreDTI-4.8.6 (Leemans et al., 2009). This process resulted in nine
connectivity matrices (CMs) for the data for each diffusion weighting and
each scan of each participant. Each CM had edges weighted by a different
metric averaged along the corresponding WM tracts. Those metrics are:
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD),
number of streamlines (NS), streamline density (SLD), percentage of
streamlines (PS), tract volume (TV), tract length (TL) and Euclidean
distance between the nodes (ED), and are listed in Table 1.

2.3.2. Integrated graphs
We used the algorithm described by Dimitriadis et al. (2017b, c) to

generate an integrated network for the data from each
diffusion-weighting and each scan of each participant. Following Dimi-
triadis et al. (2017b), for each participant at each time point, a two-step



Table 2
Graph-construction schemes. The first seven schemes are the ones that we discuss
in detail in this article. The remaining 13 either give smaller reproducibility or
are very similar to one of the first seven and therefore are not discussed in detail -
and thus are numbered rather than given an abbreviation.

Abbreviation Initial Edge
Weights

Topology Final Edge
Weights

Mean Graph
Similarity
(b¼ 2000 s/
mm2)

NS - OMST NS OMST unchanged 0.918

NS þ FA
OMST

lin. comb. of
NS and FA

OMST unchanged 0.785

9-m OMST lin. comb. of
all 9 metrics
in Table 1

OMST unchanged 0.852

NS-thr NS keep
highest-NS
edges

unchanged 0.962

NS-t/FA-w NS keep
highest-NS
edges

re-weight
with FA

0.878

NS-t/MD-w NS keep
highest-NS
edges

re-weight
with MD

0.867

FA-t/NS-w FA keep
highest-FA
edges

re-weight
with NS

0.887

8 lin. comb. of
NS, FA, MD

OMST unchanged 0.771

9 lin. comb. of
NS, FA

OMST unchanged 0.786

MD and SLD

10 lin. comb. of
NS, FA

OMST unchanged 0.744

MD, SLD and
TL

11 lin. comb. of
NS, FA, MD

OMST unchanged 0.808

SLD, TL, TV

12 lin. comb. of
NS, FA, MD

OMST unchanged 0.852

SLD, TL, TV,
PT

13 lin. comb. of
NS, FA, MD

OMST unchanged 0.859

SLD, TL, TV,
PT, ED

14 FA keep
highest-FA
edges

unchanged 0.667

15 MD keep
highest-MD
edges

unchanged 0.559

16 FA OMST unchanged 0.558

17 MD OMST unchanged 0.473

18 FA keep
highest-FA
edges

re-weight
with MD

0.649

19 MD keep
highest-MD
edges

re-weight
with NS

0.752

20 MD keep
highest-MD
edges

re-weight
with FA

0.554
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process was followed:

1) We used the diffusion-distance (Hammond et al., 2013) between in-
dividual CMs to maximise information provided by each metric and
create a linear-combination (or integrated) graph, and

2) we used an Orthogonal Minimal Spanning Tree (OMST) algorithm
(Dimitriadis et al., 2017a, c) to select the edges, so as to maximise the
difference (Global Efficiency - Cost), while maintaining the connec-
tivity of the nodes. The benefit of the method lies in the fact that both
the topology that results from selecting the edges and the assignment
of the edge weights are performed in a data-driven manner, and no
arbitrary threshold needs to be imposed. This additionally ascertains
that both strong and weak edges are treated equally.

Motivated by the fact that the nine metrics shown in Table 1 exhibit a
number of covariances, we also considered integrated graphs formed
from subsets of those metrics, to explore whether using fewer variables to
define edge-weights has an impact on network reproducibility.

We note here that using linear combinations of metrics as edge
weights is motivated by the fact that the transport and integration
properties of the brain are affected by more than one attribute of the
white matter tracts. Recognizing that, other studies have also used
combinations of metrics to weigh the edges. For example, Nigro et al.
(2016) used the product of NS and FA to weigh the edges in a study of
Parkinson's patients, and Taylor et al. (2015) used a combination of NS
and TL in a study of epilepsy patients. Those combinations were not
data-driven, but motivated by other considerations. Other studies also
recognize that fact, and rather than using combinations of metrics, pre-
sent results for structural networks constructed using more than one
metric as edge weights, for example Caeyenberghs et al. (2016).

2.3.3. Single-metric graphs
In addition to using the algorithm of Dimitriadis et al. (2017b), we

also constructed networks using the NS, FA or MD as edge weights, due to
their prevalent use in the literature (for example Honey et al. (2009) and
Collin et al. (2016)), employing the OMST algorithm to select the edges
in a data-driven manner.

2.3.4. Thresholded graphs
Finally, we constructed graphs with topology determined by the CM

that is weighted by the NS, FA or MD, and a threshold applied to remove
edges with the lowest weights. Instead of imposing an arbitrary
threshold, the threshold was determined by imposing the constraint that
the graphs exhibit the same sparsity as the OMST graphs that exhibited
the highest reproducibility (more on this is included in Section 3). Once
the topology of each of those graphs was specified, the weights of the
edges were either kept as they were or re-weighted with one of the
remaining two metrics.

2.3.5. Summary of graphs investigated
The details of all the schemes that we considered are listed in Table 2

for easy reference. In the same table we also list the mean graph simi-
larity (see Section 2.5) between scans for those schemes, for graphs
generated from the DWIs with b ¼ 2000 s/mm2, because that guided the
decision of which schemes to look into in more detail. We discuss this
more in Section 3.

2.4. Graph theory

We computed graph theoretical metrics for all the graphs using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Specifically, we
calculated the node degree, clustering coefficient, local efficiency and
betweenness centrality for each node. We also calculated the global ef-
ficiency and the characteristic path length for each graph.
497
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2.5. Comparison and statistical analysis

We performed three different forms of comparison:

1. Longitudinal Reproducibility: This was established by comparing the
graphs from test and retest data, for each graph-construction scheme,
independently for each diffusion weighting.

2. Between-Scheme Agreement: This was assessed by comparing graphs
generated via different construction schemes, for each scan and
diffusion weighting, for each participant.

3. Inter-B-Value Agreement: This was assessed by comparing graphs
generated from the same scan using the same graph-construction
scheme, but DWIs with two different diffusion weightings.
2.5.1. Graph reproducibility
The graph similarity between two graphs was computed as the dot

product of two vectors, each formed by concatenating the unique edges
of each graph, normalized by the magnitudes of those two vectors. Even
though it is informative, the similarity between two graphs encompasses
both how similar the topologies of the graphs are (i.e. which edges exist
in each graph) and how similar the edge weights are. In order to assess
the impact of each of these contributions to the overall graph similarity,
we looked into each contribution independently.

