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High-intensity interval training has been reported to lower fasting blood glucose and

improve insulin resistance of type 2 diabetes without clear underlying mechanisms. The

purpose of this study was to investigate the effect of high-intensity interval training on

the glycolipid metabolism and mitochondrial dynamics in skeletal muscle of high-fat

diet (HFD) and one-time 100 mg/kg streptozocin intraperitoneal injection-induced type 2

diabetes mellitus (T2DM) mice. Our results confirmed that high-intensity interval training

reduced the body weight, fat mass, fasting blood glucose, and serum insulin of the

T2DM mice. High-intensity interval training also improved glucose tolerance and insulin

tolerance of the T2DM mice. Moreover, we found that high-intensity interval training also

decreased lipid accumulation and increased glycogen synthesis in skeletal muscle of

the T2DM mice. Ultrastructural analysis of the mitochondria showed that mitochondrial

morphology and quantity were improved after 8 weeks of high-intensity interval training.

Western blot analysis showed that the expression of mitochondrial biosynthesis related

proteins and mitochondrial dynamics related proteins in high-intensity interval trained

mice in skeletal muscle were enhanced. Taken together, these data suggest high-intensity

interval training improved fasting blood glucose and glucose homeostasis possibly by

ameliorating glycolipid metabolism and mitochondrial dynamics in skeletal muscle of the

T2DM mice.

Keywords: high-intensity interval training, skeletal muscle, type 2 diabetes, glycolipid metabolism, mitochondrial

dynamics

INTRODUCTION

Diabetes is a metabolic disorder that is characterized by hyperglycemia and is due to defects in
insulin secretion and/or insulin resistance (IR) (1). The International Diabetes Federation (IDF)
estimated that 463 million people (aged 20–79 years) had diabetes mellitus globally in 2019. This
estimate is projected to increase to 700million by 2045 [International Diabetes (2)]. Type 2 diabetes
mellitus (T2DM) accounts for more than 90% of patients with diabetes and is characterized by
insulin resistance (3). T2DM is recognized as one of the causes of increasedmortality and disability,
and it also leads to complications such as cardiovascular disease (CVD), neuropathy, retinopathy,
and kidney disease (4).
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In the human body, skeletal muscle is the largest organ,
accounting for ∼40–50% of the total body mass. In addition,
skeletal muscle is the main target organ that consumes
glucose, and it can take in ∼80% of glucose by insulin
stimulation (5, 6). However, in T2DM, insulin sensitivity in
skeletal muscle and the whole body is severely damaged and
cannot regulate glucose levels. These factors lead to defects
in glycolipid metabolism (e.g., lipid synthesis, lipid oxidation,
lipid transport, glycogen synthesis, and glucose transport) and
mitochondrial function in skeletal muscle and elevate blood
glucose levels (7). Therefore, skeletal muscle is regarded as a
potential target organ for the treatment of T2DM. Intramuscular
lipids are the energy source for skeletal muscle. However, an
increase in fatty acid flow into skeletal muscle or a decrease
in fatty acid oxidation causes disordered lipid metabolism,
which suppresses insulin-stimulated glucose uptake (8, 9).
Mitochondria are the center of glycolipid metabolism and
essential organelles for ATP production. It has been suggested
that mitochondrial dysfunction is also related to T2DM (10–12).
Mitochondrial dysfunctionmay be caused by severalmechanisms
such as mitochondrial DNA (mtDNA) mutation, mitochondrial
oxidative stress, mitochondrial swelling and disrupted electron
potential across the mitochondrial inner membrane (13). In
addition, mitochondria are one of the major sites of ROS
production in the cell, and mitochondrial dysfunction may
increase mitochondrial ROS production. Excessive ROS have
been linked to activation of pro-inflammatory molecules, which
can disrupt the insulin signaling and contribute to insulin
resistance (14).

A vast amount of literature supports a major role of regular
exercise in the prevention and treatment of T2DM (15).
Traditionally, moderate-intensity continuous training (MICT)
has been recommended for patients with type 2 diabetes (16);
however, high-intensity interval training (HIIT) is perceived
to be more enjoyable, which consists of multiple bouts (30
s−4min) of near or supramaximal exercise (≥80% of maximal
heart rate) separated by periods of active recovery or rest (17).
A growing body of evidence suggests that HIIT has a similar
or better effect in improving physical fitness and cardiovascular
function in patients with type 2 diabetes compared with that of
MICT (18, 19). Moreover, studies have shown that acute HIIT
reduces blood glucose in patients with type 2 diabetes (20),
and 10 weeks of HIIT improves systemic insulin sensitivity of
obesity mice (21). Abnormal glucose and lipid metabolism in
skeletal muscle are closely associated with T2DM (7). However,
the molecular mechanism related to the effect of HIIT on
skeletal muscle of individuals with T2DM and obesity has not
been fully clarified. Little at al. showed that HIIT improved
skeletal muscle mitochondrial content of individuals with IR by
regulating the expression of PGC-1α and TFAM (22). HIIT also
increased the phosphorylation of IRS (Tyr612), Akt (Ser473),
and increased protein content of β-HAD and COX-IV in
skeletal muscle of individuals with obesity (23). To date, the
effects of HIIT on glucose metabolism, lipid metabolism and
mitochondrial dynamics in skeletal muscle of mice with type 2
diabetes have not been investigated. Therefore, the current study
aimed to determine the effects of 8 weeks of HIIT on glucose

metabolism, lipid metabolism and mitochondrial dynamics in
the skeletal muscle of T2DM mice. We hypothesized that HIIT
reduces intramyocellular lipids and improves glucose uptake and
mitochondrial dynamics in skeletal muscle of T2DMmice.

