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Self‑incremental learning vector 
quantization with human cognitive 
biases
Nobuhito Manome1,3*, Shuji Shinohara1, Tatsuji Takahashi2, Yu Chen3 & Ung‑il Chung1,4

Human beings have adaptively rational cognitive biases for efficiently acquiring concepts from 
small‑sized datasets. With such inductive biases, humans can generalize concepts by learning a 
small number of samples. By incorporating human cognitive biases into learning vector quantization 
(LVQ), a prototype‑based online machine learning method, we developed self‑incremental LVQ 
(SILVQ) methods that can be easily interpreted. We first describe a method to automatically adjust 
the learning rate that incorporates human cognitive biases. Second, SILVQ, which self‑increases 
the prototypes based on the method for automatically adjusting the learning rate, is described. 
The performance levels of the proposed methods are evaluated in experiments employing four real 
and two artificial datasets. Compared with the original learning vector quantization algorithms, our 
methods not only effectively remove the need for parameter tuning, but also achieve higher accuracy 
from learning small numbers of instances. In the cases of larger numbers of instances, SILVQ can still 
achieve an accuracy that is equal to or better than those of existing representative LVQ algorithms. 
Furthermore, SILVQ can learn linearly inseparable conceptual structures with the required and 
sufficient number of prototypes without overfitting.

Despite significant advances in machine learning, the learning abilities of human beings are still much better 
than those of machines. For example, in many cases, humans can generalize concepts from small numbers of 
 samples1,2, and even children can make meaningful generalizations with a single learning  session3–5. On the other 
hand, standard algorithms in machine learning require large numbers of samples and multiple learning sessions 
to perform similar tasks compared with  humans6.

However, humans are known to not always make logical inferences in daily  life7, a tendency that is referred 
to as cognitive bias. Cognitive bias can sometimes lead to false inferences but is often a useful heuristic for quick 
cognition and decision  making8–10.

From among a wide variety of human cognitive  biases8,9,11,12, symmetric  bias13–15 and mutually exclusive 
 bias16–18 were focused upon in this study. Symmetric bias is a tendency to infer “if Q, then P” after being con-
vinced of “if P, then Q,” whereas mutually exclusive bias is a tendency to infer “if not P, then not Q” after being 
convinced of “if P, then Q”. These inferences are illogical, but commonplace, and are thought to promote our 
faster learning and decision  making14–17,19–22. These biases have also been used in the bandit problem, one of 
the classic reinforcement learning problems, and with naïve Bayes, a supervised learning algorithm, which have 
resulted in faster  learning23,24.

In this paper, a self-incremental learning vector quantization (SILVQ) method is proposed. This method can 
learn concepts while autonomously adjusting the learning rate by incorporating symmetric bias and mutually 
exclusive bias into learning vector quantization (LVQ)25, a prototype-based online machine learning method. 
The proposed SILVQ not only has the same characteristics as those of the original LVQ, which will be described 
later, but also provides a learning algorithm that can be intuitively understood. This research aims to contribute to 
both the computer science and cognitive science fields and hopes to support the research of explainable artificial 
intelligence to address the black box problem of machine  learning26–28.

The structure of this paper is as follows. First, we introduce two prominent models that can express the process 
of concept acquisition and explain why we used LVQ in the related works. Next, the original LVQ is reviewed. 
Causal induction models incorporating symmetric bias and mutually exclusive bias will then be described. 
Afterward, a method for automatic adjustment of learning rate, incorporating these causal induction models, 
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will be introduced. The proposed SILVQ, which self-increases LVQ prototypes based on the aforementioned 
method, will then be explained. Finally, the performance of the proposed method is tested in three experiments 
using four real datasets  (Glass29,  Iris30,  Ionosphere31, and  Sonar32) and two artificial datasets.

Related works
In the field of cognitive science, the formation of concepts by humans is an actively discussed topic. This sec-
tion introduces the prototype-based model (PBM) and exemplar-based model (EBM), which are well-known 
concept formation models.