2.5.2. Topology reproducibility
As a measure for the topology similarity, we constructed a vector

containing as many entries as the total number of unique edges in our
graphs, and assigned to each entry the value of 1 if the corresponding
edge existed in both graphs being compared or if the edge did not exist in
either of the graphs being compared, and the value of 0 if the edge in
question existed in one of the two graphs being compared but not the
other. We then averaged the entries of that vector to get the topology
similarity between the two graphs.

2.5.3. Edge reproducibility
In order to assess the edge reproducibility we calculated the intra-

class correlation coefficient (ICC) for the edge weights, for all edges
that appeared in both scans of at least 12 (one third) of the 37 partici-
pants in the group. The choice to use one third as a representative sub-
group was partially arbitrary, but motivated by the fact that in order for
the ICC to be a sensible measure, it is necessary to have a representative
group of participants. We also calculated the absolute value of the frac-
tional difference of the edge weights, namely the absolute value of the
difference divided by the mean value of the edge weights, for each edge
of each graph. The ICC gives the range of variability of each edge weight
between scans in the context of the overall variability of the weights of
that edge among participants. On the other hand, the absolute fractional
difference gives a participant-specific measure of that variability.

We were also interested in whether dMRI-measured attributes of the
WM tracts (for example mean FA, NS, etc.) are related to the reproduc-
ibility of edge weights. We constructed a general linear model (GLM)
with the absolute fractional difference (between scans) of the edge
weights as the dependent variable. We hypothesized that the fractional
difference between edge weights would depend both on the attributes of
the edges and on the absolute difference of those attributes between
scans. Additionally, because the values of attributes of WM tracts are
highly correlated between scans (a fact confirmed in our analysis, with all
WM tract attributes exhibiting correlation coefficients of 0.83 or higher
between scans, with p-values of 10�7 or lower), we used only the attri-
butes listed in Table 1 for graphs generated from the first scan and their
differences between scans, as independent variables (all variables were z-
transformed).

We also wanted to assess whether the edges that appear in the graph
from only one of the two scans have any particular attributes. We used
two-sample t-tests to compare the distributions of the nine edge
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attributes for edges that appeared in both scans to their distributions for
edges that appeared in only one of the two scans.

2.5.4. Most significant edges
To identify the edges that have the highest weights across participants

for each scheme, we selected the edges with weight of 0.9 or higher from
the graphs of each participant and summed up the weights. The edges
with the highest sums of edge weights were identified as the strongest for
each scheme and each scan.

2.5.5. Reproducibility of graph theoretical metrics
To assess the longitudinal reliability of graph theoretical metrics for

the different graph-construction schemes, we calculated the ICC and the
absolute value of the fractional difference for the graph theoretical
metrics between the two scans, both for the local and the global graph
theoretical metrics listed in Sec. 2.4.

2.6. Power of structural network analyses

We were interested in evaluating the impact of different graph-
construction schemes on the number of participants required in: a)
comparative studies, namely studies where groups of participants
exhibiting different characteristics (cognitive abilities, disease, etc.) are
compared to each other; and b) longitudinal studies, namely studies in
which specific measures are computed at two or more different time
points for the same participants. A detailed calculation of the number of
participants requires knowledge of the specific quantities of interest as
well as of the populations involved, therefore such calculations need to
be made on a case-by-case basis.

To estimate the impact of the choice of scheme on the power of such
studies and on the required number of participants, we assume that we
have two populations, each with the same number of participants N, and
we measure the quantity x for each participant. Alternatively, we have a
population with N participants who undergo an intervention, and we
measure the quantity x for all participants before and after the inter-
vention. We also assume that the distribution p1ðxÞ of x for the first
population (in the former scenario) or for the population before the
intervention (in the latter scenario) is normal with a mean of 0, while for
the second population (in the former scenario) or for the population after
the intervention (in the latter scenario) the distribution p2ðxÞ is a normal
with a mean of μ. Finally, we assume that the standard deviations (SD) of
both distributions are equal to each other, and denoted by σ. As
demonstrated by Mumford (2012), if we specify the confidence level at
which we wish to detect a possible difference in the means of the dis-
tributions, the quantity

Q ¼
ffiffiffiffi

N
p

μ=σ (2.1)

determines the power of the study to identify a possible effect. The higher
Q is, the higher the power of the study. This means that the tighter the
distributions (lower σ), the lower the number of participants needed to
detect the effect. The fact that it is the square root of N that shows up in Q
means that even a modest improvement in σ can lead to a significant
reduction in the number of participants required to detect a given effect
with the same power, for a given statistical-significance threshold. On the
other hand, an increase in σ can lead to a deterioration of the power of a
study, if not enough participants can be recruited to allow for confident
detection of a given effect. If the number of participants cannot be
changed, the dependence of Q on the mean μ of the second distribution
indicates that reducing σ implies that a smaller value of μ, and thus of
deviation from the zero-mean distribution, is required for the effect to be
observed with a given power at a given statistical-significance threshold.
Taking this into account, in order to assess the impact of the choice of
graph-construction scheme of the various metrics of interest, we calcu-
lated the SD of their distributions. We then calculated the increase in the
number of participants that would be required, for all the graph-
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construction schemes in comparison to the scheme with the lowest SD for
the metrics of interest.

2.7. A note on b-values

As mentioned in Sec. 2.1, the DWIs were acquired for three different
diffusion weightings. B-values of up to 2000 s/mm2 give very good fit for
the diffusion tensor (DT) and its fractional anisotropy, while for higher b-
values the higher order effects of diffusion need to be taken into account
and kurtosis terms need to be included in the fit (Jensen et al., 2005;
Jensen and Helpern, 2010; Tabesh et al., 2011). On the other hand,
b-values of under 1500 s/mm2 can be problematic when it comes to
resolving crossing fibers with CSD tractography algorithms (Tuch et al.,
2002; Tournier et al., 2004, 2008; Cho et al., 2008), which is important
given the prevalence of such fibers in the human brain (Jeurissen et al.,
2012). Here, we present the results derived from DWIs acquired with b ¼
2000 s/mm2 in more detail than for the other weightings, because, unlike
the other two diffusion weightings, this one gives reliable tractography
results with the CSD algorithm and reliable results for the DT fits. It is,
however, important to understand how similar or different the results are
for the other two diffusion weightings in comparison to b ¼ 2000 s/mm2,
specifically for single-shell experiments or datasets as will be discussed in
Sec. 4. We therefore also present the reproducibility results for those two
diffusion weightings.

2.8. Data and code availability

The HCP test-retest data is freely available as listed above. The code
used to generate the graphs for the structural brain networks with the
OMST schemes is available at: https://github.com/stdimitr/multi-grou
p-analysis-OMST-GDD. The code used to perform the reproducibility
analysis is not freely available, but is based exclusively on Matlab func-
tions. This adheres to the data and code requirements of our funders.