MATERIALS AND METHODS

Animals
Five-week-old male C57BL/6J mice were purchased from the
Model Animal Research Center of Nanjing University (Nan Jing,
China). The animals were housed in a room with a light-dark
cycle of 12–12 h and temperature of 21 ± 2◦C and received
water and food ad libitum. Following acclimatization to the local
environment for 7 days, the mice were randomly divided into
two groups: the control diet group (group CON, n= 11) and the
high-fat diet group (group HFD). The mice in the CON group
were fed a chow diet (Research Diet, D12450J; 3.85kcal/g, 10%
kcal from fat, 20% kcal from protein, SYSE Ltd., Jiangsu, China).
The mice in the HFD group were fed a high-fat diet (Research
Diet, D12492; 60% kcal from fat, 20% kcal from protein, 5.24
kcal/g, SYSE Ltd., Jiangsu, China) for 12 weeks. The body weight
was recorded weekly. All experimental protocols were approved
by the Ethics Review Committee for Animal Experimentation of
Shanghai University of Sports (Approval no. 2016006).

Induction of Type 2 Diabetes Mellitus
The design of the protocol came from previous reports (24)
and was amended slightly. Diabetes was induced in mice that
were fed a high-fat diet by a single intraperitoneal injection of
streptozotocin (STZ, Sigma-Aldrich; Merck KGaA, Darmstadt,
Germany) dissolved in citrate buffer (pH 4.4) at a dose of 100
mg/kg, while the control mice received the same volume of citrate
buffer (24). Seven days after STZ injection, fasting blood glucose,
glucose tolerance and insulin tolerance were measured by blood
sampling from the tail vein using a glucometer (Roche), andmice
with a fasting blood glucose concentration >13.8 mmol/l were
considered diabetic mice (25 of 30) (25). Then, the HFD/STZ
induced T2DM mice were randomly assigned to two groups: a
T2DM group without exercise (T2DM-SED, n= 11) and a T2DM
group with high-intensity interval training (T2DM-HIIT group,
n= 11).

Exercise Protocol
All mice in the T2DM-HIIT group performed the exercise
training program on a mouse treadmill at 25◦ inclination five
times a week for 8 weeks, as described previously with little
modification (26). The mice in the T2DM-HIIT group started
with a warm-up at 5 m/min for 10min, in which the HIIT
consisted of 10 rounds of 4min of high-intensity treadmill
running interspersed with 2min of complete rest. The pace
during the HIIT increased gradually from 16 to 26 m/min over
8 weeks. The mice in T2DM-SED and T2DM-HIIT groups were
kept on a high-fat diet during the 8 weeks of exercise and the
calorie intake was recorded every day.
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Glucose Tolerance Tests (GTTs) and Insulin
Tolerance Tests (ITTs)
Themice were fasted overnight with free access to drinking water.
Following a baseline blood glucose measurement, the blood was
taken from the tail at 15, 30, 60, 90, and 120min following
intraperitoneal injection of glucose (1 g/kg body weight). For
ITTs, the mice were fasted for 6 h, and insulin was administered
by intraperitoneal injection. Blood glucose levels were measured
via a drop of tail blood on a glucometer at 15, 30, 60, 90, and
120min after insulin injection (1 IU/kg body weight) (27). The
area under the curves (AUCs) for GTT and ITT were calculated
by using Graphpad Prism. To normalize for differences in basal
glucose concentrations, these data are displayed as the AUCs with
the subtraction of basal glucose concentrations.

Body Composition
Total fat and lean mass were assessed using Echo MRI (Echo
Medical Systems, Houston, TX) at the end of the experiment.

Tissue Collection and Handling
The mice were sacrificed 36 h after the last exercise session
and following a 12-h fasting. The gastrocnemius muscles were
obtained immediately and snap frozen in liquid N2. After then
gastrocnemius muscles were stored at −80◦C until analysis.
Blood samples were collected from the mice after 12 h fasting,
and serum was separated by centrifugation (3,000 rpm, 15min)
and stored at 80◦C until analysis.

Oil Red O Staining
The gastrocnemius (n = 3, three gastrocnemius from three
mice in each group) were frozen in optimal cutting temperature
compound (OCT) and then cryostat-sectioned at a thickness
of 6µm onto poly-1-lysine slides for lipid deposition analysis
by Oil Red O staining using a previously described method
(28). The slides were viewed under a bright-field microscope
at a magnification of ×200, and images were captured for
each muscle section with a Labophot-2 microscope (Nikon
Corporation, Tokyo, Japan). The ratio of the red area to the total
cross-sectional area of the muscle was calculated to estimate the
extent of lipid deposition using Image J (NIH Image, Bethesda,
MD) (29).

PAS Staining
The slides for PAS staining came from the same OCT blocks used
for the Oil Red O staining. The slides were stained with periodic
acid-Schiff (PAS) according to the manufacturer’s protocol
(Servicebio, Inc.) to detect glycogen and provide histological
details of the muscle structure. The slides were placed in distilled
water and treated with periodic acid for 15min, rinsed well
in distilled water, covered with Schiff ’s reagent for 30min, and
washed in running tap water for 5–10min. The slides were
stained with Mayer for ∼30 s and washed in running tap water.
The slides were counterstained with hematoxylin for 15 s and
washed in tap water. The slides were rinsed in increasing
concentrations of alcohol (70, 80, 95, and 100%). Following
PAS staining, images were captured for each muscle section

under a bright-fieldmicroscope (magnification,×400; Labophot-
2; Nikon Corporation). The purple areas were quantified by
Image J (NIH Image, Bethesda, MD).