PBM abstracts the characteristics of a category from several instances belonging to a category and stores it as 
a  prototype33–35. The objective of PBM is to simplify recognition and enable faster and more efficient processing 
of vast amounts of information. In contrast, EBM directly stores individual instances as  knowledge36–38. In other 
words, the concept of PBM is abstracted knowledge, while that of EBM is the memory of individual knowledge.

We are always surrounded by vast amounts of information. Considering our storage capacity, we only need 
to acquire the knowledge that can be effectively used in the future from the myriad of information and con-
ceptualize it. Therefore, our cognitive function should be modeled as a PBM. However, the limitations of PBM 
have been identified in some conceptual learning tasks. First, PBM can describe the typical characteristics of 
a category by referring to the prototype, but it cannot describe the diversity of the category. For example, the 
typical characteristics of the category “apple” can be described, but the range of “color,” which is a characteristic 
of apples, cannot be described. Meanwhile, EBM possesses a significant amount of knowledge in comparison to 
PBM, which has only one prototype for one category; furthermore, the diversity of categories can be described 
by referring to this knowledge. Second, humans can accurately reason the correlation between  categories39,40 but 
PBM cannot. However, EBM can infer the correlations between categories in the same manner as the diversity of 
categories by referring to its knowledge. In addition, PBM can only learn linearly separable conceptual structures 
owing to its simple expression, while EBM can learn nonlinearly separable conceptual structures by referring to 
individual knowledge. Consequently, EBM has been demonstrated to be superior in various conceptual learning 
 tasks38,41,42. Moreover, there is evidence that in more complex nonlinear task environments, humans refer to their 
own memory to perform tasks  effectively43–45.

Although some limitations of PBM have been identified, as mentioned above, higher-order human cogni-
tive processes often contain highly abstracted categorical  information46,47. It is also evident that cognitive biases 
are responsible for the rapid and efficient cognitive processing in humans, as mentioned in the introduction. 
Therefore, by focusing on the cognitive biases and LVQ, which is a PBM in the field of machine learning, we 
have developed a machine learning model that can solve some problems related to PBM. Our model provides 
easy-to-interpret learning algorithms, which is one of its advantages and constitutes the main contribution of 
this study to the field of machine learning.

Methods
Learning vector quantization. LVQ is a prototype-based supervised classification algorithm that is 
widely used for practical classification problems because of its very simple  implementation48,49. In addition, 
LVQ not only provides example-based explanations using prototypes, but also makes direct interpretation easy 
because the prototypes are defined in the same space as that of  data48,49.

Among the original LVQs, LVQ1, which requires a small number of parameters to be set and has a simple 
learning algorithm, is described in this subsection. The purpose of LVQ is to learn a prototype for assigning an 
arbitrary input vector to a target class label from training data composed of an input vector x and a correspond-
ing label L(x) . Assuming that the prototype number is i , each prototype is composed of a prototype vector mi , 
which has the same number of attributes as that of the input vector, and a corresponding label L(mi) . At least 
one prototype is prepared for each label. The LVQ1 learning algorithm is as follows.

Step 0. Initial values are given to the prototype vector mi(0) , label L(mi) , initial learning rate α0 , and maximum 
number of learning times T . Furthermore, the number of learning times is set to t = 0.

Step 1. The input vector x and label L(x) are acquired as training data.

Step 2. The prototype j closest to the input vector x is determined using Eq. (1).

Step 3. The learning rate is updated using Eq. (2).

Step 4. The prototype vector is updated using Eqs. (3) and (4).

(1)j = argmini�x −mi(t)�

(2)αj(t) = α0

(

1−
t

T

)
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Step 5. The number of learning times is set to t = t + 1 , and it returns to Step 1.
The prediction of the label for an arbitrary input vector x is performed by outputting the label L

(

mj

)

 of the 
prototype j calculated using Eq. (1). This implies that LVQ includes a prediction phase in the learning process 
(Step 2), in which learning is performed based on the result of “whether the label of the training data was cor-
rectly predicted.” The learning mechanism is simple: if the prediction is correct, move the prototype closer to the 
training data; if the prediction is incorrect, move the prototype away from the training data (Step 4).