3. Results

As explained in Sec. 2, we considered twenty graph-construction
schemes (see Table 2). We present detailed results for the seven
schemes that a) resulted in reproducibility (for the graphs and their
various attributes) that is high enough for the graphs to be useful for
comparative and longitudinal studies and b) are different enough from
each other to convey a different picture of the structural connectome.
Specifically, we excluded all schemes that resulted in mean graph simi-
larity over participants of under 0.75 (schemes 10, 14, 15, 16, 17, 18 and
20 in Table 2; also see Messaritaki et al. (2019) for more details on the
graph similarity for the FA- and MD-schemes). We also excluded schemes
for which the graph similarity was under 0.7 for any of the participants
regardless of the mean graph similarity (schemes 8, 9, 19 in Table 2).
Schemes 11, 12 and 13 resulted in graphs that are very similar to the 9-m
OMST scheme, and we decided to discuss the latter in detail due to the
fact that it exhibits higher reproducibility for the graph theoretical
metrics. Based on these considerations, the schemes we discuss in detail
and the abbreviations used to refer to them, are:

� Scheme 1: The edge weights are equal to the NS, and the OMST al-
gorithm is used to select the edges (NS-OMST).

� Scheme 2: The edge weights are equal to a linear combination of the
NS and the FA, with the coefficients identified by the diffusion-
distance algorithm. The OMST algorithm is used to select the edges
(NS þ FA OMST). This is the same scheme that is described by
Dimitriadis et al. (2017b), using only two metrics to weigh the edges.

� Scheme 3: The edges are weighted by linear combinations of 9 met-
rics, with the coefficients identified via the diffusion-distance algo-
rithm. The OMST algorithm is used to select the edges (9-m OMST).

� Scheme 4: The edges are weighted by the NS, and an absolute
threshold is used to keep the edges that have the highest NS (NS-thr).
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� Scheme 5: The edges are first weighted by the NS and thresholded to
keep the ones with the highest NS. Then they are re-weighted by their
FA. In other words, the topology of the graph is defined by the
thresholded-NS scheme and the weights are equal to the FA (NS-t/FA-
w).

� Scheme 6: The edges are first weighted by the NS and thresholded to
keep the ones with the highest NS. Then they are re-weighted by their
MD. In other words, the topology of the graph is defined by the
thresholded-NS scheme and the weights are equal to the MD (NS-t/
MD-w).

� Scheme 7: The edges are first weighted by the FA and thresholded to
keep the ones with the highest FA. Then they are re-weighted by their
NS. In other words, the topology of the graph is defined by the
thresholded-FA scheme and the weights are equal to the NS (FA-t/NS-
w).

We remind the reader that, for the four thresholded schemes, the
threshold was defined so that the networks exhibited the same sparsity as
the corresponding 9-m OMST networks, which had the highest mean
network similarity of the OMST networks that use more than one metric
(see Sec. 3.2.1).

3.1. Representative graphs

Fig. 1 shows the graphs for the structural networks of the first scan of
one participant for the seven different schemes, derived from DWIs ac-
quired with b ¼ 2000 s/mm2.

For six of the seven graph-construction schemes the majority of the
edges close to the diagonal were non-zero. The graph resulting from the
FA-t/NS-w scheme was the only exception, in which the edges close to
the diagonal for nodes up to node 30 were not present, or not as strong in
relation to the rest of the edges as for the other schemes.

The weights of the edges were very variable between schemes, as was
the relative weight of the edges within each scheme. For the NS-OMST
and NS-thr schemes, which rely exclusively on the NS for the topology
and edge weights, only a few edges had weights close to 1, while all the
others had weights of 0.6 or lower. For the NS-t/MD-w graph, on the
other hand, most edges had values close to 1, reflecting the fact that the
MD of white matter tracts is quite uniform in the human brain. The
remaining four schemes exhibited a more uniform distribution of edge
weights between the values of 0 and 1.

3.1.1. Between-scheme similarity of graphs
The mean of the graph similarity between schemes (over the 37

participants and the two scans) is given in Table 3 for all pairs of graph-
construction schemes. The high similarity of the graphs generated by the
NS-t/FA-w and NS-t/MD-w schemes is, of course, a result of their to-
pologies being identical. The graphs generated by the NS-OMST and NS-
thr schemes were also highly similar to each other, which is due to the
fact that the weights used for the edges are the same. Notably, this is true
despite of the fact that these graphs generally exhibited very different
sparsities (the mean sparsity of the NS-OMST graphs across participants
was 0.044 while that of the NS-thr graphs was 0.096.)

3.2. Reproducibility results

3.2.1. Graph reproducibility
The between-scan graph similarity for the 37 participants is shown in

Fig. 2. We show the similarity for the graphs constructed via the OMST
schemes separately from that for the four thresholded schemes, using the
same scale on the vertical axis in both plots.

The NS-OMST had the highest graph similarity among the OMST
schemes, just over 0.9 for most participants. Of the seven schemes
considered, the NS-thresholded scheme resulted in the highest similarity,
about 0.95 for all participants. Notably, even though the FA-t/NS-w
scheme resulted in a very high mean graph similarity, it also resulted

https://github.com/stdimitr/multi-group-analysis-OMST-GDD
https://github.com/stdimitr/multi-group-analysis-OMST-GDD


Fig. 1. Sample graphs representing the structural connectome for the first scan of one of the participants, derived from the DWIs with b ¼ 2000 s/mm2. All graphs
have been normalized so that the maximum edge weight within each graph is 1. The colors in the colorbar correspond to the edge weights. By construction, the NS-
OMST graph is the sparsest, while the other graphs have the same sparsity as each other.

Table 3
Mean between-scheme similarity of graphs, for b ¼ 2000 s/mm2. The mean is
over all participants and then over the two scans. The highest values of the
similarity are indicated in bold letters.

NS þ FA
OMST

0.633

9-m
OMST

0.637 0.617

NS-thr 0.883 0.754 0.744

NS-t/FA-
w

0.538 0.696 0.685 0.808

NS-t/MD-
w

0.537 0.664 0.694 0.798 0.988

FA-t/NS-
w

0.552 0.539 0.427 0.637 0.503 0.438

NS
OMST

NS þ FA
OMST

9-m
OMST

NS-
thr

NS-t/
FA-w

NS-t/
MD-w

Fig. 2. Graph similarity between the two scans for the 37 participants, for b ¼
2000 s/mm2. The similarity for the OMST schemes is plotted separately from
that for the thresholded schemes, however both plots use the same scale for ease
of comparison.
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in the widest range of graph similarity among the 37 participants,
ranging from 0.75 to 0.95.