Transmission Electron Microscopy
Gastrocnemius were immediately fixed in 2.5% glutaraldehyde
and post-fixed in 1% osmium tetroxide. After ethanol gradient
dehydration, the samples were embedded in Epon 812 (SPI-
90529-77-4, Servicebio, Inc.). Ultrathin sections (50–70 nm)
were cut and stained with toluidine blue dye. Then, the
sections were observed under a transmission electronmicroscope
(hitachi-HT7700; Hitachi Ltd., Tokyo, Japan). The number
of mitochondria was counted. A total of six different fields
of view (magnification, x5000) were randomly selected from
each section.

Serum Parameters Measurement
Fasting serum insulin levels were determined by using a mouse
INS ELISA kit (CEA448Mu; Cloud-Clone Corp., Houston, TX,
USA). Total serum cholesterol (T-Chol), triglycerides (TG),
high-density lipoprotein (HDL-C), and low-density lipoprotein
(LDL) (all purchased from Nanjing Jiancheng Bioengineering
Institute, Jiangsu, China) were measured by an automatic
biochemical analyzer.

Detection of Mitochondrial DNA Copy
Number by Real-Time PCR
DNA was extracted from the gastrocnemius muscle using a
TIANamp Genomic DNA Kit (DP304, Tiangen Biotech Co.,
Ltd., Beijing, China) in accordance with the manufacturer’s
instructions. The concentration of the extracted DNA was
measured at 260 nm by a microplate reader (BioTek, BioTek
Corporation, Vermont, USA). The mitochondrial DNA
(mtDNA) copy number was evaluated by determining the ratio
of cytochrome b DNA to 18S rRNA and was quantified by
real-time qPCR. The qPCR reaction system included SYBR
Green (Vazyme, Nanjing, China), nuclease-free water, forward
and reverse primers (designed and synthesized by Shanghai
Shenggong Biology Engineering Technology Service, Ltd.) and
DNA, made to a total volume of 20 µl/well. The StepOne Plus
(Applied Biosystems, Carlsbad, USA) was used for amplification
by applying the following parameters: denaturation for 5min
at 95◦C, 40 cycles of priming at 95◦C for 10 s, and annealing
at 60◦C for 30 s. For cytochrome b, the forward primer was

5
′

- ATTCCTTCATGTCGGACGAG-3
′

, and the reverse primer
was 5

′

-AGAAGCCCCCTCAAATTCAT-3
′

. For 18S rRNA, the
forward primer was 5

′

-TCATAAGCTTGCGTTGATTA-3
′

, and
the reverse primer was 5

′

-TAGTCAAGTTCGACCGTCTT-3
′

.
Relative gene expression was calculated and quantified with the
2−11Ct method after normalization to the expression level of
18S rRNA.

Western Blotting
Total proteins were extracted from mouse gastrocnemius
muscle using RIPA buffer supplemented with 1 mmol/L PMSF
(ST506, Beyotime Institute of Biotech, Jiangsu, China) and a
protease and phosphatase inhibitor mixture (P1050, Beyotime
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FIGURE 1 | HFD/STZ induce the change of metabolic indexes in C57BL/6 mice. (A) Body weight, (B) Plots for glucose tolerance tests (IPGTT, 1 g/kg BW) in overnight

fasted mice, (C) AUC values confirmed impairment of glucose tolerance in T2DM mice, (D) Fasting blood glucose, (E) Plots for insulin tolerance tests (ITT, 1IU/kg BW)

in mice fasted for 6 h, (F) AUC values confirmed impairment of insulin tolerance in T2DM mice. All data are presented as mean ± SEM. *p < 0.05, **p < 0.01.

Institute of Biotech, Jiangsu, China) (30). The total protein
concentration was determined with an enhanced BCA protein
assay kit (P0010S, Beyotime Institute of Biotech, Jiangsu, China).
Equal amounts of protein from each sample were separated
by 10% SDS-PAGE and subsequently transferred to PVDF
membranes (Immobilon-P; Millipore, Bedford, MA, USA). After
blocking with 5% non-fat dry milk in TBS (containing 0.1%
Tween-20). The membranes were incubated with antibodies
against acetyl coenzyme A carboxylase (ACC, ab45174, Abcam,
Cambridge, United Kingdom, 1:1,000), HMG-CoA reductase
(HMGCR, ab174830, Abcam, Cambridge, United Kingdom,
1:1,000), carnitine palmitoyl transferase-1 alpha (CPT-1α,
15184-1-AP, Proteintech, USA, 1:1,000), fatty acid translocase
FAT/CD36 (AF2519, R&D, MN, United States, 1:1,000),
phospho-glycogen synthase (phospho-GS Ser640, ab2479,
Abcam, Cambridge, United Kingdom, 1:1,000), glycogen
synthase (GS, ab40810, Abcam, Cambridge, United Kingdom,
1:1,000), glucose transporter 4 (GLUT4, #2213, CST, Beverly,
MA, United States, 1:1,000), peroxisome proliferator-
activated receptor-g-coactivator-1 alpha (PGC-1α, 66369-1-Ig,
Proteintech, USA, 1:500), dynamic-related protein 1 (DRP1,
8570, CST, Beverly, MA, United States, 1:1,000), mitofusin-2
(MFN2, #9482, CST, Beverly, MA, United States, 1:1,000),
fission 1 (FIS1, 10956-1-AP, Proteintech, 1:500) and α-tubulin
(11224-1-AP, Proteintech, USA, 1:1,000). The appropriate
HRP-conjugated secondary antibodies (CST, Beverly, MA,
United States) were used to combinate with primary
antibodies and the proteins were visualized with enhanced
chemiluminescence. α-tubulin was used as a loading control. The

bands were visualized with chemiluminescence and quantified
by densitometry.