In LVQ1, it is necessary to first set the number of prototypes per label, and the two parameters α0 and T for 
determining the learning rate. Optimized LVQ1 (OLVQ1) has also been proposed as a model that improves 
the convergence of LVQ1  learning25. Furthermore, OLVQ1 does not require the setting of the parameter T for 
determining the learning rate, unlike in LVQ1. In OLVQ1, the learning rate is updated using Eq. (5).

Causal induction models. In the field of cognitive psychology, attempts have been made to identify how 
humans assess the strength of causal relationships between  events14,50,51. Hattori describes “causal induction” 
as the phenomenon that induces a causal relationship between two events P and Q using their co-occurrence 
frequencies a , b , c , and d , as shown in Table 150.

This subsection describes three causal induction models that are differentiated by the strength R of the causal 
relationship between events based on the co-occurrence frequencies a , b , c , and d.

CP model. Considering the conditional probability that event Q occurs after event P occurs as the strength 
of the causal relationship between the events, R is defined as in Eq. (6).

This model is called a conditional probability model (CP model). The coefficient of determination between 
the CP model and the mean human evaluation is r2 = 0.7314,50,52.

RS model. The difference of the CP model from the mean human evaluation is considered to be due to the 
effect of human cognitive bias. Therefore, we define R for a model incorporating symmetric bias and mutually 
exclusive bias, as shown in Eq. (7).

This model is called a rigidly symmetric model (RS model) because the symmetric bias and mutually exclu-
sive bias work rigidly. The coefficient of determination between the RS model and the mean human evaluation 
is r2 = 0.7214,50,52.

LS model. The RS model includes a symmetric bias and a mutually exclusive bias, but these biases are 
unlikely to work strongly under all circumstances. Therefore, we define R for a model in which symmetric bias 
and mutually exclusive bias are slightly effective, as demonstrated in Eq. (8).

This model is called a loosely symmetric model (LS model) because the symmetric bias and mutually exclusive 
bias act loosely. In particular, the coefficient of determination between the LS model and mean human evaluation 
is confirmed to be r2 = 0.91 , which is much higher than those of the CP model and the RS  model14,52.

(3)mj(t + 1) = mj(t)+ s(t)αj(t)
{

x −mj(t)
}

(4)s(t) =

{

1 L
(

mj

)

= L(x)
−1 L

(
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)

�= L(x)

(5)αj(t) =

{
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Table 1.  Co-occurrence frequency information for event P and event Q.
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Method for automatic adjustment of learning rate. In this subsection, we describe the method for 
automatically adjusting the learning rate that incorporates causal induction models. This method automatically 
adjusts the learning rate by calculating the label confidence based on the result of “whether the label of the train-
ing data was correctly predicted” by including the prediction phase in the learning process, like in LVQ.

A method of updating the learning rate will be described using, as an example, a model having a label L(mi) 
and a learning rate αi corresponding to a prototype i . In this method, each prototype i holds the co-occurrence 
frequencies ai , bi , ci , and di . This model may be applicable to all online machine learning models, but this study 
assumes that it is a type of LVQ. Figure 1 shows a flowchart illustrating how this method processes one instance 
of training data. The process of updating the learning rate after one instance of training data is acquired is as fol-
lows. First, a label L(x) of training data is predicted using a model, resulting in a predicted label L

(

mj

)

 as output. 
Based on the prediction results, the co-occurrence frequencies ai , bi , ci , and di of the events outlined in Table 2 are 
then updated for each prototype i . The meanings of the two events listed in Table 2 are “the predicted label is the 
prototype i ’s label” and “the predicted result is correct.” That is, the strength Ri of the causal relationship between 
these events can be considered as the label confidence, indicating whether the prototype i can correctly predict 
the label of the training data. With the use of ai , bi , ci , di , and the causal induction model, Ri is then calculated as 

Figure 1.  Flowchart of method for automatic adjustment of learning rate.
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the label confidence of prototype i . Finally, the learning rate αi is updated as 1− Ri . In other words, the degree 
of lack of label confidence is determined as the learning rate.