The mean and SD of the graph similarity for the three different
diffusion weightings is given in Table 4. The values of the mean similarity
were very close to each other for the graphs generated with the same
500
scheme across b-values, for all seven schemes. We compared the distri-
butions of the graph similarity for each scheme for all pairs of the three
diffusion weightings with paired t-tests, and applied false-discovery-rate
(FDR) multiple comparison correction with a threshold of p < 0:01. The
results are shown in Table 5, where “X” indicates pairs of distributions
that are statistically significantly different from each other. There are no
statistically significant differences in the graph similarity distributions
between b ¼ 2000 s/mm2 and b ¼ 3000 s/mm2 for any of the seven
schemes, indicating that the graph similarities are not affected by the b-
value for those stronger diffusion weightings. Additionally, the 9-m
OMST scheme does not show any statistically significant differences in
the similarity distributions regardless of the pair of b-values compared. It
is possible that using several metrics to weigh the edges reduces the effect
of inaccuracies in the evaluation of tract metrics, and therefore makes
that scheme more robust across b-values, as far as the graph similarity is
concerned.

We also compared the distributions of graph similarity for graphs
generated with two different schemes separately for each diffusion
weighting, for all possible pairs of schemes (paired t-test, after FDR
multiple comparison corrections at a threshold of p¼ 0.01). The results
are shown in Table 6. Blank cells indicate pairs of schemes for which the
distributions are statistically significantly different for all three b-values.
The numbers in the filled cells indicate the b-values for which the graph
similarity distributions are not statistically significantly different. For
most of the pairs of schemes, the graph similarity distributions are sta-
tistically significantly different from each other, indicating that the graph
similarity depends on the scheme. For five pairs of schemes, the distri-
butions were not statistically significantly different for b ¼ 1000 s/mm2,
while two of these pairs of schemes also resulted in distributions that
were not statistically significantly different for the two higher diffusion
weightings.

3.2.2. Topology reproducibility
The topology similarity is shown in Fig. 3 for the different schemes for

b ¼ 2000 s/mm 2. The mean and the SD of the topology similarity for
each scheme are given in Table 7, for the three diffusion weightings. The
topology similarity was over 0.9, for all participants regardless of the
scheme used to construct the graphs. The NS-OMST scheme had the
highest mean and the smallest SD of topology similarity for all three
diffusion weightings. The NS-thr, NS-t/FA-w and NS-t/MD-w schemes all



Table 4
Mean and SD of the similarity distributions of the graphs for the three diffusion weightings.

NS OMST NS þ FA OMST 9-m OMST NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w

b: 1000 s/mm2 mean 0.901 0.763 0.852 0.952 0.862 0.845 0.855
SD 0.020 0.034 0.026 0.010 0.022 0.023 0.045

b: 2000 s/mm2 mean 0.918 0.785 0.852 0.962 0.878 0.867 0.888
SD 0.021 0.028 0.023 0.008 0.018 0.020 0.041

b: 3000 s/mm2 mean 0.917 0.779 0.847 0.923 0.878 0.865 0.882
SD 0.023 0.025 0.025 0.009 0.021 0.023 0.051

Table 5
Comparison of similarity distributions across b-values (paired t-tests). The cells marked with X indicate the pairs of b-values for which the
distributions were statistically significantly different, after FDR correction for multiple comparisons has been applied, at a p-value threshold
of 0.01.

1000 s/mm2 vs. 2000 s/mm2 1000 s/mm2 vs. 3000 s/mm2 2000 s/mm2 vs. 3000 s/mm2

NS OMST X X

NS þ FS OMST X

9-m OMST

NS-thr X X

NS-t/FA-w X X

NS-t/MD-w X X

FA-t/NS-w X

Table 6
Comparison of distributions of network similarity across schemes, for the 3 b-values (paired t-tests, followed by FDR multiple-
comparison correction with p-value threshold of 0.01). Blank cells indicate pairs of schemes for which the distributions are sta-
tistically significantly different for all three b-values. The numbers in the filled cells indicate the b-values (in s/mm2) for which the
similarity distributions are not statistically significantly different.

NS þ FA

9-m OMST

NS-thr

NS-t/FA-w 1000

NS-t/MD-w 1000

FA-t/NS-w 1000 1000, 2000, 3000 1000, 2000, 3000

NS OMST NS þ FA 9-m OMST NS-thr NS-t/FA-w NS-t/MD-w
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had the same topology similarity since they share the same topology.
We compared the distributions of the topology similarity for the five

schemes (omitting the NS-t/FA-w and NS-t/MD-w because they have the
same topology as the NS-thr scheme) with paired t-tests, for each diffu-
sion weighting. For all three diffusion weightings, all pairs of schemes
exhibited statistically significantly different distributions of topology
similarity (all p < 10�6, and survived FDR multiple comparison correc-
tions for a p-value threshold of 0.01), indicating that the topology simi-
larity is dependent on the chosen scheme.

3.2.3. Edge reproducibility
The ICC for the edge weights is shown in Fig. 4, for graphs generated

from the DWIs acquired with b ¼ 2000 s/mm2. For all except the 9-m
OMST scheme, the majority of the edge weights exhibited ICCs above
0.7. In order for the plots in Fig. 4 to be easily interpretable, the scale was
set to be between 0 and 1 and therefore the few edges that have ICCs less
than zero, i.e., edges for which the between-scan variability of the edge-
weights is larger than the range of values of those weights, are not
evident. Fig. 5 shows the percentage of edges versus ICC for the seven
schemes, with the full range of values for each scheme. The FA-t/NS-w
scheme resulted in the highest percentage, 66:4%, of edges with ICCs
of 0.85 or higher, while the NS-thr and NS-t/FA-w schemes had 61:9%
and 61:4% edges with ICCs greater than 0.85 respectively. It is note-
worthy that the 9-m OMST schemes resulted in distributions that are
shifted to lower values compared to those of the other six schemes. That
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is possibly due to the fact that the nine WM tract metrics that are com-
bined to form the edge weights result in some added variability that leads
to lower ICCs.

Fig. 6 shows the percentage of edges in the graphs of all participants
versus the absolute fractional difference between scans of the edge
weights, for graphs generated from the DWIs acquired with b ¼ 2000 s/
mm2. In each panel, the points at the left part of the plot correspond to
edges for which the absolute fractional difference is small and therefore
the weights do not differ much between the two scans. The points at the
right part of the plot correspond to edges that appear in one of the two
scans of a given participant, but not the other, and as a result have ab-
solute fractional differences equal to 2. For a scheme to be deemed
reliable as far as the reproducibility of edges and edge-weights is con-
cerned, it must result in most of the edges having small edge-weight
fractional differences, and zero, or as few as possible, edges with an
absolute fractional difference of edge weights equal to 2.