Statistical Analysis
All data were analyzed using SPSS 23.0 software (IBM, New York,
NY, United States) and are presented as the mean ± standard
error of the mean (SEM). Statistical analysis was carried out
by using one-way analysis of variance, and post hoc multiple
comparisons were performed using the Bonferroni test. Unpaired
Student’s t tests were used throughout this study to compare two
distinct groups using SPSS 23.0 software. A value of P < 0.05
indicated statistically significant differences.

RESULTS

HFD/STZ Induce the Change of Metabolic
Indexes in C57BL/6 Mice
To establish T2DM mice, the mice accepted a high-fat diet and
100 mg/kg STZ injection. We found that the high-fat diet led to
increased body weight during the induction period (Figure 1A).
However, the body weight was decreased after STZ injection
(Figure 1A). In addition, compared to the CON mice, fasting
blood glucose was increased (T2DM: 20.35 ± 0.59 mmol/l
vs. CON: 4.35 ± 0.24 mmol/l, p < 0.01) (Figure 1D). We
also detected the glucose tolerance and insulin tolerance, and
the results indicated that glucose tolerance (Figures 1B,C) and
insulin tolerance (Figures 1E,F) were impaired after high-fat diet
and STZ injection. The data above showed that the model of
T2DMmice was established successfully.
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FIGURE 2 | HIIT increases lean mass and decreases fat mass with changing body weight. (A) Body weight, (B) Calorie intake, (C) Percent lean mass, (D) Percent fat

mass. All data are presented as mean ± SEM. n = 11 per group; *p < 0.05, **p < 0.01.

FIGURE 3 | HIIT improves fasting blood glucose, glucose hemostasis and serum insulin in T2DM mice. (A) Fasting blood glucose, (B) Plots for glucose tolerance

tests (IPGTT, 1 g/kg BW) in overnight fasted mice, (C) AUC values confirmed improvements of glucose tolerance in T2DM-HIIT group mice, (D) Serum insulin

concentration, (E) Plots for insulin tolerance tests (ITT, 1 IU/kg BW) in mice fasted for 6 h, (F) AUC values confirmed improvements of insulin tolerance in T2DM-HIIT

group mice. All data are presented as mean ± SEM. n = 11 per group; *p < 0.05, **p < 0.01.
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TABLE 1 | Effect of HIIT on TG, TC, HDL-C, LDL-C.

CON T2DM-SED T2DM-HIIT

TG(mmol/1) 2.82 ± 0.04 3.76 ± 0.13** 3.2 ± 0.06††#

TC(mmol/1) 5.07 ± 0.18 5.83 ± 0.17* 5.78 ± 0.14

HDL-C(mmol/1) 1.26 ± 0.08 1.55 ± 0.12 1.43 ± 0.07

LDL-C(mmol/1) 2.04 ± 0.1 2.36 ± 0.11 2.5 ± 0.03

TG, triglyceride; TC, total cholesterol; HDL-C, high density lipoprotein; LDL-C, low

density lipoprotein. *p < 0.05, **p < 0.01 vs. CON,
††
p < 0.01 vs. T2DM-SED, #p <

0.05 vs. CON. All data are presented as mean ± SEM. n = 11 per group.

HIIT Improves Body Weight and Body
Composition in T2DM Mice
Before exercise, both the T2DM-SED and T2DM-HIIT mice
showed significantly higher body weight than those of the CON
mice (T2DM-SED: 37.9 ± 1.0 g, T2DM-HIIT: 37.3 ± 0.9 g vs.
CON: 28.6± 0.5 g, p < 0.01) (Figure 2A). After 8 weeks of HIIT,
the body weight was significantly decreased in the T2DM-HIIT
mice compared to those of the T2DM-SED mice (T2DM-HIIT:
28.9 ± 0.7 g vs. T2DM-SED: 37.1 ± 1.2 g, p < 0.01) (Figure 2A).
The calorie intake of T2DM-SED and T2DM-HIIT mice was
higher than that of CON mice (p < 0.01) (Figure 2B), however,
there was no significant difference in calorie intake between the
T2DM-SED and T2DM-HIIT mice (p > 0.05) (Figure 2B).

At the end of the experiment, lean mass was decreased in
T2DM-SED mice (CON: 77.4 ± 1.0% vs. T2DM-SED: 64.0 ±

1.8%, p< 0.01) (Figure 2C) but was increased in the T2DM-HIIT
group (T2DM-SED versus T2DM-HIIT: 77.6 ± 0.8%, p < 0.01)
(Figure 2C). Fat mass was increased (CON: 15.9± 1.2 vs. T2DM-
SED: 30.0± 2.0%, p< 0.01) (Figure 2D) in the T2DM-SEDmice;
however, fat mass in the T2DM-HIIT mice was decreased when
compared to that in the T2DM-SED group (HIIT: 13.0 ± 0.9 vs.
T2DM, p < 0.01) (Figure 2D).