Self‑incremental learning vector quantization. As described previously, because the method for auto-
matic adjustment of learning rate includes a prediction phase in the learning process similar to in LVQ, the 
method can be naturally implemented in LVQ. SILVQ is different from LVQ1 and OLVQ1 such that each pro-
totype i holds the co-occurrence frequencies ai , bi , ci , and di , and the number of prototypes per label is usually 1 
at the beginning. SILVQ has a confidence threshold θ as the only parameter that needs to be set in advance. The 
SILVQ learning algorithm is as follows.

Step 0. Initial values are given to the prototype vector mi(0) , the label L(mi) , and confidence threshold θ . Fur-
thermore, the number of learning times is set to t = 0 , and co-occurrence frequencies are set to ai = 0 , bi = 0 , 
ci = 0 , and di = 0.

Step 1. The input vector x and label L(x) are acquired as training data.

Step 2. The prototype j closest to the input vector x is determined using Eq. (1). Furthermore, the prototype k 
where L(mi) = L(x) closest to the input vector x is determined using the same calculation as Eq. (1).

Step 3. For each prototype i , the co-occurrence frequencies ai , bi , ci , and di shown in Table 2 are updated, and the 
label confidence Ri is calculated using one of the Eqs. (6)–(8). Thereafter, the learning rate is set to αi = 1− Ri.

Step 4. If L
(

mj

)

 = L(x) and Rj > θ , the input vector x and the corresponding label L(x) are added to the model 
as a new prototype. If this condition is not satisfied, the prototype vector is updated Eq. (9).

Step 5. The number of learning times is set to t = t + 1 , and it returns to Step 1.
Equation (9) denotes simply updating the prototype vector that has the same label as the training data. The 

condition of adding a prototype indicates that the prediction is wrong even though the label confidence is higher 
than an arbitrary threshold. Adapting the process of a human learning knowledge, the learning mechanism of 
SILVQ is as follows.

(A) Confidence is low, but the prediction is correct.
→ Knowledge is greatly modified, and confidence is raised.
(B) Confidence is low, and the prediction is incorrect.
→ Knowledge is greatly modified, and confidence is further lowered.
(C) Confidence is high, and the prediction is correct.
→ Knowledge is hardly modified, and confidence is further raised.
(D) Confidence is high, but the prediction is incorrect.
→ Knowledge with new features is learned, and confidence is lowered.

This learning mechanism will be explained using, as an example, the process of a child learning the knowledge 
of “apple.” When a child learns “apple” for the first time, the child’s knowledge will be greatly modified because 
of low confidence (A & B). When a child who knows apple well learns “apple,” the child’s knowledge will hardly 
be modified because of the high confidence (C). However, when a child who knows apple well as a red apple 
learns for the first time that a green apple is also an “apple,” it is natural to learn this as knowledge with new 
features (D). In other words, a child who was convinced of “red” as a feature of an apple would not modify his/
her knowledge to “yellow,” which is a neutral color between red and green, even if he/she saw the green apple 
for the first time. This method not only removes the need for setting the number of prototypes per label and 
the parameters for determining the learning rate, but also provides a natural learning algorithm that works by 
calculating the confidence of the knowledge.

Experiments
This subsection describes three experiments performed to evaluate the performance of the proposed method. 
Table 3 lists information on the datasets used in this experiment.

(9)mk(t + 1) = mk(t)+ αk(t){x −mk(t)}

Table 2.  Co-occurrence frequency information for each prototype i.
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Experiment 1. In this experiment, the performance of SILVQ was verified in an environment in which each 
instance was learned only once, which is like what a human would encounter on a daily basis.

The experimental procedure is as follows. First, an arbitrary dataset is randomly shuffled. The dataset is then 
divided into 80% training data and 20% test data. Thereafter, a model is trained by acquiring instances one by 
one from the training data, and accuracy is calculated in each training stage using test data. The reason why this 
experimental procedure is used instead of the cross-validation often performed in the performance evaluation 
of the machine learning model is that the performance of the model largely depends on the training order.