The NS-t/FA-w and NS-t/MD-w schemes performed the best, with
76:2% of the edges exhibiting very small fractional differences and only
23:6% of the edges appearing in the graphs from only one of the two
scans. The NS-thr scheme resulted in the same small percentage of edges
appearing in the graphs from only one of the two scans, but it also
resulted in 75:4% of the edges exhibiting fractional differences of up to
0.6 in the edge weights. Of the OMST schemes, the 9-metric scheme was
the best because it resulted in nearly 68% of the edges having a fractional
difference of under 0.33, while 31:9% of the edges appeared in the



Fig. 3. Topology similarity between the two scans for the 37 participants, for b ¼ 2000 s/mm2. For clarity of the plot, the similarity for the OMST schemes is plotted
separately from that for the thresholded schemes, however both plots use the same scale for ease of comparison. The NS-thr, NS-t/FA-w and NS-t/MD-w schemes share
the same topology, and therefore the same topology similarities, and therefore the markers for all three schemes are co-located in the plot.

Table 7
Mean and SD of the topology similarity distributions of the graphs for the 3 b-values.

NS OMST NS þ FA 9-m OMST NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w

b: 1000 s/mm2 mean 0.981 0.944 0.966 0.973 0.973 0.973 0.931
SD 0.003 0.008 0.005 0.004 0.004 0.004 0.009

b: 2000 s/mm2 mean 0.984 0.947 0.963 0.974 0.974 0.974 0.931
SD 0.002 0.007 0.007 0.005 0.005 0.005 0.011

b: 3000 s/mm2 mean 0.983 0.947 0.962 0.974 0.974 0.974 0.934
SD 0.003 0.005 0.006 0.005 0.005 0.005 0.010

Fig. 4. ICC of the edges present in both scans of at least 12 of the 37 participants, for the different schemes considered.
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graphs from only one of the two scans. We note that these percentages are
correct for the graphs generated from the DWIs with b¼ 2000 s/mm2.
However, the conclusions about which schemes do better also hold for
the graphs generated from the DWIs with b¼ 1000 s/mm2 and
b¼ 3000 s/mm2, and the distributions shown in Figs. 5 and 6 were very
similar for those two b-values.

The results of the GLM analysis (see Sec. 2) are given in Table 8. For
the NS-OMST, NS þ FA OMST and NS-thr schemes, the absolute differ-
ence in the number of streamlines of the edge between the two scans was
the most significant predictor variable, and the larger the absolute dif-
ference in NS, the larger the absolute fractional difference in edge
weights. For the NS-OMST scheme, the tract volume explained some of
the variability, with the negative regression coefficient indicating that
the smaller the volume of a tract, the larger the absolute fractional
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difference in edge weights. For the NS-thr scheme, the number of
streamlines in the first scan was also significantly and negatively corre-
lated with the absolute fractional difference in edge weight. In other
words, edges that have a small number of streamlines are less reliably
reproduced. For the NS-t/FA-w and NS-t/MD-w schemes, the absolute
difference (between scans) in the metric used to weigh the edges was the
best predictor, and positively correlated with the edge-weight absolute
fractional difference. Finally, and somewhat surprisingly, for the FA-t/
NS-w scheme, the best predictor variable was the TV in the first scan,
with the absolute difference in TV between scans also contributing. For
the 9-m OMST scheme, only a small fraction of the variability was
explained by the attributes of the edges, and the coefficients of the GLM,
even though statistically significant, were very small (less than 0.1) and
therefore not useful in predicting which edges are likely to be highly



Fig. 5. Percentage of edges versus ICC, for b ¼ 2000 s/mm2. Left panel: OMST schemes, right panel: thresholded schemes. Only edges that show up in the graphs from
both scans of at least 12 participants have been included.

Fig. 6. Percentage of edges versus absolute fractional difference in the edge weights in the graphs from the two scans, for b ¼ 2000 s/mm2. Left panel: OMST schemes,
right panel: thresholded schemes. The points at the rightmost side of each figure correspond to absolute fractional difference of 2, namely to edges that appear in
graphs from only one of the two scans.

Table 8
GLM for the absolute value of the fractional difference of edge weights, for edges that appear in both scans of a given participant. The p-values for all the coefficients
shown here were smaller than 10�50, and they all survived FDR multiple comparison correction. The variables are listed in order of significance.

NS OMST NS þ FA OMST NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w

variables jΔ(NS)j: 0.63 jΔ(NS)j: 0.55 jΔ(NS)j: 0.73 jΔ(FA)j: 0.71 jΔ(MD)j: 0.41 TV1:�0.60
TV1:�0.50 jΔ(FA)j: 0.22 NS1:�0.46 FA1:�0.22 jΔ(TV)j: 0.39

% variability explained 39.2 33.2 48.1 57.2 16.5 31.7
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reproducible. That could be due to the fact that the linear combination of
metrics used to weigh the edges in the graphs is different among
participants.

The comparison of the distributions of edge attributes between edges
that appear in graphs from both scans and those that appear in graphs
from only one of the two scans showed no statistically significant dif-
ferences. However, the edges that appear in graphs from only one of the
two scans generally had low NS and low TV, for all graph-construction
schemes except the FA-t/NS-w. This is shown in Figs. 7 and 8, where it
is also evident that for the NS-OMST, NS-thr and FA-t/NS-w schemes,
edges with low NS but large differences in the NS between scans
exhibited the largest absolute fractional differences in edge weights. We
note that these two figures show edges that appear in the graphs repre-
senting the networks, i.e. edges that have survived the graph-
construction process.

3.2.4. Strongest edges
The edges that are the strongest in all participants depended on the

scheme used. The AAL regions interconnected by those edges are listed in
Table 9 for the seven graph construction schemes.

3.2.5. Reproducibility of graph theoretical metrics
Fig. 9 shows the ICC distributions over the 90 nodes of the graphs, for
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the four local graph theoretical metrics: node degree, clustering coeffi-
cient, betweenness centrality and local efficiency. The NS-thr scheme
resulted in the ICC distributions with the highest mean for all these
metrics, with the distributions also appearing the tightest around the
mean (the only possible exception being the distribution for the
betweenness centrality of the NS OMST scheme). The NS-t/FA-w and NS-
t/MD-w schemes also resulted in high ICCs for the node degree and the
clustering coefficient.