HIIT Improves Glucose Handling and the
Lipid Profile in T2DM Mice
The fasting blood glucose was increased in the T2DM-SED
mice when compared to that in the CON group (CON:
5.1 ± 0.3 mmol/l vs. T2DM-SED: 19.8 ± 0.7 mmol/l, p
< 0.01) (Figure 3A), while the fasting blood glucose was
decreased in the T2DM-HIIT group (T2DM-HIIT: 17.6 ±

0.7 mmol/l vs. T2DM-SED, p < 0.05) (Figure 3A). We
also assessed the effect of HIIT on glucose homeostasis
and found that the high-intensity interval-trained mice had
improved glucose tolerance relative to that of T2DM-SED
mice (Figures 3B,C). Similar to the glucose tolerance test,
the high-intensity interval-trained mice also had improved
insulin tolerance compared to that of T2DM-SED mice
(Figures 3E,F).

Serum insulin levels (CON: 2385 ± 193.8 pg/ml vs. T2DM-
SED: 3250 ± 159.8 pg/ml, p < 0.01) (Figure 3D) and TG (CON:
2.82 ± 0.04 mmol/l vs. T2DM-SED: 3.76 ± 0.13 mmol/l, p <

0.01) (Table 1) were increased in T2DM-SED mice compared
with those of CON mice but were decreased in the T2DM-
HIIT group (T2DM-SED vs. T2DM-HIIT: 2258 ± 229.7 pg/ml;

T2DM-SED vs. T2DM-HIIT: 3.21 ± 0.06 mmol/l, p < 0.01).
TC, HDL-C, and LDL-C levels were not affected by HIIT (p >

0.05) (Table 1). An increase in the levels of TC was observed

in T2DM-SED mice compared with that of the CON group

(p < 0.05) (Table 1).

HIIT Reduces Lipid Accumulation and
Increases Glycogen Abundance in Skeletal
Muscle
Lipid droplets in skeletal muscle of T2DM-SED mice were
increased compared to those in the CON group (p <

0.01) (Figures 4A,B). Eight weeks of HIIT decreased lipid
accumulation in skeletal muscle (frozen sections were stained
with Oil Red O, p < 0.05) (Figures 4A,B). The PAS stain was
chosen to highlight glycogen content that formed in skeletal
muscle and is dark blue. The results showed that glycogen
content in skeletal muscle of T2DM-SED mice decreased
when compared to that of the CON group (p < 0.05)
(Figures 4C,D). HIIT increased glycogen content in skeletal
muscle (p < 0.01) (Figures 4C,D).

HIIT Partially Restores Mitochondrial
Morphology and Density in Skeletal Muscle
of T2DM Mice
We assessed both mitochondrial morphology and
quantity by electron microscopy. Electron microscopic
observation of skeletal muscle mitochondria showed
marked morphological changes and revealed the presence
of several vacuole-like structures in T2DM-SED mice
compared with those of control mice. The ridge of
mitochondria in T2DM-SED mice was also broken or
had even disappeared (Figure 5A). The ultrastructural
analysis also showed that the mitochondrial density was
noticeably reduced in the T2DM-SED mice (p < 0.01)
(Figures 5A,B). HIIT increased the density of mitochondria
and improved the morphology of mitochondria (p < 0.01)
(Figures 5A,B).

HIIT Improves the Lipid Metabolism of
Skeletal Muscle in T2DM Mice
To elucidate the molecular mechanism by which HIIT reduces
lipids, the expression of key proteins related to lipid metabolism
in skeletal muscle was investigated. T2DM-SED mice had
changes in skeletal muscle protein expression associated with
increased lipogenesis compared to those of CON mice,
including increments in ACC (1.2-fold, p < 0.05) and
HMGCR (1.46-fold, p < 0.05). HIIT for 8 weeks significantly
decreased the protein expression of ACC (0.38-fold, p <

0.01) (Figures 6A,B) and HMGCR (0.52-fold, p < 0.01)
(Figures 6A,C). In addition, CPT-1α and CD36 are involved
in the regulation of lipid oxidation and lipid transport. Our
results showed that HIIT significantly increased the protein
expression of CPT-1α (1.6-fold, p < 0.01) (Figures 6D,E), but
HIIT had no effect on the expression of CD36 (p > 0.05)
(Figures 6D,F).
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FIGURE 4 | HIIT reduces lipid accumulation and increase glycogen abundance in skeletal muscle. (A) Oil red O staining of skeletal muscle (n = 3 for each group),

(B) Quantification of lipid area, (C) PAS staining of skeletal muscle (n = 3 for each group), (D) Quantification of glycogen content. Scale bars, 50µm. *p < 0.05,

**p < 0.01.

FIGURE 5 | HIIT improves the mitochondrial morphology and density of skeletal muscle in T2DM mice. (A) Mitochondria morphological features, (B) The number of

mitochondria. Thin arrows indicate normal mitochondria; bold arrows indicate damaged mitochondria. Scale bars, 2µm. n = 3 per group; *p < 0.05, **p < 0.01.

HIIT Improves the Glucose Metabolism in
Skeletal Muscle of T2DM Mice
Skeletal muscle is one of the key tissues that is responsible for
insulin-stimulated glucose consumption. Therefore, the present
study measured the protein expression levels of p-GS, GS, and
GLUT4. In the T2DM-SED mice, phosphorylation of GS at
Ser640 (0.56-fold, p < 0.05) (Figures 7A,C) and the protein
expression of GLUT4 (0.43-fold, p < 0.05) (Figures 7B,D)
significantly decreased compared with those of CON mice. while
HIIT increased GS serine phosphorylation (1.67-fold, p < 0.05)
(Figures 7A,C) and GLUT4 protein expression (3.17-fold, p <

0.01) (Figures 7B,D).