Four real datasets, namely, Glass, Iris, Ionosphere, and Sonar, were used to validate the performance of the 
model. Glass and Iris are multi-label datasets with human-understandable attributes. Ionosphere and Sonar 
are waveform datasets with attributes that are difficult for humans to intuitively understand. These datasets 
are available in the UCI Machine Learning  Repository53, which is a database collected by the machine learning 
community for the analysis of machine learning algorithms. The models used were SILVQ using CP, RS, and LS 
models as causal induction models (SILVQ–CP, SILVQ–RS, SILVQ–LS) with θ = 1.0 , and LVQ1 and OLVQ1 
with initial learning rates α0 of 0.5, 0.3, and 0.1. SILVQ with θ = 1.0 is a special form in which the number of 
prototypes does not increase. That is, a comparison of these models signifies a comparison of simple models 
that move one prototype based on the learning rate. The initial value of the prototype vector of each model was 
set as the vector value of an instance having a label obtained for the first time from the training data. For each 
dataset, the maximum number of learning times T of LVQ1 was set to the number of instances of training data.

Experiment 2. In this experiment, the performance of SILVQ when all the instances were learned many 
times was verified. The experimental procedure was the same as in Experiment 1, except that each model learned 
each dataset 30 times. The same datasets used in Experiment 1 were used. The models used were SILVQ–RS, 
SILVQ–LS with θ = 0.5 , and existing representative algorithms: generalized LVQ (GLVQ)54, generalized rel-
evance LVQ (GRLVQ)55,56, and robust soft LVQ (RSLVQ)57. The number of prototypes per label of the existing 
algorithm was set to the value of “number of instances of training data / number of labels / 10,” to prevent the 
number from being too small. Other parameters were set to be the same as those in the study by Nova and 
Estévez48. Please refer  to48 for further details regarding the various parameters of comparative LVQ.

Experiment 3. In this experiment, we verified how a prototype was added when the SILVQ’s confidence 
threshold θ was changed. The experimental procedure is the same as in Experiment 2. Two 2-dimensional arti-
ficial datasets, Artificial dataset 1 and Artificial dataset 2, were used. Figure 2 shows the distributions of these 
artificial datasets. Artificial dataset 1 is a non-linearly separable distribution where some labels need to have 
multiple prototypes for correct classification, whereas Artificial dataset 2 is a distribution where the data for 
each label are densely overlapping. The model used was SILVQ–LS with θ = 0.5 and 0.8 . In the case of θ = 0.5 , 
the prototypes are added when the prediction is incorrect even if the label confidence is half (not high). In other 
words, SILVQ with θ = 0.5 contains several instances as knowledge, similar to EBM. In the case of θ = 0.8 , 
the prototypes are added when the prediction is incorrect and the label confidence is high. This indicates that 
SILVQ with θ = 0.8 is the SILVQ learning mechanism itself. The initial value of the prototype vector was set as 
in Experiment 1.

Results
Figure 3 shows the results from Experiment 1 of 100,000 trials in which each model with prototypes per label = 1 
and 8 trained with each dataset 1 time. From the results, SILVQ–RS and SILVQ–LS with prototypes per label = 1 
are confirmed to achieve high accuracy by learning a small number of instances, but only for the Glass and Iris 
datasets. On the other hand, SILVQ–RS and SILVQ–LS with prototypes per label = 8 are confirmed to achieve 
high accuracy by learning a small number of instances for all datasets.

Table 4 shows the results from Experiment 2 of 100 trials in which each model trained with each dataset 30 
times. From the results, SILVQ–LS is confirmed to achieve the same or higher accuracy than that of the existing 
algorithm, with respect to the median value of accuracy for each dataset.

Figure 4 shows the results from Experiment 3 of 1 trial in which SILVQ–LS with θ = 0.5 and 0.8 trained 
with each dataset 30 times. From the results, all models are confirmed to have appropriately learned Artificial 
dataset 1; however, SILVQ–LS with θ = 0.8 , compared to with θ = 0.5 , appropriately learned the instances 
with a necessary and sufficient number of prototypes. On the other hand, for Artificial dataset 2, SILVQ–LS 

Table 3.  Dataset information used in experiments 1, 2, and 3.