Fig. 10 shows the distributions of the absolute value of the fractional
difference between the two scans for the same graph theoretical metrics,
for the seven schemes. The 9-m OMST scheme had the lowest mean
values and very tight distributions around those means, for all four node-
level graph theoretical metrics considered. It is noteworthy that most
schemes resulted in comparable distributions for the absolute fractional
differences, with the FA-t/NS-w scheme, and the NS OMST scheme for
the case of the local efficiency and the clustering coefficient, being the
exceptions.

The ICCs and mean absolute fractional differences of the global effi-
ciency and the characteristic path length are given in Table 10. Most
schemes resulted in low values for the mean absolute fractional differ-
ences, however the ICCs for both the global efficiency and the charac-
teristic path length were above 0.85 only for the schemes that rely
exclusively on the NS to construct the graphs.



Fig. 7. NS in scan 1 versus NS in scan 2, color-coded by the absolute value of the fractional difference in edge weights. The black dots correspond to edges that appear
in the graphs from one of the two scans but not the other, and therefore NS is set equal to 0 for the graph that corresponds to the scan in which the edge does not
appear. We clarify that the 0 value here does not mean that the tract was not present after tractography, but rather that it was not present after the graph-construction
was performed.

Figure 8. TV in scan 1 versus TV in scan 2, color-coded by the absolute value of the fractional difference in edge weights. The black dots correspond to edges that
appear in the graphs from one of the two scans but not the other, and therefore their TV is set equal to 0 for the edge in the graph that corresponds to the scan in which
the edge does not appear. We clarify that the 0 value here does not mean that the tract was not present after tractography, but rather that it was not present after the
graph-construction was performed.
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3.3. Power of structural network studies

Consider a study that aims to evaluate whether an intervention per-
formed in a group of participants results in an overall change in their
structural networks. Assume that the group is split into two subgroups
with equal number of participants N, with the intervention performed in
only one of the two groups, for example group 2, and no intervention is
performed on group 1.
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3.3.1. Impact on graph changes
The graphs before and after the intervention are constructed based on

a given scheme and the graph similarities are calculated. The distribu-
tions of the graph similarities for the two groups will have different
means, differing by μ, and the same SD σ. For the dataset used in this
work, the NS-thr scheme resulted in the graph similarity distribution
with the lowest SD (Table 4). Table 11 shows the ratio of the SD for the
graph similarity distribution of each scheme over the SD of the NS-thr
scheme, as well as the factor by which the number of participants



Table 9
Connections that are strongest for all participants for the seven graph construc-
tion schemes.

Areas Connected (AAL atlas) Schemes

L superior frontal gyrus - L medial frontal gyrus NS-OMST; (NS þ FA)-OMST
9-m OMST; NS-thr

R superior frontal gyrus - R medial frontal gyrus NS-OMST; (NS þ FA)-OMST
9-m OMST; NS-thr

L supplementary motor area - R supplementary
motor area

(NSþ FA)-OMST; 9-m OMST; FA-
t/NS-w

L hippocampus - L thalamus NS-t/MD-w
R hippocampus - R thalamus NS-t/MD-w
L hippocampus - R hippocampus NS-t/MD-w
L hippocampus - L amygdala NS-t/MD-w
R hippocampus - R amygdala NS-t/MD-w
L putamen - L globus pallidus NS-thr
R putamen - R globus pallidus NS-thr
L posterior cingulate gyrus - L superior occipital
gyrus

NS-t/FA-w

L posterior cingulate gyrus - R superior occipital
gyrus

NS-t/FA-w

R posterior cingulate gyrus - L superior occipital
gyrus

NS-t/FA-w

L cuneus - R cuneus NS-t/FA-w
R calcarine sulcus - L superior occipital gyrus NS-t/FA-w
R cuneus - L superior occipital gyrus NS-t/FA-w
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needs to bemultiplied in order to maintain the same power as when using
the NS-thr scheme, based on keeping the quantity Q from Eq. (2.1)
constant. The increase in the required number of participants can be very
significant if a non-optimal scheme is chosen. For example, if the scheme
with the second smallest SD is chosen, namely the NS-t/FA-w scheme,
nearly five times as many participants would be required to observe a
difference in the graph similarity between the two groups, and therefore
to ascertain a possible effect of the intervention, for a given required
power and statistical significance.

3.3.2. Impact on graph theoretical metrics
The distributions (over the 90 nodes of each graph) of the SDs of the

local graph theoretical metrics for data acquired with b ¼ 2000 s/mm2

are shown in Fig. 11. The distributions of the SDs for the betweenness
centrality are given in a logarithmic scale. The scheme that exhibits the
Fig. 9. ICCs for the local graph theoretical metrics (b ¼ 2000 s/mm2). In each box, th
the 25% and 75% points, and the circles indicate points that are thought to be outl
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lowest SD for different graph theoretical metrics depends on the metric
itself, and that prevents us from giving a recommendation on the best
scheme to use for all these metrics. However, both the 9-m OMST and the
NS-thr schemes result in small SDs for these metrics, so would be good
choices.

The values of the SDs for the global metrics are given in Table 12.
Considering again the study mentioned at the start of this Section,
Table 12 implies that if, for example, the NS-thr scheme is used instead of
the NS-OMST one, the number of participants needed to detect a change
in the characteristic path length, which scales as the square of the ratio of
the SDs of the two schemes, would have to be ð0:003=0:002Þ2 ¼ 2:25
times larger. This can be a very significant difference, specifically for
interventions on patient populations, for which recruitment of partici-
pants could be challenging.

We note here that, in addition to the choice of scheme, each scanner
and scanning protocol will result in different reproducibility for the
graphs and the graph theoretical metrics. The general result here is that
there can be substantial differences in the required number of partici-
pants depending on the scheme used for each study.

3.4. Comparison of graphs resulting from different diffusion weightings

As noted earlier, DWIs acquired with different diffusion weightings
have different benefits and drawbacks as far as parameter fit, tractog-
raphy results, etc are concerned. It is important to understand whether
the graphs generated through the same scheme using DWIs acquired with
different diffusion weightings are similar to each other. Fig. 12 shows the
graph similarity for the three pairs of b-values compared.

In most cases, the graphs generated from DWIs of different b-values
were very similar to each other, with values of the graph similarity of
above 0.8. The FA-t/NS-w scheme exhibited very variable graph simi-
larity between different b-values, in particular between b ¼ 1000 s/mm2

and b ¼ 3000 s/mm2. This is likely the result of the fact that the FA,
which is used to define the topology in that scheme, is not as reliably
measured with the DWIs of b ¼ 3000 s/mm2 as it is with DWIs of smaller
b. Of the OMST schemes, the NS þ FA scheme had the lowest graph
similarity between graphs constructed with data acquired at different b-
values. The highest similarity was exhibited by the NS-thr graphs.
e middle line shows the mean of the distribution, the edges of the box represent
iers. Each distribution is over the 90 nodes of the graph.