HIIT Improves Mitochondrial Biosynthesis
and Mitochondrial Dynamics in Skeletal
Muscle of T2DM Mice
Cytochrome b is encoded by mitochondrial DNA, and 18S
rRNA is encoded by nuclear DNA (31). The mitochondrial
DNA copy number in skeletal muscle was evaluated by

determining the ratio of cytochrome b DNA to 18S rRNA.
The copy number was lower in the T2DM-SED group than
in the CON group (0.48-fold, p < 0.01) (Figure 8A), which
suggested impaired mitochondrial biogenesis. PGC-1α is a
strong regulator of mitochondrial biogenesis. Western blot
analysis showed a decrease in PGC-1α protein expression
in T2DM-SED mice compared with that of CON mice
(0.63-fold, p < 0.05) (Figures 8B,C). Moreover, the protein
expression of PGC-1α in T2DM-HIIT mice was significantly
higher than that in T2DM-SED mice (1.74-fold, p < 0.05)
(Figures 8B,C).

The expression of proteins that control mitochondrial fusion
and fission was analyzed, including the mitochondrial fusion
protein MFN2 and mitochondrial fission proteins DRP1 and
FIS1. The protein expression of MFN2, DRP1, and FIS1 was
not changed in the T2DM-SED group compared with that of
CONmice (p > 0.05). However, the protein expression of MFN2
(2.61-fold, p < 0.01) (Figures 8B,D), DRP1 (2.1-fold, p < 0.01)
(Figures 8B,E) and FIS1 (3.29-fold, p < 0.01) (Figures 8B,F) was
dramatically increased in the T2DM-HIIT group.

Frontiers in Endocrinology | www.frontiersin.org 7 August 2020 | Volume 11 | Article 561

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zheng et al. HIIT Improves Muscle Glucose Homeostasis

FIGURE 6 | HIIT improves lipid metabolism of skeletal muscle in T2DM mice. (A,D) Protein expressions of ACC, HMGCR, CPT-1α, CD36, and internal control

α-tubulin in skeletal muscle. (B,C,E,F) Quantification of proteins described in (A,D) with normalization to protein levels of α-tubulin. All data are presented as mean ±

SEM. n = 4 per group; *p < 0.05, **p < 0.01.
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FIGURE 7 | HIIT improves glucose metabolism of skeletal muscle in T2DM mice. (A,B) Protein expressions of p-GS/GS, GLUT4, and internal control α-tubulin in

skeletal muscle. (C,D) Quantification of proteins described in (A,B) with normalization to protein levels of α-tubulin. All data are presented as mean ± SEM. n = 4 per

group; *p < 0.05, **p < 0.01.

DISCUSSION

Mitochondria are necessary organelles for ATP production.
Mitochondrial dysfunction is one of the most important
mechanisms for T2DM (32), which may be caused by impaired
mitochondrial biogenesis and mitochondrial dynamics. Morino
et al. found that mitochondrial density was reduced by 38% in IR
offspring of T2DM patients (33). In this study, we observed the
mitochondrial density with electron microscopy and found that
the mitochondrial density in skeletal muscle in T2DM-SED mice
also decreased. To study the factors that may lead to a decrease in
mitochondria in the skeletal muscle of T2DM mice, we detected
the expression of several key regulatory factors of mitochondrial
biosynthesis. PGC-1α is a co-transcriptional regulator that is
involved in mitochondrial biogenesis. PGC-1α promotes the
expression of mitochondrial transcription factor A (Tfam). The
interaction between TFAM and mtDNA participates in the
regulation of mitochondrial biogenesis (34). Human studies
found that the expression level of PGC-1α mRNA in the skeletal
muscle of patients with type 2 diabetes was significantly reduced
(35, 36). Our results are consistent with these studies, and we
found that the mtDNA copy number and the protein expression
of PGC-1α were reduced in the gastrocnemius muscle of T2DM-
SED mice. These results suggest that PGC-1α and mtDNA
are involved in the regulation of mitochondrial biogenesis and
are responsible for the reduced skeletal muscle mitochondrial
content in T2DM mice. Several studies have shown that exercise
induces mitochondrial biosynthesis (37–39). Little at al. showed
that HIIT improved skeletal muscle mitochondrial content of
individuals with IR by regulating the expression of PGC-1α and
TFAM (22). We used different techniques to measure the desired
outcomes, including western blotting, electron microscopy,
mitochondrial DNA measurements. The results of the present

study showed that HIIT significantly increased the mtDNA copy
number and the protein expression of PGC-α. The electron
microscopy results also showed that the mitochondrial density
in skeletal muscle increased after HIIT. Moreover, prior studies
have shown that a decrease in mitochondrial content weakened
the ability of skeletal muscle to oxidize glucose-derived substrates
and led to disordered lipid metabolism and glucose uptake
(33, 40). Therefore, our data reveal that HIIT improves lipid
metabolism and glucose uptake in T2DM mice, possibly by
regulating mitochondrial biosynthesis.