Datasets Instances Attributes Labels

Glass 214 9 6

Iris 150 4 3

Ionosphere 351 34 2

Sonar 208 60 2

Artificial dataset 1 500 2 5

Artificial dataset 2 300 2 3
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Figure 2.  Distribution of artificial datasets used in Experiment 3. (a) Distribution of Artificial dataset 1. (b) 
Distribution of Artificial dataset 2.

Figure 3.  Experiment 1 results. The figure shows the results of 100,000 trials in which each model with 
prototypes per label = 1 and 8 trained with each dataset 1 time. Each graph shows the average accuracy at each 
training stage. (a) Results for the Glass dataset. (b) Results for the Iris dataset. (c) Results for the Ionosphere 
dataset. (d) Results for the Sonar dataset.
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with θ = 0.5 is confirmed to have overfitted the data. By contrast, SILVQ–LS with θ = 0.8 is confirmed to have 
learned the instances appropriately with the necessary and sufficient number of prototypes, similar to the result 
for Artificial dataset 1.

Discussion
The results of Experiment 1 reveal that SILVQ–RS and SILVQ–LS each have a better performance than that of 
SILVQ–CP. SILVQ–RS and SILVQ–LS include symmetric bias and mutually exclusive bias as human cognitive 
biases, and update the learning rate heuristically. Therefore, these models are speculated to be good at learning 
datasets with human-understandable attributes, such as Glass and Iris, but are not good at learning waveform 
data that are difficult for humans to understand, such as Ionosphere and Sonar. Note that these results are 
very interesting, but only speculative. However, when learning one instance, SILVQ–CP updates only one label 
confidence, whereas SILVQ–RS and SILVQ–LS update multiple label confidences. Therefore, SILVQ–RS and 
SILVQ–LS enable efficient learning from a small number of instances. Figure 5 shows the learning rate of each 
model at each learning stage of the Glass dataset. When learning an instance, SILVQ–CP only updates the learn-
ing rate of the label corresponding to the instance; therefore, it takes time for all learning rates to decrease. In 
contrast, it can be observed that SILVQ–RS and SILVQ–LS efficiently reduce the learning rate corresponding to 
all labels. However, SILVQ–RS exhibits strong learning based on the symmetry and mutual exclusivity biases; 
therefore, the learning process may end early even if it is not performed correctly.

The updating mechanism of these models is based on illogical inferences that derive “Other than this is not 
an apple” from the teaching “this is an apple.” Most humans have experienced such illogical inferences. For 
example, you will drive a car based on knowledge learned at a driving school. However, from your experience 
of good driving, you may implicitly infer “this is good driving” and learn unconsciously that “other than this is 
bad driving.” Such illogical inference-based learning may not be necessary for machine learning techniques that 
require perfect performance, but this kind of learning is very human-like.

The results of Experiment 1 also show that, for all datasets, SILVQ–RS and SILVQ–LS can achieve high accu-
racy with small numbers of instances by increasing the number of prototypes per label. The results of Experiment 
2, meanwhile, demonstrate that SILVQ–LS with θ = 0.5 can achieve the same or better accuracy than that of the 
existing algorithm, without parameters having to be set. However, the purpose of our research is not to develop 
machine learning models with excellent performance, but to model and elucidate human cognitive processes. 
Therefore, we want to focus particularly on SILVQ–LS with θ = 0.8 , the performance of which is demonstrated 
by the results of Experiment 3. Most real-world data are complex and noisy. Furthermore, human beings have 

Table 4.  Experiment 2 results. The table lists the results of 100 trials in which each model trained with each 
dataset 30 times. The values in the table include the minimum, maximum, median, mean, and standard 
deviation of accuracy.  Best results for each dataset are in boldface. (a) Results for Glass dataset. (b) Results for 
Iris dataset. (c) Results for Ionosphere dataset. (d) Results for Sonar dataset.