Fig. 10. Absolute fractional differences between the two scans, for the local graph theoretical metrics (b ¼ 2000 s/mm2). In each box, the middle line shows the mean
of the distribution, the edges represent the 25% and 75% points, and the circles indicate points that are thought to be outliers. Each distribution is over the 90 nodes of
the graph.

Table 10
ICCs and mean absolute fractional differences for the global efficiency and the characteristic path length, for the different schemes, for b ¼ 2000 s/mm2.

NS OMST NS þ FA OMST 9-m NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w

Eglob ICC 0.86 0.23 0.64 0.87 0.58 0.64 0.50
jfrac. diff. j 0.076 0.031 0.059 0.077 0.063 0.064 0.173

char path length ICC 0.86 0.30 0.72 0.87 0.51 0.57 0.79
jfrac. diff. j 0.073 0.068 0.087 0.084 0.080 0.084 0.131

Table 11
Ratio of SD of graph similarity distribution for a given scheme over the SD for the
NS-thr scheme. Also given is the increase in the number of participants required
to achieve the same power of identifying a difference between populations,
assuming normal distributions with different means.

NS
OMST

NSþ FA
OMST

9-m
OMST

NS-t/
FA-w

NS-t/
MD-w

FA-t/
NS-w

ratio of SDs 2.54 3.36 2.77 2.21 2.48 5.58
required increase
in number of
participants

6.5 11.3 7.7 4.9 6.2 31.2
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4. Discussion

We presented a study on the reproducibility of graphs and their
various attributes for different graph-construction schemes, for structural
brain networks in the human brain, using the HCP test-retest data. They
key findings of our work have implications on longitudinal and
comparative studies, as well as on studies that combine dMRI data
collected with different diffusion weightings. They are as follows:

1. Different graph-construction schemes result in networks with distinct
topologies and edge weights. Even though not surprising, this is an
important point because the structural connectome supports function
in the brain (Bassett and Gazzaniga, 2011; Mill et al., 2017) and
connections between nodes in structural networks can be used to
understand the mechanisms that underlie functional connectivity.
This is relevant not only for whole-brain studies, but also, and maybe
even more so, for studies that use structural sub-networks to study the
human brain (for example Drakesmith et al. (2015)).
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2. The reproducibility of the graphs depends on the graph construction
scheme, with some schemes exhibiting mean similarity of the order of
0.9 or higher while others falling in the range of about 0.8. For the
data used in this study, the NS-thr scheme gave the highest mean
graph similarity, for all three diffusion weightings. Additionally, the
SD of the graph similarity depends on the graph-construction scheme
used. Knowing both the mean and the SD of the similarity distribution
for healthy participants in the absence of ageing or intervention is
essential, because it allows one to make reliable predictions for the
number of participants required to observe changes in structural brain
networks in developmental, intervention or patient studies.

3. The reproducibility of the topology of graphs depends on the graph
construction scheme. The NS-OMST scheme gave the highest topol-
ogy reproducibility, for all three diffusion weightings. This is in
contrast to the fact that the NS-thr scheme resulted in the highest
reproducibility for the weighted graphs, and implies that studies
which focus on the topology of structural networks rather than on the
specific weights of the edges, or studies which use binary rather than
weighted networks, may benefit from using different schemes to
construct the graphs representing the structural networks.

4. The graphs constructed from DWIs of different diffusion weightings
exhibit very good similarity with each other, for most schemes. Of the
schemes we investigated in this work, the schemes that rely exclu-
sively on the NS are the most reliable across diffusion weightings. The
good similarity implies that each specific combination of algorithms
used to fit the DT, perform the tractography and construct the graphs,
reveals a fairly consistent picture of the structural connectome,
regardless of the diffusion weighting used to acquire the data. The
only possible exception is the FA-t/NS-w scheme, which results in



Fig. 11. Standard deviation of the local graph theoretical metrics for the seven schemes (first scan, b ¼ 2000 s/mm2). In each box, the middle line shows the mean of
the distribution, the edges of the box represent the 25% and 75% points, and the circles indicate points that are thought to be outliers.

Table 12
SDs for the global efficiency and the characteristic path length for the graphs from each scan, for DWIs acquired with b ¼ 2000 s/mm2.

NS OMST NS þ FA OMST 9-m NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w

Eglob S1 0.013 0.007 0.025 0.014 0.023 0.028 0.006
S2 0.011 0.009 0.014 0.011 0.025 0.030 0.006

char path length S1 0.002 0.004 0.009 0.003 0.008 0.009 0.002
S2 0.002 0.004 0.006 0.003 0.008 0.009 0.002
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graphs that exhibit large deviations from each other, in particular
between diffusion weightings of b ¼ 1000 s/mm2 and b ¼ 3000 s/
mm2, with the graph similarity reaching values of under 0.65 for
several participants. This could be due to the limited validity of the
DT formalism for b-values above 2000 s/mm2, in combination with
the limited capability of DWIs with b ¼ 1000 s/mm2 to give good
tractography results for crossing fibers. The NS þ FA OMST scheme
also shows limited reliability when comparing graphs generated from
DWIs with b ¼ 1000 s/mm2 and b ¼ 3000 s/mm2. This also argues for
a possible role that the limited accuracy of the calculation of the FA
for larger b-values plays in the reproducibility of those graphs across
diffusion weightings.

5. The weights of edges that show up in the graphs from both scans of
participants were more reliably reproduced for the 9-m OMST, NS-t/
FA-w and NS-t/MD-w schemes. The GLM analysis revealed that the
absolute difference in edge weights between scans correlates with
different WM tract metrics for the different schemes. The NS-t/FA-w
and NS-t/MD-w schemes also resulted in the smallest percentage of
edges reproduced in the graphs from only one of the two scans of the
participants. Such edges are generally characterized by low TV and
low NS, although we did not find any statistically significant differ-
ences in the distributions of those two quantities between edges that
are and are not reproduced in the graphs from both scans. These re-
sults give some insight into the attributes of edges that are highly
reproducible. More importantly, they highlight the fact that, regard-
less of the graph construction scheme used, not all edges of structural
networks are equally reliable.

6. The reproducibility of graph theoretical metrics depends on the graph
construction scheme. The NS-thr, NS-t/FA-w and NS-t/MD-w
schemes resulted in the ICC distributions over nodes with the high-
est means. The 9-m OMST scheme resulted in the lowest mean for the
distributions of the absolute fractional differences of the node degree,
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clustering coefficient and the local efficiency, also resulting in a very
tight distribution for the 90 nodes. The results held for the graphs
constructed using the DWIs of different diffusion weightings. For the
global graph theoretical metrics, the NS-OMST and NS-thr schemes
exhibited the highest ICCs, while the NS þ FA-OMST scheme
exhibited the lowest mean absolute fractional differences.