It has been reported that the morphological structure of
mitochondria in skeletal muscle of patients with T2DM and their
insulin-resistant offspring were altered and contained vacuole-
like structures (41), and aberrant mitochondrial morphology
is associated with an imbalance in mitochondrial fission and
fusion (42). Mfn1/2 regulates the fusion of the mitochondrial
outer membrane. DRP1 and FIS1 participate in mitochondrial
fission by regulating the mitochondrial outer membrane. Data
from the current study found that the protein expression of
MFN2, DRP1, and FIS1 was not changed in the skeletal muscle
of T2DM-SED mice when compared to CON mice. The electron
microscopy results showed that the mitochondria of skeletal
muscle in the T2DM-SED mice were impaired. However, studies
in humans revealed that the expression of mitochondrial fusion
protein was reduced in skeletal muscle of patients with T2DM
(42, 43). This difference may be due to the difference in subjects
used in the two studies. Therefore, further research is needed
to elucidate the changes in mitochondrial dynamics in T2DM
mice. Furthermore, high-intensity aerobic exercise and a single
bout of aerobic exercise increased the protein and mRNA
expression of Mfn1, Mfn2, and FIS1 in the skeletal muscle in
both rodents and humans (39, 44, 45). However, few studies
reported the effects of HIIT on mitochondrial dynamics in the
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FIGURE 8 | HIIT improves mitochondrial biosynthesis and mitochondrial dynamics of skeletal muscle in T2DM mice. (A) Mitochondrial DNA copy number; (B) Protein

expressions of PGC-1α, MFN2, DRP1, FIS1, and internal control α-tubulin in skeletal muscle. (C–F) Quantification of proteins described in (B) with normalization to

protein levels of α-tubulin. All data are presented as mean ± SEM. n = 4 per group; *p < 0.05, **p < 0.01.

skeletal muscle of mice with type 2 diabetes. The results of the
present study show that HIIT significantly increased the protein
expression of Mfn2, Drp1, and FIS1. The electron microscopy
results also showed that HIIT improved the mitochondrial
morphological structure in skeletal muscle. Several studies have
shown that abnormal mitochondrial dynamics are related to
glucose metabolism and insulin resistance (46–48). Therefore,
the current study suggests that HIIT as a potential treatment to
improve mitochondrial dysfunction in T2DM mice. Improved
mitochondrial dysfunction may further lead to an improvement
in the metabolic state.

Indeed, in the present study, we found that 8 weeks
of HIIT decreased fasting blood glucose and serum insulin
concentrations in T2DMmice and improved glucose and insulin
tolerance. These results are similar to the earlier finding that
8 weeks of HIIT improved glucose tolerance and reduced the
systemic glucose and serum insulin concentrations of obese
mice (26). Human studies also showed that glucose tolerance
was significantly improved in 16 young men following sessions

of HIIT, which each involved 4–6 thirty second sprint cycles
(49). Dela et al. also found that acute HIIT reduced the blood
glucose level of patients with type 2 diabetes (20). Furthermore,
Asilah Za’don et al. reported that twenty-five overweight/obese
individuals underwent a 12-week HIIT, and HIIT improved
insulin sensitivity in obese individuals (50). Moreover, data from
the present study revealed that the serum TG in T2DM-HIIT
mice was significantly lower than that observed in T2DM-SED
mice; however, HIIT did not affect TC, HDL-C, or LDL-C
content. In contrast, Wang et al. reported that HIIT lowered the
levels of TG, TC and LDL-C in obese mice (26). This difference
may be due to differences in the animal models used in the two
studies. Therefore, further research is needed to elucidate the
effects of HIIT on the serum lipid profile. These results support
the current guidelines of the American Diabetes Association
(ADA) recommend exercise as an important part of the clinical
management of type 2 diabetes (51).

Besides, regular exercise also has been used as an adjuvant
therapy to reduce body weight and improve lipid metabolism
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in obese (52) and subjects with type 2 diabetes (4). Previous
studies have shown that 8 weeks of HIIT reduced body weight
and fat mass and increased lean mass in obese mice (26). Studies
in humans have also revealed that HIIT significantly improved
the body weight, fat percentage and BMI of persons with type
2 diabetes (53). In this study, the mice in T2DM-SED and
T2DM-HIIT groups were kept on a high-fat diet during the
8-week exercise. Although the body weight of the mice was
decreased after STZ injection, the body weight of the T2DM-
SED mice has not been changed significantly after the 8 weeks
of exercise. However, HIIT exhibited prominent beneficial effects
in the reduction of body weight and fat mass, which is consistent
with the previous studies (26). Besides, there was no significant
difference in calorie intake between the T2DM-SED and T2DM-
HIIT mice during the 8-week exercise period. These suggest that
HIIT affected either a reduced efficiency in the energy storage
or an increased energy expenditure rate or both. Furthermore,
the previous studies reported that the reduction of body weight
in type 2 diabetes is associated with a fall in fasting blood
glucose, a reduction in serum insulin concentrations (54, 55) and
improved insulin resistance (56, 57). Our results also showed that
fasting blood glucose, serum insulin concentrations, and insulin
resistance in T2DMmice were improved after HIIT. These results
suggest that the lowered body weight of HIIT may have benefits
on improving glucose metabolism and insulin resistance.

We also found an increased glycogen content in the skeletal
muscle of the T2DM mice after HIIT. Skeletal muscle is the
main target organ that consumes glucose, and it can consume
∼80% of glucose by insulin stimulation (5, 6). Glucose uptake
and disposal are impaired in skeletal muscle in type 2 diabetic and
obese patients (58). GLUT4 is a glucose transporter that is mainly
expressed in skeletal muscle, adipose tissue, and myocardium.
Insulin promotes glucose uptake of skeletal muscle by promoting
the transport of GLUT4 from within the cell to the plasma
membrane. In T2DM or insulin resistance, the transport of
GLUT4 in skeletal muscle is impaired. A previous study reported
that the expression of GLUT4 was decreased in skeletal muscle
of T2DM mice (59), and HIIT significantly increased the muscle
GLUT4 content (about 2 fold) of db/db mice (60). The results
of this study are consistent with a previous study (59, 60) and
suggest that HIIT improves glucose insensitivity by upregulating
the expression of GLUT4.