Classifier SILVQ–RS SILVQ–LS GLVQ GRLVQ RSLVQ

(a)

Min 90.7% 93.0% 93.0% 93.0% 81.4%

Max 100% 100% 100% 100% 100%

Median 97.7% 100% 100% 100% 97.7%

Mean 98.3% 98.5% 98.5% 98.5% 97.8%

Std 0.0204 0.0176 0.0179 0.0182 0.0273

(b)

Min 86.7% 86.7% 86.7% 86.7% 80.0%

Max 100% 100% 100% 100% 100%

Median 96.7% 96.7% 96.7% 96.7% 96.7%

Mean 95.4% 95.3% 96.8% 96.5% 94.7%

Std 0.0364 0.0356 0.0326 0.0323 0.0411

(c)

Min 75.7% 74.3% 81.4% 78.6% 75.7%

Max 95.7% 95.7% 95.7% 95.7% 95.7%

Median 87.1% 88.6% 87.1% 87.1% 88.6%

Mean 86.7% 87.5% 87.7% 87.5% 87.7%

Std 0.0399 0.0403 0.0297 0.0357 0.0393

(d)

Min 59.5% 71.4% 50.0% 61.9% 69.0%

Max 95.2% 92.9% 88.1% 95.2% 95.2%

Median 83.3% 83.3% 66.7% 73.8% 83.3%

Mean 82.7% 83.3% 68.3% 74.3% 82.4%

Std 0.1070 0.0510 0.0753 0.0610 0.0585
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limited storage capacities and vital energies, and thus cannot store information on all instances in the brain. 
Therefore, SILVQ–LS with θ = 0.8 , which learns two artificial datasets with a necessary and sufficient number of 
prototypes, can be said to be a very human-like model. Even when the SILVQ learning mechanism is considered, 
a threshold of 0.8 indicating high confidence would not be qualitatively wrong.

SILVQ can solve some problems related to PBM in a similar manner as EBM by adding instances that charac-
terize each label. In other words, SILVQ can be considered a hybrid model of PBM and EBM. The hybrid model 
of PBM and EBM is being investigated in the field of cognitive science, such as linguistics; it is not a new  idea58. 
However, this discussion is not active in the field of machine learning. This is because artificial intelligence is 
generally aimed at high-precision learning; therefore, most tasks can be performed like EBM by including or 
learning a large number of instances. Considering concept formation models in the field of cognitive science 
may not be necessary in normal machine learning tasks, but it is essential for building human-like artificial intel-
ligence. We hope that our model, which has an easy-to-interpret learning mechanism, will contribute to the fields 
of both computer science and cognitive science. However, this study does not provide any evidence of similarity 
between our model and the human cognitive processes; accordingly, further work is required.

Figure 4.  Experiment 3 results. The figure shows results of 1 trial in which SILVQ–LS with confidence 
threshold θ = 0.5 and 0.8 trained with each dataset 30 times. Points in the figure indicate prototypes 
corresponding to each label. (a) Results for Artificial dataset 1. (b) Results for Artificial dataset 2.
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Conclusion
In this paper, we proposed SILVQ as an easy-to-interpret machine learning model incorporating symmetric bias 
and mutually exclusive bias. The performance of the proposed method was then verified in three experiments 
using four real and two artificial datasets. SILVQ effectively removed the need for parameter tuning and achieved 
higher accuracy by learning a small number of samples compared to the original LVQ algorithms. Even when 
learning a large number of samples, the accuracy of SILVQ was equal to or better than the existing representative 
LVQ algorithms. Furthermore, SILVQ learned a nonlinearly segregated conceptual structure with the required 
and sufficient number of prototypes without overfitting.

To improve SILVQ performance, distances other than the Euclidean distance, such as cosine distance, may 
be used instead. As with advanced LVQ algorithms, such as GLVQ, GRLVQ, and RSLVQ, designing models to 
strictly minimize classification errors may be possible. However, we challenge ourselves and others not only to 

Figure 5.  Transition diagram of the learning rate in SILVQ. The figure shows the learning rate of each model 
at each learning stage of the Glass dataset. Each model has six learning rates corresponding to each label. (a) 
Results for SILVQ–CP. (b) Results for SILVQ–RS. (c) Results for SILVQ–LS.
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improve the performance of our method but also to make it closer to the human cognitive process. Human learn-
ing is variable and compound; it is not exclusively based on minimizing the classification  errors59,60. In future, 
we will improve our model based on the psychological distance instead of physical distance, such as Euclidean 
distance, and compare it with human cognitive processes.
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