In addition to these important findings, we showed the effect that a
non-optimal choice of scheme can have on the power of studies to detect
differences in populations or effects of interventions. Our analysis makes
it clear that a careful assessment of the impact of schemes on the SDs of
various metrics can guide the choice of scheme. Since each scheme has its
own strengths and weaknesses, such an analysis can also allow a
considered choice of metrics to look at, possibly excluding metrics that
have distributions with large SDs and therefore will not be sufficiently
informative or powerful. In addition to saving time and resources, this
can reduce the need for multiple comparison corrections, further
strengthening the analyses.

The differences in the longitudinal reproducibility of the graphs are,
to a large extent, due to the fact that they employ different tract metrics
to generate the topology and to weigh the edges, and those metrics
exhibit different reproducibility across the two scans. Fig. 13 shows a
grid on the plane of a tract metric (NS, FA or MD) in scan 1 versus the
same tract metric in scan 2, where the color of each grid point reflects the
logarithm of the number of connections that exhibit that pair of metrics.
This number of connections is a sum of all white matter tracts that result
from the tractography (and not only the edges that are present after
graph construction) and over all participants. The distribution of NS in
scan 1 versus NS in scan 2 is very tight around the equal-value line,
indicating high consistency between the values of NS across the two
scans. Therefore, tracts are similarly likely or unlikely to be present in the
graphs generated from the two scans, for construction schemes that



Fig. 12. Comparison of graphs across diffusion weightings. The top row shows the plots for comparison between b ¼ 1000 s/mm2 and b ¼ 2000 s/mm2, the middle
row between b ¼ 1000 s/mm2 and b ¼ 3000 s/mm2, and the bottom row b ¼ 2000 s/mm2 and b ¼ 3000 s/mm2. Each point gives the similarity of the graphs
generated with the same scheme using the data from two different b values. For ease of comparison, the vertical axes of all the plots are the same.
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employ the NS to define the topology. On the other hand, despite the fact
that the vast majority of tracts have highly consistent values of FA and
MD across the two scans, there are tracts for which these values differ
substantially. Therefore, tracts are not equally likely to survive in the
graphs of both scans after graph construction, if the FA or MD are used to
define the network topology. Even though the number of tracts with FA
or MD values that differ significantly is very small compared to the total
number of the tracts, it is enough to result in the lower reproducibility of
the graphs. This clarifies why graph construction schemes that are based
exclusively on NS do better as far as their longitudinal reproducibility
goes, compared to scans that incorporate other metrics as well.

Despite the fact that NS-based schemes do better at graph and to-
pology reproducibility, and as was explained in Sec. 2.3.2, the transport
and integration properties of the brain are affected by more than one
attribute of the white matter tracts, and therefore considering metrics
other than the NS is essential in structural brain network studies. More
generally, the graph construction method that results in the highest
reproducibility is not necessarily the one that best reflects the functional
organization of the brain. In fact, different schemes could be closer to the
truth for different brain functions, and most appropriate to answer
different research questions. This should be taken into account, and the
508
choice of scheme should ideally be balanced between minimizing vari-
ability among participants and being sensitive to true changes due to
maturation.

Our results go some way into proving why different studies lead to
incongruent conclusions for the network characteristics of patient pop-
ulations or for the developmental or interventional changes observed in
structural brain networks. Even if they use the same acquisition protocols
and diffusion weightings for data collection, studies that use different
schemes to construct the graphs representing the structural networks are
bound to give different results for the topologies and for the significance
of the edges. They are also bound to exhibit different reproducibility for
the graph theoretical metrics and therefore different capability to
observe changes or differences in them. In other words, each scheme is
“tuned into” specific graph theoretical metrics and is best suited to detect
differences or changes in those.

One of the main goals of brain network analyses is to understand the
structural underpinnings of the functional organization of the human
brain. Functional networks generated from magnetoencephalography or
electroencephalography data have revealed that the strength of func-
tional connections between brain areas depends on the frequency of the
signals (Brookes et al., 2011; Deco et al., 2017; Messaritaki et al., 2017;



Fig. 13. Tract metrics from scan 1 versus scan 2, for all white matter tracts (connections) in all participants. The color represents the logarithm of the number of
connections in each grid point.
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Tewarie et al., 2019). Additionally, they have shown that there may be
more than one mechanism of coupling between brain areas, such as
phase-phase, phase-frequency, phase-amplitude and
amplitude-amplitude (Hyafil et al., 2015; Dimitriadis et al., 2015, 2018;
Dimitriadis and Salis, 2017; Dimitriadis, 2018). Given the distinct
mechanisms that the different frequencies and ways of coupling imply, it
is possible that different characteristics of the WM tracts support each
mechanism. Therefore, different graph construction schemes could result
in structural network graphs that have higher overlap with the different
functional networks, and can therefore be better suited to understand the
corresponding mechanisms (Tewarie et al., 2019). This point is further
solidified by our finding that different edges appear to be strongest for
each graph-construction scheme.

Our study has a few limitations which we now discuss. The main
limitation is that the specific results relating to the optimal scheme to use
apply specifically to the HCP dataset we used, and cannot be generalized
to other datasets that may involve different scanners or acquisitions, or to
analysis strategies that involve different tractography algorithms. The
point is clear, however, that it is very much worth looking into the
optimal scheme for graph construction for each study, because such an
investigation can yield a significant gain in the power of the study.
Additionally, the reproducibility was assessed on the basis of two scans.
Three or more scanning sessions would give a more robust assessment of
the reproducibility. Furthermore, scanning the participants in a
controlled manner, making sure that they are scanned at the same time of
day, for example, would also be desirable. Also, our thresholded net-
works used a threshold so that their sparsity is the same as the sparsity of
the OMST networks. Different thresholds could lead to different results
for the reproducibility of the graphs and their attributes for those
schemes, and could also be worth exploring. Lastly, it should be noted
that there are other variables that can affect the reproducibility of
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structural brain network analyses, such as the resolution of the MR data,
the parcellation scheme used, the time interval between the test and
retest scans, and others. These variables are also worth considering in
structural brain network studies, and a detailed discussion on the subject
is provided in the work by Welton et al. (2015), but lies outside the scope
of this manuscript.

5. Conclusions

In this study, we presented and compared several alternative graph
construction schemes for structural brain networks. Our comprehensive
analysis showed that the schemes exhibit different reproducibility, both
for the graphs themselves and the graph-theoretical metrics. Our results
indicate that employing different schemes will result in a different
number of participants needed to see an effect. In order for studies to
achieve the maximum power in detecting such effects, similar analysis
need to always be performed at the outset.
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