Glycogen synthesis in skeletal muscle is directly proportional
to the rate of glucose uptake (61). In the case of T2DM
or insulin resistance, the insulin-stimulated glucose transport
and skeletal muscle uptake glucose are impaired, which affect
glycogen synthesis. Carbon-13 nuclearmagnetic resonance (13C-
NMR) spectroscopy in subjects undergoing hyperglycemic-
hyperinsulinemia clamping showed that the glycogen synthase
was decreased by 50% or greater in patients with diabetes when
compared to healthy individuals (62). The present study also
found that the expression of GLUT4 and glycogen content
decreased in T2DM-SED mice. Furthermore, exercise could
improve skeletal muscle glycogen synthesis by improving insulin
resistance and glucose uptake. The results of our study also
indicated that insulin sensitivity and glycogen content were
enhanced after HIIT. Therefore, the increment of glycogen in

muscle after exercise may be related to the increase of insulin
sensitivity in skeletal muscle. Moreover, glycogen synthase (GS),
a key enzyme in glycogen synthesis, is activated by the allosteric
stimulator glucose-6-phosphate (G6P) and by dephosphorylation
through inactivation of GS kinase-3 (63, 64). In this study, the
phosphorylation of GS was decreased in T2DM-SED mice which
may be activated hyperglycemia and low-level glycogen, but the
glycogen synthesis was blocked due to skeletal muscle insulin
resistance. Sano et al. reported that the glycogen content in
skeletal muscle after exercise is lower than that before exercise,
and muscle glycogen restored within 24 h post-exercise (65). In
the present study, the phosphorylation of GS was increased after
HIIT which indicated the inactivation of GS. This may be because
the glycogen content had restored when the mice were sacrificed,
high-level glycogen suppresses the activation of GS.

Furthermore, excessive lipid accumulation in skeletal muscle
is related to obesity and T2DM (66). A number of studies
have revealed that ob/ob mice, db/db mice or high-fat diet
fed mice have increased lipid accumulation in skeletal muscle
(67, 68). Yu et al. (69) indicated that exercise decreased lipid
deposition in skeletal muscle of high-fat diet rats. The current
study also observed that T2DM-SED mice had increased lipid
droplets in skeletal muscle and that 8 weeks of HIIT decreased
lipid accumulation in skeletal muscle. At the molecular level,
a large number of studies have shown that some genes have a
considerable impact on the lipid metabolism of skeletal muscle
(70); for example, ACC and HMGCR are endogenous lipogenic
enzymes, CPT-1α is involved in the regulation of fatty acid
oxidation, and CD36 is a major fatty acid transporter. The results
of this study indicate that the expression of proteins related to
fatty acid synthesis (e.g., ACC and HMGCR) were reduced, and
the expression of proteins related to fatty acid oxidation (e.g.,
CPT-1α) were enhanced after HIIT. These results suggest that
HIIT improves lipid metabolism in skeletal muscle by reducing
fatty acid synthesis and increasing fatty acid oxidation. Moreover,
CD36 has an important role in the uptake of long-chain fatty
acids (71), and long-chain fatty acids are an energy source
that could be utilized by skeletal muscle during exercise. Jordy
et al. reported that long chain fatty acid uptake is markedly
decreased in CD36 knockout mice during contractions/exercise
compared to that of WT controls (72). Mice fed a high-fat
diet exhibited increased CD36 protein levels in skeletal muscle
(73). The present study indicated that the protein expression
of CD36 significantly increased in the T2DM mice, and the
expression of proteins related to fatty acid oxidation significantly
decreased in the skeletal muscle of the T2DMmice. These results
suggest dysfunction of mitochondrial lipid oxidation in skeletal
muscle of T2DM mice. HIIT increased the protein expression of
CPT-1α but had no effect on the protein expression of CD36.
Fatty acids may be utilized as an energy source by skeletal
muscle during HIIT. Abnormal lipid metabolism contributes to
insulin resistance by perturbing insulin signaling pathways (74).
Therefore, the results of the current study suggest that HIIT
improves glucose homeostasis by regulating the lipid metabolism
of skeletal muscle in T2DMmice.

However, there are several limitations to the study, for
example, in terms of glucose transport we only measured
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total GLUT4 content, we did not do the immunohistochemical
analysis which would be helpful to see if there is an
effect in GLUT4 localization because of exercise in T2DM-
HIIT mice. In addition, we only measured the glucose
and lipid metabolism by using lipid droplets or glycogen
storage suggesting improvements to these metabolic pathways,
measures of dynamic glucose and lipid metabolism via indirect
calorimetry or high-resolution respirometry would provide
greater understanding the improvements in glucose and lipid
metabolism of T2DM mice after exercise. The controls for
our study are CON mice (no STZ or exercise) and T2DM-
SED mice (no exercise), the effects of HIIT in the context of
high-fat diet al.one, and the effects of HIIT in the absence
of insulin resistance were not included. The inclusion of
these groups would further distinguish other effects that
are due to hyperinsulinemia/insulin resistance from those
that could be a result of the effects induced by the HIIT.
Nevertheless, this present investigation suggests that HIIT is an
effective strategy to counter the metabolic impairments derived
from type 2 diabetes by restoring glycolipid metabolism and
mitochondrial function.

In conclusion, we demonstrated that 8 weeks of high-intensity
interval training improved fasting blood glucose and glucose
homeostasis in T2DM mice by reducing lipid accumulation,
increasing glucose uptake, and improving mitochondrial
dynamics in skeletal muscle. This deepens our understanding
of the mechanism by which high-intensity interval training
improves type 2 diabetes.
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